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Abstract: Early detection of cancer increases the probability of recovery. This paper presents an
intelligent decision support system (IDSS) for the early diagnosis of cancer based on gene
expression profiles collected using DNA microarrays. Such datasets pose a challenge because of
the small number of samples (no more than a few hundred) relative to the large number of genes
(on the order of thousands). Therefore, a method of reducing the number of features (genes) that
are not relevant to the disease of interest is necessary to avoid overfitting. The proposed
methodology uses the information gain (IG) to select the most important features from the input
patterns. Then, the selected features (genes) are reduced by applying the grey wolf optimization
(GWO) algorithm. Finally, the methodology employs a support vector machine (SVM) classifier
for cancer type classification. The proposed methodology was applied to two datasets (Breast and
Colon) and was evaluated based on its classification accuracy, which is the most important
performance measure in disease diagnosis. The experimental results indicate that the proposed
methodology is able to enhance the stability of the classification accuracy as well as the feature
selection.

Keywords: machine learning, cancer diagnosis, grey wolf optimization algorithm, support vector
machine, information gain, feature selection.

1. Introduction
Cancer is a common disease caused by certain abnormal changes to genes that are responsible for
cell division and growth. These recognizable changes include mutations of the DNA that make up
genes. Generally, cancer cells exhibit significantly more genetic changes than normal cells, although
cancerous tumours show different specific combinations of genetic alterations in different people.
However, a few of these recognizable changes may be the result of the cancer rather than its cause.
As cancer grows, additional changes will occur [1]. Therefore, the early detection of cancer can
improve the treatment possibilities and increase the survival rate of patients. Thus, developing
appropriate methodologies that can effectively distinguish among tumour subtypes is vital. Early
diagnosis of cancer is essential for sufficient and effective treatment because every cancer type
requires specific treatment.
According to the World Cancer Organization, approximately 4,610 cases of central nervous
system (CNS) tumours and various brain tumours were expected to be diagnosed in 2018 in children
under the age of 20 in the United States. After leukaemia, brain cancer and other tumours of the CNS

are the second most common type of cancer among children; the rate of such tumours has never
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reached more than 26% among children under the age of one year [2, 3]. In 2019, 1,762,450 new
cancer cases of brain and other nervous system tumours were reported in the United States, and the
number of associated deaths was estimated to be 606,880. Thus, it is important to develop a
methodology of detecting cancer in the early stages before the tumour worsens, thereby reducing
the risk of death [4].

The conventional methods of diagnosing most existing diseases depend on human experience to
recognize cases that correspond to confirmed data patterns. However, this age-old diagnosis
methodology is subject to human error and imprecise diagnosis and is both time consuming and
labour intensive, thus causing undue stress throughout the whole process. As an alternative,
computer-aided diagnosis (CAD) systems based on machine learning have been continually
improving and are employed to support specialists in the determination of diagnosis decisions [5, 6].

Most current CAD systems for medical diagnosis depend on diverse information, such as medical
laboratory tests (e.g., blood tests and magnetic resonance imaging (MRI)), medical indicators (finger
tremors and lung signs or symptoms), and various types of digital images (such as X-rays and
ultrasound images). However, physical medical examinations pose a risk of transmission of
infection through tools and other channels, such as scratching of the skin while taking a blood
sample [7,8,9]. X-rays are harmful because of the exposure of body cells to radiation. The quality of
ultrasound data depends on the accuracy and integrity of the image, which are affected by various
factors, such as the presence of air between the surface of the skin and the tool and image blur. A
system that depends on gene expression data collected using DNA microarrays can effectively solve
these problems. Such a method can be used to diagnose cancer in the early stages, unlike other
methods that use different kinds of image processing techniques. The challenges that arise in
microarray classification are mainly centred on dimensionality and classification accuracy [8, 9].

Methodologies that depend on gene expression profiles have been able to detect cancer since their
inception. In previous work, exhaustive efforts have been made to achieve the best results.
Researchers have achieved excellent results in the classification of cancer based on gene expression
profiles using various gene selection approaches and classifiers [10].

There is more than one approach to gene selection, including filter, wrapper, embedded and
hybrid approaches, and every approach has its advantages and disadvantages. For example, the
advantages of the filter approach are that it is very fast and computationally simple, whereas its
main disadvantage is that each feature is measured separately, and thus, it does not consider the
dependencies among features. The wrapper approach has the advantage of enabling an exhaustive
search to generate optimal solutions, whereas its disadvantage is that it has a higher risk of
overfitting than filter techniques do. The embedded approach has the same benefits as the wrapper
approach while achieving better computational complexity; however, it is still prone to overfitting.
Hybrid approaches can combine the advantages of various other approaches, but the time
complexity may increase [11, 12].

This paper addresses the problem of medical diagnosis and presents an intelligent decision support
system (IDSS) for cancer diagnosis based on gene expression profiles from DNA microarray datasets.
DNA microarray technology has been efficiently applied to analyse gene expression in many
experimental studies. Usually, the number of features (M) in a microarray dataset is very large
(usually in the thousands), while the number of samples (N) is small (not exceeding hundreds) [13].

This paper proposes an IDSS for CNS cancer classification based on gene expression profiles. The
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proposed system combines the information gain (IG), the grey wolf optimization (GWO) algorithm
and the support vector machine (SVM) algorithm: the IG is used for selecting important genes
(features) from the input matrix, GWO is used for feature reduction, and an SVM classifier is used
for cancer diagnosis.

The remainder of this paper is organized as follows. Section 2 reviews some important previous
works. Section 3 describes the proposed methodology; this section includes an overview of the IG
filter approach for feature selection, the GWO algorithm for feature reduction and the SVM
algorithm for classification. Section 4 describes the datasets used in this research. Section 5 reports
and analyses the results, and Section 6 presents the conclusions and possibilities for future work.

2. Related Works
In all the previous studies listed below, gene expression profiles were used for the classification of
cancer based on various methodologies. These methodologies were applied to datasets with a small

number of samples, a large number of features, and the additional characteristics listed in table 1

below.
Table 1. Characteristics of the datasets used in previous studies
No. of | No. of
Dataset Used in Ref Class 1 Class 2
samples|features
[11], [35], [33], [16], [10],
Leukaemia72 (03] 72 7129 ALL (47) AML (25)
Prostate [11], [35], [33], [10], [14] | 136 12600 Normal (59) Tumour (77)
Lung Cancer-Ontario [11] 39 2880 |Non-relapse (15) | Relapse (24)
Non-neoplastic | Primary lung
Lung Cancer-Michigari [11], [35] 96 7129
(10) (86)
DLBCL Harvard [11], [35] 77 7129 DLBCL (58) FL (19)
Central Nervous System [11], [35], [33], [16] 60 7129 Class 0 (39) Class 1 (21)
[11], [35], [33], [16], [10],
Colon (14] 62 2000 Positive (22) Negative (40)
Leukaemia [14] 72 3571 ALL (47) AML (25)
Prostate Outcome [35] 136 12600 Normal (59) Tumour (77)
Non-relapse
Breast [12] 97 24,481 Relapse (46)
(61)
Ovarian [33], [35] 253 15154 Normal (91) Cancer (162)
GCM [33] 190 16063 - Multi-class-
DLBCL Outcome [35] 58 7129 Cured (32) Fatal (26)
Leukaemia38 [16] 38 5000 ALL (27) AML (11)
Lymphoma [33], [16], [10] 96 4026 - Multi-class-

Salem, Hanaa, et al [11] reported research on human cancer classification using gene expression

profiles. The feature selection methodology used in this study exploited the IG for gene selection

from the input microarray data. The methodology also exploited a genetic algorithm (GA) to reduce
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the number of features selected based on the IG. The final task of cancer classification (or diagnosis)
was accomplished by means of genetic programming (GP). The framework was verified by
considering seven cancer gene expression datasets (Lung Cancer-Ontario, Leukaemia72, DLBCL
Harvard, Prostate, Lung Cancer-Michigan, Colon, and Central Nervous System). The authors
achieved classification accuracies of 85.48% (Colon), 86.67% (Central Nervous System), 97.06%
(Leukaemia72), 74.4% (Lung Cancer-Ontario), 100% (Lung Cancer-Michigan), 94.8% (DLBCL
Harvard) and 100% (Prostate).

As a hybrid gene selection technique, J. Bennet, C., et al [13] proposed an ensemble feature
selection technique that is a mixture of the support vector machine-recursive feature elimination
(SVM-RFE) approach and the Based Bayes error Filter (BBF) for attribute selection. These researchers
employed SVM-REFE to sort the attributes and the BBF to remove redundant sorted attributes. The
SVM algorithm was then used for classification. The best classification accuracy on the Leukaemia72
dataset reached 97.2%.

The authors of [35] presented an analysis of the behaviour of a GA with k-nearest-neighbours
(KNN) and SVM classifiers on ten datasets. Using the GA, they reduced the number of features
selected by three filters. In the final stage, the KNN and SVM algorithms were used for classification.
The authors used 5-fold cross-validation, and on most datasets, the classification accuracy achieved
with the SVM classifier was the same as that achieved with the KNN classifier; the results differed
only for the Leukaemia72 dataset (Lung Cancer-Michigan: 100%, Ovarian: 100%, Central Nervous
System: 81.25%, DLBCL Harvard: 100%, DLBCL Outcome: 77.27%, Prostate Outcome: 85.71%,
Leukaemia?2: 100% using SVM and 95.45% using KNN, Colon: 95%, Lung Harvard2: 100%, and
Prostate: 92%).

In [33], an ensemble of five filters (IG, correlation-based feature selection (CFS), consistency-based,

interaction, and ReliefF) and three classifiers (naive Bayes, C4.5, and IB1) was proposed. The
researchers used a simple voting scheme for classification. They applied their methodology to 10
microarray datasets with ten-fold cross-validation, and the best classification accuracies they
obtained were 100% (Lung), 89.05% (Colon), 100% (Ovarian), 70% (Central Nervous System), 71.89%
(Breast), 98.75% (Leukaemia72), 90.6% (Prostate), 68.42% (GCM), and 95.67% (Lymphoma).
In [16], the researcher applied a GA for gene selection in combination with four classifiers for cancer
classification using a gene expression dataset. The classifiers used were naive Bayes, SVM, oneR, and
decision tree classifiers. The author analysed the results obtained by applying the methodology to
six datasets, namely, Lymphoma, Lung, CNS, Colon, Leukaemia38, and Leukaemia72, on which the
best classification accuracies were 97%, 99.4%, 82.3%, 88.8%, 100%, and 98.6%, respectively.

Salem, Hanaa, et al [12] presented research on the early classification of breast cancer based on
gene expression profiles. Their system first extracts important genes from the input microarray data
using the IG methodology and then exploits a GA to reduce the features selected in this way. The
best results in this study were achieved with an IG threshold value of 0.7 for the breast cancer
dataset; with this threshold, the features were initially reduced from 24,481 attributes to 45 attributes
by the IG methodology and were further reduced to only 22 attributes by applying a GA with a
population size of one hundred and twenty rounds of evaluation. The classification accuracy
reached 100%.

Bouazza, Sara Haddou, et al [14] presented research on cancer classification using SVM and KNN

classifiers. In this research, the effects achieved on three gene expression profile datasets (Prostate,
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Colon, and Leukaemia) were studied using multiple techniques for attribute selection (such as
Fisher, ReliefF, SNR, and T-Statistics) with both KNN and SVM classifiers. The best results were
obtained by combining the SNR attribute selection technique with the SVM classifier. The best
classification accuracies achieved in this study with the SNR feature selector and the KNN classifier

were 95% for the Colon and Prostate datasets and 100% for the Leukaemia dataset.

3. The Proposed Methodology

Classifier

Input Phase Output Phase

Filter Feature and Wrapper

Feature Selection Approach

Figure 1. IG flowchart

The proposed methodology consists of three main stages. Once the data are input into the system,
the IG filter first selects the most important features [15]. Then, the GWO algorithm reduces the
number of selected features. The last stage of the system is to apply the SVM classifier to obtain

specific cancer classification results. An overview of the methodology is shown in figure 1.
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3.1. Entropy and information gain (IG) for gene selection

J

Figure 2. IG flowchart

Entropy is the basic concept used in information theory to compute the homogeneity of features;
for example, when samples are fully homogeneous, they have an entropy equal to zero, whereas
equally divided samples have an entropy value of one [17]. For a dataset with a high feature
dimensionality and a small sample size, classification of the data is very difficult. Among the
thousands of gene expression attributes that are usually investigated, only very few are relevant to a
particular disease. Therefore, only the relevant features should be retained [16]. Proper investigation
of the gene profiles will be helpful for selecting the genes that are most important for the

classification process.
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E(Z) = - D*logz (D*) -D-log: (D-) for a sample with negative and positive attributes.

The formula for entropy is as follows [18]:

14
Entropy (2) = Z —(Dy logzDy) )
i=1
where the D; are the apriori probabilities of categorical variable Z and k is an index indicating a
particular category in the classification system.
Consider the special case of two classification problems (where V is the number of classes).

Let j be a gene that may have n possible values (jy, jz, ..., jn). The entropy will be as follows:
14

Encropy (/1) = — 3 p0) 2 p(5) 1000 (5) @
=1

k=1
where p(?) is the conditional probability of variable K when attribute ] is constant, calculated over

all attributes and classes. The calculation of IG mainly depends on the entropy [19]. Based on the
distribution of the attributes in the dataset, the entropy is calculated for all attributes in the dataset.
The data are then separated into groups of attributes. The entropy is calculated for each group
separately, and the entropy values for all groups are combined to obtain the total entropy. The
entropy based on individual groups of data is then subtracted from the entropy based on the entire
data distribution [20]:

IG(J) = Entropy(S) — Entropy (;) 3

When gene ] and category K are not related, IG(J) = Entropy(S) — Entropy G) = zero, whereas if

they are related, then Entropy(S) > Entropy (?), leading to IG(J) >0. There is a direct relationship
between a larger difference between | and K and a stronger correlation between | and K. A feature
with a larger IG value is more important for classification. Therefore, genes with greater IG values
are first chosen from among the original high-dimensional genes to be used as the basis for further
gene selection [21].

The IG flowchart shown in figure 2 describes the steps of the IG algorithm. The input data set has a
set of attributes W, and the required output is the selected subset Y of the original attributes W. First,
the attributes to be considered for classification are initialized.
Second, the entropy of all samples is computed for each class

using equation (1). Then, the conditional probability for each

value of a single attribute is calculated and is used to
calculate the conditional entropy for every attribute via
equation (2). The IG is computed using equation (3) for all 0

attributes. The resulting IG values are arranged in ascending (¢

order, and all values that are above a certain threshold value

are selected. Figure 3. Hierarchy of grey wolves
(dominance decreases from the top

down) [22]

3.2. Grey wolf optimization (GWO) for feature reduction

do0i:10.20944/preprints202002.0324.v1
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Wolves of the grey wolf (Canis lupus) species prefer to live in packs. On average, there are 5-12
members in one group. These animals live in groups governed by laws that maintain their
hierarchical order, as shown in figure 3 [22]. At the top of the hierarchy is the leader, called the alpha,
who may be male or female. The alpha is responsible for most of the pack’s decisions, such as the
places they hunt, the times at which they wake and sleep, and so on. All wolves in the pack follow
the alpha [23]. The betas, who also may be male or female, constitute the second level in the
hierarchy of grey wolves. They assist the alpha wolf in decision-making and coordinating other
activities in the pack. A beta wolf is the most likely candidate to inherit the alpha’s position when the
alpha dies or becomes too old to lead. The third level in the hierarchy of grey wolves consists of
wolves called subordinates (or deltas). Deltas follow the alpha and beta wolves, and the others
follow the deltas. The deltas of the pack are divided into several categories, each of which is
responsible for particular tasks.

The scout category is responsible for monitoring for threats to the pack [24]. The sentinel category
is responsible for providing safety and protection for the pack. Elders are experienced wolves who
are nominated to be future alphas or betas. Hunters assist the betas and alpha in hunting prey and
providing food for the pack. Caretakers perform the caring tasks for wounded, ill, and weak wolves
in the pack. All other wolves are omegas, who lie at the base of the hierarchy; they are the scapegoats.
The omega wolves are subordinate to all other wolves in the hierarchy. They are the last to be
allowed to eat. However, this does not mean that they are insignificant in the pack; without the
omegas, the pack might collapse due to in-fighting. Furthermore, all wolves vent their violent
tendencies by means of the omegas. This helps to maintain the hierarchical structure of the pack. The
omegas also sometimes act as babysitters. Thus, all pack members participate in the leadership
hierarchy. In the GWO algorithm, three primary hunting steps are performed for the purpose of

optimization: seeking, encircling and attacking prey [25].

3.2.1. The mathematical model of GWO

In the mathematical formulation of GWO, the alpha (o) represents the fittest solution, and the next
best solutions are the beta and delta () and (6) solutions. Other solutions are regarded as omega (w)
solutions. In the GWO algorithm, the leadership consists of alpha (&), beta (8) and delta (6) wolves.
The remaining omega (w) wolves are followers [30]. A mathematical representation of encircling

behaviour is given by the following equations [27]:

E=|F-%,0) -7 4)
Y(i+1)=Y.(i)-B.E (5)

Here, i represents the current iteration, B and F are coefficient vectors, Y, is the prey’s position
vector and Y represents the grey wolf’s position vector. The B and F vectors are calculated as
follows:
B=2b.m;—b (6)
F=2m, (7)

where the magnitude of b decreases linearly from 2 to 0 over multiple iterations and m; and m;
are random vectors between [0,1].

The update parameter b controls the trade-off between exploitation and exploration. The parameter

b is updated linearly from 2 to 0 as follows:

®
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where Mxlter is the overall number of iterations and 7 is the number of the current iteration.
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The grey wolves wish to identify the prey’s location and encircle it. To this end, the alpha guides the

pack in the hunt. However, the grey wolves have no idea of the area to be searched or the location of
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W=W+1
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Calculate the
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Figure 4. GWO flowchart

the prey. To represent this idea mathematically, we assume that the alpha represents the best
solution available. The beta and delta wolves assist in inferring the location of the prey. For this
purpose, we need to identify the three best values and update their positions to approach as close as
possible to the optimal solution. The position update is performed in accordance with the following

equations, and a flowchart of the GWO algorithm is shown in figure 4 [28].

E,=|F Y, —7| 9
Ep=|F,-Y; -7 (10)

Es = |F;-Y; - 7| (11)
Y, =Y — By - (Ey) (12)

Y, =Y — B, - (Ep) (13)
Y, =Y; — B; - (E5) (14)
?(i+1)=w (15)

However, in the proposed system, the last equation (15) is modified as shown in equation (16)
below:

Y(i+1) =Max(¥; + ¥, + ¥3) (16)

3.3. Support vector machines (SVMs) for classification

The SVM technique is one of the most popular techniques in machine learning. It depends on
points of similarity, similar to KNN. However, it does not require the calculation of the distances
between a new unseen point and all other data points at hand; rather, only the vectors that will
influence the decision-making process are considered. The SVM approach is based on the idea of
maximizing the margins between different classes. The greater the certainty of a classifier is, the

larger are the margins it provides [29]. SVM classification is based on two key ideas:
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e the notion of maximum margins and the concept of the kernel function.

e The area between a sample boundary and the nearest sample is called a margin. The support
vectors represent these samples. In an SVM, the largest value is chosen to represent the
margin.

For data with more than one dimension, an SVM classifier converts the data representation domain
into a multi-dimensional domain and defines a hyperplane separating the data. The error (Err) and

accuracy (Acc) of classification are used to evaluate the performance of an SVM classifier [14]:

Acc=(100 * (TruePo + TrueNe)) / (TrueNe + TruePo + FalseNe + FalsePo) 17
Err = (100 * (FalsePo + FalseNe)) / (TrueNe + TruePo+ FalseNe + FalsePo)
(18)

where TruePo denotes the number of true positives, FalsePo denotes the number of false positives,

TrueNe denotes the number of true negatives, and FalseNe denotes the number of false negatives.
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Figure 5. Proposed system flowchart

