Preprint
Article

Bioinformatic Analysis Reveals That the Reproductive System is Potentially at Risk from SARS-CoV-2

Altmetrics

Downloads

1361

Views

3134

Comments

0

Submitted:

19 February 2020

Posted:

21 February 2020

You are already at the latest version

Alerts
Abstract
An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in China towards the end of 2019, and has spread rapidly ever since. Previous studies showed that some virus could affect the reproductive system and cause long-term complications. Recent studies exploring the source of SARS-CoV-2 using genomic sequencing have revealed that SARS-CoV-2 enters the host cells via the angiotensin-converting enzyme II (ACE2), the receptor that recognizes SARS-CoV. To investigate the expression of ACE2 and to explore the potential risk of infection in the reproductive system, we performed a thorough bioinformatic analysis on data from public databases involving RNA expression, protein expression, and single-cell RNA expression studies. The analyzed data showed high levels of ACE2 mRNA and protein expression in the testis and spermatids and equal levels of ACE2 expression in the uterus and lung. Comprehensive single-cell analysis identified ACE2 expression in the lung, testis, spermatids, and uterus. In conclusion, this study revealed the potential risk associated with the SARS-CoV-2 infection in the reproductive system and predicted that long-term complications might have a significant impact on the prevention and management of COVID-19, the disease caused upon infection with SARS-CoV-2.
Keywords: 
Subject: Medicine and Pharmacology  -   Pathology and Pathobiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated