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Abstract: Early detection of cancer increases the probability of recovery. This paper presents an 

intelligent decision support system (IDSS) for the early diagnosis of cancer based on gene 

expression profiles collected using DNA microarrays. Such datasets pose a challenge because of 

the small number of samples (no more than a few hundred) relative to the large number of genes 

(on the order of thousands). Therefore, a method of reducing the number of features (genes) that 

are not relevant to the disease of interest is necessary to avoid overfitting. The proposed 

methodology uses the information gain (IG) to select the most important features from the input 

patterns. Then, the selected features (genes) are reduced by applying the grey wolf optimization 

(GWO) algorithm. Finally, the methodology employs a support vector machine (SVM) classifier 

for cancer type classification. The proposed methodology was applied to two datasets (Breast and 

Colon) and was evaluated based on its classification accuracy, which is the most important 

performance measure in disease diagnosis. The experimental results indicate that the proposed 

methodology is able to enhance the stability of the classification accuracy as well as the feature 

selection. 

Keywords: machine learning, cancer diagnosis, grey wolf optimization algorithm, support vector 

machine, information gain, feature selection. 

                                                                                        

 

1. Introduction 

 Cancer is a common disease caused by certain abnormal changes to genes that are responsible for 

cell division and growth. These recognizable changes include mutations of the DNA that make up 

genes. Generally, cancer cells exhibit significantly more genetic changes than normal cells, although 

cancerous tumours show different specific combinations of genetic alterations in different people. 

However, a few of these recognizable changes may be the result of the cancer rather than its cause. 

As cancer grows, additional changes will occur [1]. Therefore, the early detection of cancer can 

improve the treatment possibilities and increase the survival rate of patients. Thus, developing 

appropriate methodologies that can effectively distinguish among tumour subtypes is vital. Early 

diagnosis of cancer is essential for sufficient and effective treatment because every cancer type 

requires specific treatment.  

   According to the World Cancer Organization, approximately 4,610 cases of central nervous 

system (CNS) tumours and various brain tumours were expected to be diagnosed in 2018 in children 

under the age of 20 in the United States. After leukaemia, brain cancer and other tumours of the CNS 

are the second most common type of cancer among children; the rate of such tumours has never 
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reached more than 26% among children under the age of one year [2, 3]. In 2019, 1,762,450 new 

cancer cases of brain and other nervous system tumours were reported in the United States, and the 

number of associated deaths was estimated to be 606,880. Thus, it is important to develop a 

methodology of detecting cancer in the early stages before the tumour worsens, thereby reducing 

the risk of death [4]. 

   The conventional methods of diagnosing most existing diseases depend on human experience to 

recognize cases that correspond to confirmed data patterns. However, this age-old diagnosis 

methodology is subject to human error and imprecise diagnosis and is both time consuming and 

labour intensive, thus causing undue stress throughout the whole process. As an alternative, 

computer-aided diagnosis (CAD) systems based on machine learning have been continually 

improving and are employed to support specialists in the determination of diagnosis decisions [5, 6]. 

  Most current CAD systems for medical diagnosis depend on diverse information, such as medical 

laboratory tests (e.g., blood tests and magnetic resonance imaging (MRI)), medical indicators (finger 

tremors and lung signs or symptoms), and various types of digital images (such as X-rays and 

ultrasound images). However, physical medical examinations pose a risk of transmission of 

infection through tools and other channels, such as scratching of the skin while taking a blood 

sample [7,8,9]. X-rays are harmful because of the exposure of body cells to radiation. The quality of 

ultrasound data depends on the accuracy and integrity of the image, which are affected by various 

factors, such as the presence of air between the surface of the skin and the tool and image blur. A 

system that depends on gene expression data collected using DNA microarrays can effectively solve 

these problems. Such a method can be used to diagnose cancer in the early stages, unlike other 

methods that use different kinds of image processing techniques. The challenges that arise in 

microarray classification are mainly centred on dimensionality and classification accuracy [8, 9]. 

   Methodologies that depend on gene expression profiles have been able to detect cancer since their 

inception. In previous work, exhaustive efforts have been made to achieve the best results. 

Researchers have achieved excellent results in the classification of cancer based on gene expression 

profiles using various gene selection approaches and classifiers [10]. 

   There is more than one approach to gene selection, including filter, wrapper, embedded and 

hybrid approaches, and every approach has its advantages and disadvantages. For example, the 

advantages of the filter approach are that it is very fast and computationally simple, whereas its 

main disadvantage is that each feature is measured separately, and thus, it does not consider the 

dependencies among features. The wrapper approach has the advantage of enabling an exhaustive 

search to generate optimal solutions, whereas its disadvantage is that it has a higher risk of 

overfitting than filter techniques do. The embedded approach has the same benefits as the wrapper 

approach while achieving better computational complexity; however, it is still prone to overfitting. 

Hybrid approaches can combine the advantages of various other approaches, but the time 

complexity may increase [11, 12]. 

This paper addresses the problem of medical diagnosis and presents an intelligent decision support 

system (IDSS) for cancer diagnosis based on gene expression profiles from DNA microarray datasets. 

DNA microarray technology has been efficiently applied to analyse gene expression in many 

experimental studies. Usually, the number of features (M) in a microarray dataset is very large 

(usually in the thousands), while the number of samples (N) is small (not exceeding hundreds) [13]. 

This paper proposes an IDSS for CNS cancer classification based on gene expression profiles. The 
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proposed system combines the information gain (IG), the grey wolf optimization (GWO) algorithm 

and the support vector machine (SVM) algorithm: the IG is used for selecting important genes 

(features) from the input matrix, GWO is used for feature reduction, and an SVM classifier is used 

for cancer diagnosis. 

   The remainder of this paper is organized as follows. Section 2 reviews some important previous 

works. Section 3 describes the proposed methodology; this section includes an overview of the IG 

filter approach for feature selection, the GWO algorithm for feature reduction and the SVM 

algorithm for classification. Section 4 describes the datasets used in this research. Section 5 reports 

and analyses the results, and Section 6 presents the conclusions and possibilities for future work. 

2. Related Works 

 In all the previous studies listed below, gene expression profiles were used for the classification of 

cancer based on various methodologies. These methodologies were applied to datasets with a small 

number of samples, a large number of features, and the additional characteristics listed in table 1 

below. 

 

Table 1. Characteristics of the datasets used in previous studies 

 

   Salem, Hanaa, et al [11] reported research on human cancer classification using gene expression 

profiles. The feature selection methodology used in this study exploited the IG for gene selection 

from the input microarray data. The methodology also exploited a genetic algorithm (GA) to reduce 

Dataset Used in Ref 
No. of 

samples 

No. of 

features 
Class 1 Class 2 

Leukaemia72 
[11], [35], [33], [16], [10], 

[13] 
72 7129 ALL (47) AML (25) 

Prostate [11], [35], [33], [10], [14] 136 12600 Normal (59) Tumour (77) 

Lung Cancer-Ontario [11] 39 2880 Non-relapse (15) Relapse (24) 

Lung Cancer-Michigan [11], [35] 96 7129 
Non-neoplastic 

(10) 

Primary lung 

(86) 

DLBCL Harvard [11], [35] 77 7129 DLBCL (58) FL (19) 

Central Nervous System [11], [35], [33], [16] 60 7129 Class 0 (39) Class 1 (21) 

Colon 
[11], [35], [33], [16], [10], 

[14] 
62 2000 Positive (22) Negative (40) 

Leukaemia 
                          

[14] 
72 3571 ALL (47) AML (25) 

Prostate Outcome [35] 136 12600 Normal (59) Tumour (77) 

Breast [12] 97 24,481 Relapse (46) 
Non-relapse 

(51) 

Ovarian [33], [35] 253 15154 Normal (91) Cancer (162) 

GCM [33] 190 16063 - Multi-class- 

DLBCL Outcome [35] 58 7129 Cured (32) Fatal (26) 

Leukaemia38 [16] 38 5000 ALL (27) AML (11) 

Lymphoma [33], [16], [10] 96 4026 - Multi-class- 
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the number of features selected based on the IG. The final task of cancer classification (or diagnosis) 

was accomplished by means of genetic programming (GP). The framework was verified by 

considering seven cancer gene expression datasets (Lung Cancer-Ontario, Leukaemia72, DLBCL 

Harvard, Prostate, Lung Cancer-Michigan, Colon, and Central Nervous System). The authors 

achieved classification accuracies of 85.48% (Colon), 86.67% (Central Nervous System), 97.06% 

(Leukaemia72), 74.4% (Lung Cancer-Ontario), 100% (Lung Cancer-Michigan), 94.8% (DLBCL 

Harvard) and 100% (Prostate). 

   As a hybrid gene selection technique, J. Bennet, C., et al [13] proposed an ensemble feature 

selection technique that is a mixture of the support vector machine-recursive feature elimination 

(SVM-RFE) approach and the Based Bayes error Filter (BBF) for attribute selection. These researchers 

employed SVM-RFE to sort the attributes and the BBF to remove redundant sorted attributes. The 

SVM algorithm was then used for classification. The best classification accuracy on the Leukaemia72 

dataset reached 97.2%. 

   The authors of [35] presented an analysis of the behaviour of a GA with k-nearest-neighbours 

(KNN) and SVM classifiers on ten datasets. Using the GA, they reduced the number of features 

selected by three filters. In the final stage, the KNN and SVM algorithms were used for classification. 

The authors used 5-fold cross-validation, and on most datasets, the classification accuracy achieved 

with the SVM classifier was the same as that achieved with the KNN classifier; the results differed 

only for the Leukaemia72 dataset (Lung Cancer-Michigan: 100%, Ovarian: 100%, Central Nervous 

System: 81.25%, DLBCL Harvard: 100%, DLBCL Outcome: 77.27%, Prostate Outcome: 85.71%, 

Leukaemia72: 100% using SVM and 95.45% using KNN, Colon: 95%, Lung Harvard2: 100%, and 

Prostate: 92%). 

  In [33], an ensemble of five filters (IG, correlation-based feature selection (CFS), consistency-based, 

interaction, and ReliefF) and three classifiers (naïve Bayes, C4.5, and IB1) was proposed. The 

researchers used a simple voting scheme for classification. They applied their methodology to 10 

microarray datasets with ten-fold cross-validation, and the best classification accuracies they 

obtained were 100% (Lung), 89.05% (Colon), 100% (Ovarian), 70% (Central Nervous System), 71.89% 

(Breast), 98.75% (Leukaemia72), 90.6% (Prostate), 68.42% (GCM), and 95.67% (Lymphoma). 

In [16], the researcher applied a GA for gene selection in combination with four classifiers for cancer 

classification using a gene expression dataset. The classifiers used were naïve Bayes, SVM, oneR, and 

decision tree classifiers. The author analysed the results obtained by applying the methodology to 

six datasets, namely, Lymphoma, Lung, CNS, Colon, Leukaemia38, and Leukaemia72, on which the 

best classification accuracies were 97%, 99.4%, 82.3%, 88.8%, 100%, and 98.6%, respectively.  

    Salem, Hanaa, et al [12] presented research on the early classification of breast cancer based on 

gene expression profiles. Their system first extracts important genes from the input microarray data 

using the IG methodology and then exploits a GA to reduce the features selected in this way. The 

best results in this study were achieved with an IG threshold value of 0.7 for the breast cancer 

dataset; with this threshold, the features were initially reduced from 24,481 attributes to 45 attributes 

by the IG methodology and were further reduced to only 22 attributes by applying a GA with a 

population size of one hundred and twenty rounds of evaluation. The classification accuracy 

reached 100%. 

   Bouazza, Sara Haddou, et al [14] presented research on cancer classification using SVM and KNN 

classifiers. In this research, the effects achieved on three gene expression profile datasets (Prostate, 
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Colon, and Leukaemia) were studied using multiple techniques for attribute selection (such as 

Fisher, ReliefF, SNR, and T-Statistics) with both KNN and SVM classifiers. The best results were 

obtained by combining the SNR attribute selection technique with the SVM classifier. The best 

classification accuracies achieved in this study with the SNR feature selector and the KNN classifier 

were 95% for the Colon and Prostate datasets and 100% for the Leukaemia dataset. 

 

3. The Proposed Methodology 

 

 

  

 

 

 

 

 

Input Phase  
  Classifier 

 
Output Phase 

 

 

Figure 1. IG flowchart 

 

The proposed methodology consists of three main stages. Once the data are input into the system, 

the IG filter first selects the most important features [15]. Then, the GWO algorithm reduces the 

number of selected features. The last stage of the system is to apply the SVM classifier to obtain 

specific cancer classification results. An overview of the methodology is shown in figure 1. 

 

 

3.1. Entropy and information gain (IG) for gene selection 

   Entropy is the basic concept used in information theory to compute the homogeneity of features; 

for example, when samples are fully homogeneous, they have an entropy equal to zero, whereas 

equally divided samples have an entropy value of one [17]. For a dataset with a high feature 

dimensionality and a small sample size, classification of the data is very difficult. Among the 

thousands of gene expression attributes that are usually investigated, only very few are relevant to a 

particular disease. Therefore, only the relevant features should be retained [16]. Proper investigation 

of the gene profiles will be helpful for selecting the genes that are most important for the 

classification process. 

Feature 

Selection 

by IG 

Gene 

Expressio

n Profile 

Classification  Result 

Filter Feature and Wrapper 

Feature Selection Approach 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 February 2020                   doi:10.20944/preprints202002.0324.v1

Peer-reviewed version available at Symmetry 2020, 12, 408; doi:10.3390/sym12030408

https://doi.org/10.20944/preprints202002.0324.v1
https://doi.org/10.3390/sym12030408


 6 of 17 

 E(Z) = - D+log2 (D+) -D-log2 (D-) for a sample with negative and positive attributes. 

The formula for entropy is as follows [18]: 

 

Entropy (𝑍) = ∑−(𝐷𝑘  𝑙𝑜𝑔2𝐷𝑘)

𝑉

𝑖=1

                  (1) 

where the 𝐷𝑖  are the a priori probabilities of categorical variable Z and 𝑘 is an index indicating a 

particular category in the classification system. 

Consider the special case of two classification problems (where V is the number of classes). 

Let j be a gene that may have n possible values (j1, j2, …, jn). The entropy will be as follows: 

Entropy (𝑘/𝑗) = −∑𝑝(𝑗) 

𝑛

𝑗=1

∑ 𝑝(
𝑘

𝑗
) 𝑙𝑜𝑔2(𝑝 (

𝑘

𝑗
))

𝑉

𝑘=1

                  (2) 

where 𝑝(
𝑘

𝑗
) is the conditional probability of variable K when attribute J is constant, calculated over 

all attributes and classes. The calculation of IG mainly depends on the entropy [19]. Based on the 

distribution of the attributes in the dataset, the entropy is calculated for all attributes in the dataset. 

The data are then separated into groups of attributes. The entropy is calculated for each group 

separately, and the entropy values for all groups are combined to obtain the total entropy. The 

entropy based on individual groups of data is then subtracted from the entropy based on the entire 

data distribution [20]:  

𝐼𝐺(𝐽) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦  (
𝑘

𝑗
)                  (3) 

When gene J and category K are not related, 𝐼𝐺(𝐽) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (
𝑘

𝑗
) = 𝑧𝑒𝑟𝑜, whereas if 

they are related, then 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) > 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (
𝑘

𝑗
), leading to IG(J) >0. There is a direct relationship 

between a larger difference between J and K and a stronger correlation between J and K. A feature 

with a larger IG value is more important for classification. Therefore, genes with greater IG values 

are first chosen from among the original high-dimensional genes to be used as the basis for further 

gene selection [21]. 

The IG flowchart shown in figure 2 describes the steps of the IG algorithm. The input data set has a 

set of attributes W, and the required output is the selected subset Y of the original attributes W. First, 

the attributes to be considered for classification are initialized. 

Second, the entropy of all samples is computed for each class 

using equation (1). Then, the conditional probability for each 

value of a single attribute is calculated and is used to 

calculate the conditional entropy for every attribute via 

equation (2). The IG is computed using equation (3) for all 

attributes. The resulting IG values are arranged in ascending 

order, and all values that are above a certain threshold value 

are selected. 

3.2. Grey wolf optimization (GWO) for feature reduction 

 

δ 

ω 

α 

β 

Figure 3. Hierarchy of grey wolves 

(dominance decreases from the top 

down) [22] 
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Wolves of the grey wolf (Canis lupus) species prefer to live in packs. On average, there are 5-12 

members in one group. These animals live in groups governed by laws that maintain their 

hierarchical order, as shown in figure 3 [22]. At the top of the hierarchy is the leader, called the alpha, 

who may be male or female. The alpha is responsible for most of the pack’s decisions, such as the 

places they hunt, the times at which they wake and sleep, and so on. All wolves in the pack follow 

the alpha [23]. The betas, who also may be male or female, constitute the second level in the 

hierarchy of grey wolves. They assist the alpha wolf in decision-making and coordinating other 

activities in the pack. A beta wolf is the most likely candidate to inherit the alpha’s position when the 

alpha dies or becomes too old to lead. The third level in the hierarchy of grey wolves consists of 

wolves called subordinates (or deltas). Deltas follow the alpha and beta wolves, and the others 

follow the deltas. The deltas of the pack are divided into several categories, each of which is 

responsible for particular tasks. 

   The scout category is responsible for monitoring for threats to the pack [24]. The sentinel category 

is responsible for providing safety and protection for the pack. Elders are experienced wolves who 

are nominated to be future alphas or betas. Hunters assist the betas and alpha in hunting prey and 

providing food for the pack. Caretakers perform the caring tasks for wounded, ill, and weak wolves 

in the pack. All other wolves are omegas, who lie at the base of the hierarchy; they are the scapegoats. 

The omega wolves are subordinate to all other wolves in the hierarchy. They are the last to be 

allowed to eat. However, this does not mean that they are insignificant in the pack; without the 

omegas, the pack might collapse due to in-fighting. Furthermore, all wolves vent their violent 

tendencies by means of the omegas. This helps to maintain the hierarchical structure of the pack. The 

omegas also sometimes act as babysitters. Thus, all pack members participate in the leadership 

hierarchy. In the GWO algorithm, three primary hunting steps are performed for the purpose of 

optimization: seeking, encircling and attacking prey [25]. 

 

3.2.1. The mathematical model of GWO 

In the mathematical formulation of GWO, the alpha (α) represents the fittest solution, and the next 

best solutions are the beta and delta (β) and (δ) solutions. Other solutions are regarded as omega (ω) 

solutions. In the GWO algorithm, the leadership consists of alpha (α), beta (β) and delta (δ) wolves. 

The remaining omega (ω) wolves are followers [30]. A mathematical representation of encircling 

behaviour is given by the following equations [27]: 

𝐸⃗ = |𝐹 ⋅ 𝑌𝑠
⃗⃗  ⃗(𝑖) − 𝑌⃗ (𝑖)|                  (4)           

 𝑌⃗ (𝑖 + 1) = 𝑌𝑠
⃗⃗  ⃗(𝑖) − 𝐵⃗ . 𝐸⃗                  (5) 

Here, 𝑖 represents the current iteration, 𝐵⃗  and 𝐹  are coefficient vectors, 𝑌𝑠
⃗⃗  ⃗ is the prey’s position 

vector and 𝑌⃗  represents the grey wolf’s position vector. The 𝐵⃗  and 𝐹  vectors are calculated as 

follows: 

𝐵⃗ = 2𝑏⃗ .𝑚1⃗⃗ ⃗⃗  ⃗ − 𝑏⃗       (6)                           

 𝐹 = 2.𝑚2⃗⃗ ⃗⃗  ⃗       (7) 

where the magnitude of 𝑏⃗  decreases linearly from 2 to 0 over multiple iterations and 𝑚1⃗⃗ ⃗⃗  ⃗ and 𝑚2⃗⃗ ⃗⃗  ⃗ 

are random vectors between [0,1]. 

The update parameter b controls the trade-off between exploitation and exploration. The parameter 

b is updated linearly from 2 to 0 as follows: 

𝑏 = 2 − 𝑖
2

𝑀𝑥𝐼𝑡𝑟
                  (8) 
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where MxIter is the overall number of iterations and i is the number of the current iteration. 

    

The grey wolves wish to identify the prey’s location and encircle it. To this end, the alpha guides the 

pack in the hunt. However, the grey wolves have no idea of the area to be searched or the location of 

the prey. To represent this idea mathematically, we assume that the alpha represents the best 

solution available. The beta and delta wolves assist in inferring the location of the prey. For this 

purpose, we need to identify the three best values and update their positions to approach as close as 

possible to the optimal solution. The position update is performed in accordance with the following 

equations, and a flowchart of the GWO algorithm is shown in figure 4 [28]. 

𝐸α
⃗⃗ ⃗⃗  = |𝐹1

⃗⃗  ⃗ ⋅ 𝑌α
⃗⃗  ⃗ − 𝑌⃗ |                   (9)        

    𝐸𝛽
⃗⃗ ⃗⃗ = |𝐹2

⃗⃗  ⃗ ⋅ 𝑌𝛽⃗⃗  ⃗ − 𝑌⃗ |                  (10) 

𝐸𝛿
⃗⃗⃗⃗ = |𝐹3

⃗⃗  ⃗ ⋅ 𝑌𝛿
⃗⃗  ⃗ − 𝑌⃗ |                  (11)    

  𝑌1⃗⃗  ⃗ = 𝑌α
⃗⃗  ⃗ − 𝐵1

⃗⃗⃗⃗ ⋅ (𝐸α
⃗⃗ ⃗⃗  )                 (12) 

𝑌2
⃗⃗  ⃗ = 𝑌𝛽⃗⃗  ⃗ − 𝐵2

⃗⃗⃗⃗  ⋅ (𝐸𝛽
⃗⃗ ⃗⃗ )                (13)        

  𝑌3
⃗⃗  ⃗ = 𝑌𝛿

⃗⃗  ⃗ − 𝐵3
⃗⃗⃗⃗  ⋅ (𝐸𝛿

⃗⃗⃗⃗ )                  (14) 

𝑌⃗ (𝑖 + 1) =
𝑌1⃗⃗  ⃗ + 𝑌2

⃗⃗  ⃗ + 𝑌3
⃗⃗  ⃗

3
                  (15) 

However, in the proposed system, the last equation (15) is modified as shown in equation (16) 

below: 

𝑌⃗ (𝑖 + 1) = Max(𝑌1⃗⃗  ⃗ + 𝑌2
⃗⃗  ⃗ + 𝑌3

⃗⃗  ⃗)                  (16) 

 

3.3. Support vector machines (SVMs) for classification 

   The SVM technique is one of the most popular techniques in machine learning. It depends on 

points of similarity, similar to KNN. However, it does not require the calculation of the distances 

between a new unseen point and all other data points at hand; rather, only the vectors that will 

influence the decision-making process are considered. The SVM approach is based on the idea of 

maximizing the margins between different classes. The greater the certainty of a classifier is, the 

larger are the margins it provides [29]. SVM classification is based on two key ideas: 
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• the notion of maximum margins and the concept of the kernel function. 

• The area between a sample boundary and the nearest sample is called a margin. The support 

vectors represent these samples. In an SVM, the largest value is chosen to represent the 

margin. 