3.4. Proposed system workflow

Our system is based on an IDSS. The system works as shown in figure 5. First, the initial dataset,
containing a set of attributes W, is entered into the system. i) Calculate the IG value for each gene
and then arrange the genes in descending order of their IG values. ii) Select the attributes Y that have
the highest IG values (higher than a predefined threshold) from among the attributes W. iii)
Initialize the grey wolf parameters (GWO), such as the population size, Yi, b, B, and E, and create the
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attribute set. iv) Depending on the resulting wolves (selected feature subset), train an SVM classifier
and evaluate its accuracy. v) Calculate the fitness value of each search wolf (Y, Y3, and Yj) using the
SVM accuracy function. vi) Update the positions of the current search agents using equation (16). vii)
While the stopping condition (the maximum number of iterations) is not met, repeat steps (iv) and
(V).

4. Performance Measures and Results

4.1 Microarray datasets

The proposed system was evaluated using skewed cancer gene expression datasets downloaded
from the Kent Ridge Bio-medical Data Set website (http://datam.i2r.a-star.edu.sq/datasets/krbd/)
[34]. The Kent Ridge Bio-medical Data Set Repository is an online repository of high-dimensional
biomedical datasets including gene expression data, protein-profiling data and genomic sequence
data that are related to classification. Each microarray dataset is in the form of a matrix that consists
of M rows, corresponding to the samples, and N columns, corresponding to the genes. We used two
sets of patient data to predict breast and colon cancer. Table 2 presents detailed information about

the breast and colon cancer microarray datasets.

Table 2. Descriptions of the datasets

Dataset Classes Genes Samples Class Distribution
training training samples: 34 relapse & 44

relapse,

Breast [34] 24481 samples: 78, non-relapse, test samples: 12

non-relapse
test samples: 19 relapse & 7 non-relapse
normal
"positive"), ositive: 22

Colon [34] (p ) 2000 62 P .

tumour negative: 40

("negative")

The breast cancer dataset contains 24,481 genes arranged in a matrix. The rows of the matrix
represent the genes (features), while the columns represent the samples/instances (patients). This
microarray dataset is divided into two matrices: a training matrix and a test matrix. Table 2
summarizes the details of the breast cancer microarray dataset. The training dataset contains
prognosis results for 78 patients, 34 of whom are relapse cases and 44 of whom are non-relapse cases.
The 34 relapse patients are those for whom distant metastases were observed within 5 years, while
the remaining 44 non-relapse instances represent patients who remained cured of the disease for at
least 5 years after preliminary diagnosis. The test matrix contains 12 relapse instances and 7
non-relapse instances. For each test, two important criteria were utilized for observational
assessment of the performance: the number of selected genes (features) and the classification

accuracy [34].

Colon cancer, also called colorectal cancer, is a type of cancer caused by uncontrolled cell growth in
the colon, rectum, or vermiform appendix. The two classes in the colon cancer dataset are somewhat
different from those in the previous one. In the breast cancer dataset, all samples were collected from
cancer patients, and the objective of the proposed classification system is to determine to which type

of cancer a new sample belongs. By contrast, the colon cancer dataset contains data on 62 colon
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adenocarcinoma specimens taken from patients, 40 of which were real tumours and the other 22 of
which were not tumours. Therefore, the objective of the classification system is to determine whether
a new sample is a tumour. The gene expression data matrix contains the expression results for the
2000 genes with the highest minimal intensities across the 62 tissue samples. Accordingly, the entire
gene expression data matrix has dimensions of 2000%62. The training data matrix here has
dimensions of 2000*32, and the test data matrix has dimensions of 2000*30. Note that the genes are
organized in the matrix in order of descending minimal intensity. This means that the expression
values are not normalized with respect to the mean intensity in each experiment [34, 35].
4.2. Accuracy analysis

The number of true positives (TruePo) is the number of positive cases that are correctly detected.
The number of true negatives (TrueNe) is the number of negative cases that are correctly detected.
The number of false positives (FalsePo) is the number of negative cases that are diagnosed as
positive. The number of false negatives (FalseNe) is the number of positive cases that are diagnosed
as negative. The accuracy represents how close the predictions come to the actual values. A high
accuracy and high precision indicate that the test procedure functions well with a meaningful

hypothesis. The general equation for accuracy is as shown in equation (17) [27].