For data with more than one dimension, an SVM classifier converts the data representation domain 

into a multi-dimensional domain and defines a hyperplane separating the data. The error (Err) and 

accuracy (Acc) of classification are used to evaluate the performance of an SVM classifier [14]: 

Acc = (100 * (TruePo + TrueNe)) / (TrueNe + TruePo + FalseNe + FalsePo)               (17) 

  Err = (100 * (FalsePo + FalseNe)) / (TrueNe + TruePo+ FalseNe + FalsePo)              

                             (18) 

where TruePo denotes the number of true positives, FalsePo denotes the number of false positives, 

TrueNe denotes the number of true negatives, and FalseNe denotes the number of false negatives. 

 

3.4. Proposed system workflow 

Our system is based on an IDSS. The system works as shown in figure 5. First, the initial dataset, 

containing a set of attributes W, is entered into the system. i) Calculate the IG value for each gene 

and then arrange the genes in descending order of their IG values. ii) Select the attributes Y that have 

the highest IG values (higher than a predefined threshold) from among the attributes W. iii) 

Initialize the grey wolf parameters (GWO), such as the population size, Yi, b, B, and E, and create the 
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attribute set. iv) Depending on the resulting wolves (selected feature subset), train an SVM classifier 

and evaluate its accuracy. v) Calculate the fitness value of each search wolf (𝑌α, 𝑌𝛽, and 𝑌𝛿) using the 

SVM accuracy function. vi) Update the positions of the current search agents using equation (16). vii) 

While the stopping condition (the maximum number of iterations) is not met, repeat steps (iv) and 

(v). 

4. Performance Measures and Results 

4.1 Microarray datasets 

The proposed system was evaluated using skewed cancer gene expression datasets downloaded 

from the Kent Ridge Bio-medical Data Set website (http://datam.i2r.a-star.edu.sq/datasets/krbd/) 

[34]. The Kent Ridge Bio-medical Data Set Repository is an online repository of high-dimensional 

biomedical datasets including gene expression data, protein-profiling data and genomic sequence 

data that are related to classification. Each microarray dataset is in the form of a matrix that consists 

of M rows, corresponding to the samples, and N columns, corresponding to the genes. We used two 

sets of patient data to predict breast and colon cancer. Table 2 presents detailed information about 

the breast and colon cancer microarray datasets. 

 

Table 2. Descriptions of the datasets 

The breast cancer dataset contains 24,481 genes arranged in a matrix. The rows of the matrix 

represent the genes (features), while the columns represent the samples/instances (patients). This 

microarray dataset is divided into two matrices: a training matrix and a test matrix. Table 2 

summarizes the details of the breast cancer microarray dataset. The training dataset contains 

prognosis results for 78 patients, 34 of whom are relapse cases and 44 of whom are non-relapse cases. 

The 34 relapse patients are those for whom distant metastases were observed within 5 years, while 

the remaining 44 non-relapse instances represent patients who remained cured of the disease for at 

least 5 years after preliminary diagnosis. The test matrix contains 12 relapse instances and 7 

non-relapse instances. For each test, two important criteria were utilized for observational 

assessment of the performance: the number of selected genes (features) and the classification 

accuracy [34]. 

Colon cancer, also called colorectal cancer, is a type of cancer caused by uncontrolled cell growth in 

the colon, rectum, or vermiform appendix. The two classes in the colon cancer dataset are somewhat 

different from those in the previous one. In the breast cancer dataset, all samples were collected from 

cancer patients, and the objective of the proposed classification system is to determine to which type 

of cancer a new sample belongs. By contrast, the colon cancer dataset contains data on 62 colon 

Dataset Classes Genes Samples Class Distribution 

Breast [34] 
relapse, 

non-relapse 
24481 

training 

samples: 78, 

test samples: 19  

training samples: 34 relapse & 44 

non-relapse, test samples: 12 

relapse & 7 non-relapse 

Colon [34]  

normal 

("positive"), 

tumour 

("negative") 

2000 62 
positive: 22 

negative: 40 
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adenocarcinoma specimens taken from patients, 40 of which were real tumours and the other 22 of 

which were not tumours. Therefore, the objective of the classification system is to determine whether 

a new sample is a tumour. The gene expression data matrix contains the expression results for the 

2000 genes with the highest minimal intensities across the 62 tissue samples. Accordingly, the entire 

gene expression data matrix has dimensions of 2000*62. The training data matrix here has 

dimensions of 2000*32, and the test data matrix has dimensions of 2000*30. Note that the genes are 

organized in the matrix in order of descending minimal intensity. This means that the expression 

values are not normalized with respect to the mean intensity in each experiment [34, 35]. 

4.2. Accuracy analysis 

  The number of true positives (TruePo) is the number of positive cases that are correctly detected. 

The number of true negatives (TrueNe) is the number of negative cases that are correctly detected. 