4.3. Results analysis

In this section, the proposed system is benchmarked on a gene expression profile dataset for
breast and colon cancer that has been utilized by other researchers [33, 11, 16, 35, 34]. Three
methodologies for classifying microarray datasets are considered. In the first, the SVM classifier is
first applied without any feature selection, and then the wrapper feature selection approach based
on the GWO algorithm is applied in combination with the same classifier on the same dataset; the
results obtained in this way are presented in table 3. In the second methodology, the filter feature
selection approach based on the IG algorithm is applied in combination with the SVM classifier; the
results are shown in table 4. The third methodology involves a hybrid feature selection approach
using both the IG algorithm and GWO in combination with SVM classification; this methodology
achieves the best classification accuracy, as also shown in table 4.
C#.net 2018 was used to implement the proposed system. The Weka tool suite version 3.8 was
employed in C#.net to apply the IG filtering approach to each dataset for attribute selection. Then,
the number of selected attributes was reduced by GWO, programmed in C#.net. Finally, the SVM
classifier was called from Weka into C#.net to determine the final classification accuracy. The
proposed system uses 5-fold cross-validation [32].

Table 3 shows the results and parameter values for the first tested methodology. The breast
cancer dataset contains 24482 genes; when classification was performed on this dataset using the
SVM classifier alone, the classification accuracy did not exceed 65%. When the data were first
subjected to GWO with 35 wolves and 75 iterations, the classification accuracy increased to 71.795%,
and the number of considered genes was reduced to 16055; when the same original data were
subjected to both IG filtering and GWO before SVM classification, the classification accuracy reached
88.46%, and the number of genes was reduced to 455 , as shown in table 4. Table 3 also shows the
results and parameter settings for the colon cancer dataset. This dataset contains 2000 genes, and
when classification was performed on this dataset using the SVM classifier alone, the classification
accuracy did not exceed 63%. When the data were first subjected to GWO with 120 wolves and 160
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iterations, the classification accuracy increased to 85.484%, and the number of considered genes was

reduced to 999; when the same original data were subjected to both IG filtering and GWO before

SVM classification, the classification accuracy reached 90.32%, and the number of genes was

reduced to 70, as shown in table 4.

Table 3. Classification accuracy achieved with the SVM classifier alone and with SVM in

combination with GWO using 5-fold cross-validation

SVM SVM + GWO
Dataset No. of No. of No. of No. of
Accin % Accin %

genes wolves iterations genes
25 50 16285 70.512
35 75 16055 71.795
Breast 24482 65 50 100 16122 70.512
100 20 16104 70.512
100 25 12259 70.512
20 30 1311 83.87
30 30 1014 83.87
40 30 1012 83.87
Colon 2000 63 50 30 963 83.87
200 50 1017 83.87
75 100 1335 85.484
100 120 1013 83.87
120 160 999 85.484

Table 4. Classification accuracy achieved with SVM classification in combination with IG feature

selection with a threshold value of zero using 5-fold cross-validation

Dataset IG+SVM IG+GWO +SVM
No. of genes No. of No. of No. of No. of
Accin % Accin %

before IG selection genes iterations wolves genes
50 20 470 88.46
70 50 478 88.46
Breast 24482 715 82 120 100 455 88.46
20 12 504 87.17
50 15 457 88.46
25 13 81 90.32
30 15 80 90.32

Colon 2000 135 87.096

50 20 66 90.32
75 50 70 90.32
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Table 5. Classification accuracy achieved with SVM classification in combination with IG feature

selection with multiple IG thresholds using 5-fold cross-validation

IG + SVM with multiple IG threshold values
Dataset | threshold =0.17 threshold = 0.2 threshold = 0.198 threshold = 0.29
No. of No. of No. of No. of
Acc Acc Acc Acc
genes genes genes genes
Breast 350 80.77 398 84.61 441 83.3 28 78.2
Colon 135 87.09 108 85.48 117 87.9 31 82.25

Tables 5 and 6 show the parameter settings and the results obtained with the proposed system with

and without GWO, respectively, using 5-fold cross-validation. The parameter settings are the same

as those in table 4 except that the IG threshold value is varied. As seen from tables 4 and 5, when the

threshold value was changed to 0.17 or to 0.2 or more, the classification accuracy achieved was lower

than the best result achieved with a threshold value of zero. However, although better accuracy

results were achieved with no threshold IG value, using a threshold made it possible to reduce the

number of features from 7129 to 32, thereby decreasing the time and memory consumption needed

for the classification process.