The number of false positives (FalsePo) is the number of negative cases that are diagnosed as 

positive. The number of false negatives (FalseNe) is the number of positive cases that are diagnosed 

as negative. The accuracy represents how close the predictions come to the actual values. A high 

accuracy and high precision indicate that the test procedure functions well with a meaningful 

hypothesis. The general equation for accuracy is as shown in equation (17) [27]. 

 

4.3. Results analysis 

     In this section, the proposed system is benchmarked on a gene expression profile dataset for 

breast and colon cancer that has been utilized by other researchers [33, 11, 16, 35, 34]. Three 

methodologies for classifying microarray datasets are considered. In the first, the SVM classifier is 

first applied without any feature selection, and then the wrapper feature selection approach based 

on the GWO algorithm is applied in combination with the same classifier on the same dataset; the 

results obtained in this way are presented in table 3. In the second methodology, the filter feature 

selection approach based on the IG algorithm is applied in combination with the SVM classifier; the 

results are shown in table 4. The third methodology involves a hybrid feature selection approach 

using both the IG algorithm and GWO in combination with SVM classification; this methodology 

achieves the best classification accuracy, as also shown in table 4. 

C#.net 2018 was used to implement the proposed system. The Weka tool suite version 3.8 was 

employed in C#.net to apply the IG filtering approach to each dataset for attribute selection. Then, 

the number of selected attributes was reduced by GWO, programmed in C#.net. Finally, the SVM 

classifier was called from Weka into C#.net to determine the final classification accuracy. The 

proposed system uses 5-fold cross-validation [32]. 

Table 3 shows the results and parameter values for the first tested methodology. The breast 

cancer dataset contains 24482 genes; when classification was performed on this dataset using the 

SVM classifier alone, the classification accuracy did not exceed 65%. When the data were first 

subjected to GWO with 35 wolves and 75 iterations, the classification accuracy increased to 71.795%, 

and the number of considered genes was reduced to 16055; when the same original data were 

subjected to both IG filtering and GWO before SVM classification, the classification accuracy reached 

88.46%, and the number of genes was reduced to 455 , as shown in table 4. Table 3 also shows the 

results and parameter settings for the colon cancer dataset. This dataset contains 2000 genes, and 

when classification was performed on this dataset using the SVM classifier alone, the classification 

accuracy did not exceed 63%. When the data were first subjected to GWO with 120 wolves and 160 
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iterations, the classification accuracy increased to 85.484%, and the number of considered genes was 

reduced to 999; when the same original data were subjected to both IG filtering and GWO before 

SVM classification, the classification accuracy reached 90.32%, and the number of genes was 

reduced to 70, as shown in table 4. 

Table 3. Classification accuracy achieved with the SVM classifier alone and with SVM in 

combination with GWO using 5-fold cross-validation 

 

 

Table 4. Classification accuracy achieved with SVM classification in combination with IG feature 

selection with a threshold value of zero using 5-fold cross-validation 

 

Dataset 

SVM SVM + GWO 

No. of 

genes 
Acc in % 

No. of 

wolves 

No. of 

iterations 

No. of 

genes 
Acc in % 

Breast 24482 65 

25 

35 

50 

100 

100 

50 

75 

100 

20 

25 

16285 

16055 

16122 

16104 

12259 

70.512 

71.795 

70.512 

70.512 

70.512 

Colon 2000 63 

20 

30 

40 

50 

200 

75 

100 

120 

30 

30 

30 

30 

50 

100 

120 

160 

1311 

1014 

1012 

963 

1017 

1335 

1013 

999 

83.87 

83.87 

83.87 

83.87 

83.87 

85.484 

83.87 

85.484 

Dataset IG + SVM IG + GWO + SVM 

No. of genes 

before IG selection 

No. of 

genes 
Acc in % 

No. of 

iterations 

No. of 

wolves 

No. of 

genes 
Acc in % 

Breast 24482 715 82 

50 

70 

120 

20 

50 

20 

50 

100 

12 

15 

470 

478 

455 

504 

457 

88.46 

88.46 

88.46 

87.17 

88.46 

Colon 2000 135 87.096 

25 

30 

50 

75 

13 

15 

20 

50 

81 

80 

66 

70 

90.32 

90.32 

90.32 

90.32 
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Table 5. Classification accuracy achieved with SVM classification in combination with IG feature 

selection with multiple IG thresholds using 5-fold cross-validation 

Tables 5 and 6 show the parameter settings and the results obtained with the proposed system with 

and without GWO, respectively, using 5-fold cross-validation. The parameter settings are the same 

as those in table 4 except that the IG threshold value is varied. As seen from tables 4 and 5, when the 

threshold value was changed to 0.17 or to 0.2 or more, the classification accuracy achieved was lower 

than the best result achieved with a threshold value of zero. However, although better accuracy 

results were achieved with no threshold IG value, using a threshold made it possible to reduce the 

number of features from 7129 to 32, thereby decreasing the time and memory consumption needed 

for the classification process. 