Table 6. Classification accuracy achieved with IG + GWO + SVM with multiple IG thresholds using

5-fold cross-validation

IG+GWO + SVM
No. Acc with multiple IG threshold values and different numbers of genes
Dataset of No.of |threshold=0.17| threshold=0.2 threshold =0.198 | threshold =0.29
wolv | iterations |No. of No. of No. of No. of
Acc Acc Acc Acc
es genes genes genes genes
20 50 338  88.46 282 91.026 290 89.74 20 83.3
50 70 349  89.74 260 91.026 249 91.026 17 83.3
Breast 100 120 337  89.74 272 92.307 250 94.87 16 84.61
120 150 351 91.025 245 92.307 270 93.59 18 84.61
13 25 74 88.7 50 88.7 74 90.322 17 94.322
Colon 15 30 75 . 90.322 77 90.322 78 90.322 23 95.935
20 50 64  90.322 70 90.322 82 90.322 17 94.322
50 75 85  90.322 62 90.322 56 90.322 16 95.935
Table 7. Best results with multiple IG threshold values
Dataset | Threshold | No.Genes | Accuracy | Precision Recall F1
Breast 0.198 250 94.87 0.95 0.90 0.92
Colon 0.29 16 95.935 0.952 0.909 0.93
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Table 8. Accuracy comparison of several different classifiers

Reference Dataset Classifier Accuracy in %
Cc4.5 76.19, 61
[33] Colon, Breast naive Bayes 52.14, 51.89
IB1 73.38, 60.22
This work Colon, Breast SVM 63, 65

Table 7 summarizes the best results obtained when applying the proposed methodology to the two

datasets (Breast and Colon). In table 8, we review the classification accuracies of several different

classifiers for comparison with the SVM classifier.

Tables 9 and 10 show the differences between the classification accuracies of different

methodologies based on hybrid feature selection approaches (filter and wrapper approaches) when

applied to CNS, colon and breast cancer data. As shown, the best results achieved with the proposed

methodology are 94.87% (Breast) and 95.935% (Colon). A comparison of the experimental results

reveals that the proposed system offers improved sample classification accuracy. These

experimental results show that the proposed strategy is able to improve the stability of the feature

selection results as well as the sample classification accuracy.

Table 9. Classification accuracy of the proposed methodology vs. other methodologies on Breast.

Reference Methodology Accuracy in %
[34] ReliefF + 3-NN 70.96
[12] IG+GA 100%
[35] Optimized Fuzzy Rule Generation (OFRG) algorithm 94
filtering and normalization + PSO + SVM
(36] 94
filtering and normalization + GA + SVM
This work IG GWO SVM 94.87

Table 10. Classification accuracy of the proposed methodology vs. other methodologies on Colon.

Reference Methodology Accuracy in %
T-Statistics, SNR, F-Test GA SVM 85
135] T-Statistics, SNR, F-Test GA KNN 85
[34] Random + SVM 88.41
[14] Fisher, T-Statistics, SNR and ReliefF + KNN and SVM 95%
[26] IG+GA + PG 85.48
This work IG GWO SVM 95.935

5. Conclusions

In this research, an enhanced IDSS is proposed based on IG feature selection, the GWO algorithm

and SVM classification. The proposed system employs the IG method for initial feature selection,

while GWO is used to reduce the number of selected features to enable more accurate sample
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classification by the SVM. Two microarray datasets are used as benchmarks to evaluate the
proposed methodology. The experimental results indicate that the proposed methodology is able to
enhance the stability of the classification accuracy as well as the feature selection. The best results
are obtained when combining the IG approach with both the GWO and SVM algorithms; the
classification accuracy reaches 94.87% for breast cancer data and 95.935% for colon cancer data. In
future work, additional classifiers should be added to the system. In addition, there is a possibility
of testing the system on other benchmarks, especially binary-class datasets and test the reliability of

diagnosis after repeated sampling of tissue from the same patient.
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