 

Table 6. Classification accuracy achieved with IG + GWO + SVM with multiple IG thresholds using 

5-fold cross-validation 

Table 7. Best results with multiple IG threshold values 

 

 

 

Dataset 

IG + SVM with multiple IG threshold values 

threshold = 0.17 threshold = 0.2 threshold = 0.198 threshold = 0.29 

No. of 

genes 
Acc 

No. of 

genes 
Acc 

No. of 

genes 
Acc 

No. of 

genes 
Acc 

Breast 350 80.77 398 84.61 441 83.3 28 78.2 

Colon 135 87.09 108 85.48 117 87.9 31 82.25 

Dataset 

IG + GWO + SVM 

No. 

of 

wolv

es 

No. of 

iterations 

Acc with multiple IG threshold values and different numbers of genes 

threshold = 0.17 threshold = 0.2 threshold = 0.198 threshold = 0.29 

No. of 

genes 
Acc 

No. of 

genes 
Acc 

No. of 

genes 
Acc 

No. of 

genes 
Acc 

Breast 

20 50 338 88.46 282 91.026 290 89.74 20 83.3 

50 70 349 89.74 260 91.026 249 91.026 17 83.3 

100 120 337 89.74 272 92.307 250 94.87 16 84.61 

120 150 351 91.025 245 92.307 270 93.59 18 84.61 

Colon 

13 25 74 88.7 50 88.7 74 90.322 17 94.322 

15 30 75 90.322 77 90.322 78 90.322 23 95.935 

20 50 64 90.322 70 90.322 82 90.322 17 94.322 

50 75 85 90.322 62 90.322 56 90.322 16 95.935 

Dataset Threshold No. Genes Accuracy Precision Recall F1 

Breast 0.198 250 94.87 0.95 0.90 0.92 

Colon 0.29 16 95.935 0.952 0.909 0.93 
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Table 8. Accuracy comparison of several different classifiers 

 

 

 

 

Table 7 summarizes the best results obtained when applying the proposed methodology to the two 

datasets (Breast and Colon). In table 8, we review the classification accuracies of several different 

classifiers for comparison with the SVM classifier. 

  Tables 9 and 10 show the differences between the classification accuracies of different 

methodologies based on hybrid feature selection approaches (filter and wrapper approaches) when 

applied to CNS, colon and breast cancer data. As shown, the best results achieved with the proposed 

methodology are 94.87% (Breast) and 95.935% (Colon). A comparison of the experimental results 

reveals that the proposed system offers improved sample classification accuracy. These 

experimental results show that the proposed strategy is able to improve the stability of the feature 

selection results as well as the sample classification accuracy. 

Table 9. Classification accuracy of the proposed methodology vs. other methodologies on Breast. 

Table 10. Classification accuracy of the proposed methodology vs. other methodologies on Colon. 

5. Conclusions 

In this research, an enhanced IDSS is proposed based on IG feature selection, the GWO algorithm 

and SVM classification. The proposed system employs the IG method for initial feature selection, 

while GWO is used to reduce the number of selected features to enable more accurate sample 

Reference Dataset Classifier Accuracy in % 

[33] Colon, Breast 

C4.5 76.19, 61 

naïve Bayes 52.14, 51.89 

IB1 73.38, 60.22 

This work Colon, Breast SVM 63, 65 

Reference Methodology Accuracy in % 

[34] ReliefF + 3-NN 70.96 

[12] IG + GA 100% 

[35] Optimized Fuzzy Rule Generation (OFRG) algorithm 94 

[36] 
filtering and normalization + PSO + SVM 

94 
filtering and normalization + GA + SVM 

This work IG GWO SVM 94.87 

Reference Methodology Accuracy in % 

[35] 
T-Statistics, SNR, F-Test GA SVM 85 

T-Statistics, SNR, F-Test GA KNN 85 

[34] Random + SVM 88.41 

[14] Fisher, T-Statistics, SNR and ReliefF + KNN and SVM 95% 

[26] IG + GA + PG 85.48 

This work IG GWO SVM 95.935 
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classification by the SVM. Two microarray datasets are used as benchmarks to evaluate the 

proposed methodology. The experimental results indicate that the proposed methodology is able to 

enhance the stability of the classification accuracy as well as the feature selection. The best results 

are obtained when combining the IG approach with both the GWO and SVM algorithms; the 

classification accuracy reaches 94.87% for breast cancer data and 95.935% for colon cancer data. In 

future work, additional classifiers should be added to the system. In addition, there is a possibility 

of testing the system on other benchmarks, especially binary-class datasets and test the reliability of 

diagnosis after repeated sampling of tissue from the same patient. 
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