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Abstract: In this manuscript we report new effects of resonance detuning on various dynamical 
parameters of a generic 3−wave system. Namely, for suitably chosen values of detuning the 
variation range of amplitudes can be significantly wider than for exact resonance. Moreover, the 
range of energy variation is not symmetric with respect to the sign of the detuning. Finally, 
the period of the energy oscillation exhibits non-monotonic dependency on the magnitude of 
detuning. These results have important theoretical implications where nonlinear resonance analysis 
is involved, such as geophysics, plasma physics, fluid dynamics. Numerous practical applications 
are envisageable e.g. in energy harvesting systems.
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1. Introduction

Numerous natural phenomena exhibit linear and nonlinear resonances. In many technical cases

occurrence of resonance must to be avoided, the widely known Tacoma Bridge dramatic collapse

being an example for this. In other cases, the goal is to approach the state of exact resonance, by

reducing resonance detuning, in order to increase the efficiency of a process or device. To give a

notion of linear resonance, we consider a linear oscillator (or pendulum) driven by a small force. We

say, that the resonance occurs, if the eigenfrequency ω of a system coincides with the frequency of the

driving force Ω. In this case, for small enough resonance detuning, |Ω−ω| > 0, the amplitude of the

linear oscillator becomes smaller with increasing detuning.

The simplest case of nonlinear resonance is a set of three waves Aje
i(kjxj−ωjt) fulfilling resonance

conditions of the following form

ω1 ±ω2 ±ω3 = 0, (1)

k1 ± k2 ± k3 = 0, (2)

where kj ∈ Z
2, ωj = ω(kj) are the wave vectors and frequencies respectively. Drawn from these

resonance conditions, resonance detuning in the nonlinear case can be defined in a number of ways,

e.g. as a frequency detuning or phase detuning.

In the physical literature, for frequency detuning defined as

ω1 + ω2 − ω3 = ∆̃ω ≪ min
j=1,2,3

{ωj},
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the assumption prevails, that bigger detuning results in smaller variation of amplitudes, e.g. [1]. Quite

consistently the study of phase detuning in (2) in a 3−wave system demonstrated that the variation

range of wave amplitudes becomes smaller with growing dynamical phase [2].

In this manuscript we study the effects of frequency detuning in (1) by means of the numerical

simulation. As an example we take a resonant triad of atmospheric planetary waves from [3]. Our

numerical simulations show that the detuned system behaviour was correctly understood for |∆̃ω| ≫

δ > 0. However, there exists a transitional range of the detuning magnitude ∆̃ω where the dynamics

of this system is much more complicated. As our results depend only on the general form of the

dynamical system given below, they are applicable to a wide class of physical systems.

2. Model equations

The dynamical system for detuned resonance of three complex-valued amplitudes Ai, i = 1, 2, 3

reads

N1 Ȧ1 = −2iZ(N2 − N3)A∗2 A3e−i∆ωT ,

N2 Ȧ2 = −2iZ(N3 − N1)A∗1 A3e−i∆ωT ,

N3 Ȧ3 = 2iZ(N1 − N2)A1 A2ei∆ωT,

(and their complex conjugate equations) where the dot denotes differentiation with respect to the slow

time T = t/ε, ∆ω := ∆̃ω/ε, ε being a small parameter. The dynamical system for exact resonance is

obtained by setting ∆ω ≡ 0. It can be rewritten in amplitude/phase variables as:

N1Ċ1 = −2Z(N2 − N3)C2C3 sin ψ, (3)

N2Ċ2 = −2Z(N3 − N1)C1C3 sin ψ, (4)

N3Ċ3 = −2Z(N1 − N2)C1C2 sin ψ, (5)

ψ̇ = ∆ω− 2ZC1C2C3

(N2 − N3

N1
C−2

1 + (6)

N3 − N1

N2
C−2

2 +
N1 − N2

N3
C−2

3

)
cos ψ, (7)

where Ci(T) = |Ai(T)| is the real amplitude, ψ := θ1 + θ2 − θ3 is the dynamical phase and θi(T) =

arg Ai(T). In what follows we will focus on the evolution of the energy of the high-frequency mode

E3(T).

3. Amplitudes

In Fig. 1 we show the energy evolution in the resonant triad given in Table 1 for several values

of the frequency detuning ∆ω = ∆̃ω/ε ∈ [− 1
2 , 1

2 ]; e.g. in geophysical applications ε ∼ O(10−2). From

these graphs it can be seen that the period τ and the range of the energy variation, defined as

∆E (∆ω) :=
1

2

(
max

t
E − min

t
E
)
, (8)

are non-monotonic functions of the detuning ∆ω.

A graph showing the characteristics of the dependency of the energy variation range ∆E (∆ω)

on the frequency detuning ∆ω is shown in Fig. 2. This particular curve was computed for parameters

given in Tab. 1. The graph can conveniently be divided into the five regions which are separated

by particular values of the frequency detuning ∆ω: ∆ω
(1,2)
max correspond to local maxima, ∆ωst is the

position of the local minimum, and ∆ω = 0 corresponds to exact resonance. So, the regions are:

(I) ∆ω ∈
(
−∞, ∆ω

(1)
max

]
;

(II) ∆ω ∈
(
∆ω

(1)
max, min{0, ∆ωst}

]
;
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Table 1. Physical parameters used in numerical simulations.

Parameter Value

Resonant wavevectors, [mj, nj] [4, 12], [5, 14], [9, 13]
Resonant frequencies, 2mj/nj(nj + 1) 0.0513, 0.0476, 0.0989

Resonant triad parameters, Nj 156, 210, 182

Interaction coefficient, Z 7.82
Initial energy distribution (a), % 20%, 30%, 50%
Initial energy distribution (b), % 40%, 40%, 20%

Initial dynamical phase, ψ 0.0

Table 2. Behaviour of physical parameters ∆E , τ and ψ in different regions.

Region/Range −→ ←−

(I) ∆E+, τ+, ∆ψ− ∆E−, τ−, ∆ψ+
(II) ∆E−, τ+, ∆ψ− ∆E+, τ−, ∆ψ+
(III) ∆E−, τ+, ∆ψ− ∆E+, τ−, ∆ψ+
(IV) ∆E+, τ−, ∆ψ+ ∆E−, τ−, ∆ψ−
(V) ∆E−, τ−, ∆ψ+ ∆E+, τ+, ∆ψ−

(III) ∆ω ∈
(
min{0, ∆ωst}, max{0, ∆ωst}

]
;

(IV) ∆ω ∈
(
∆ωst, ∆ω

(2)
max

]
;

(V) ∆ω ∈
(
∆ω

(2)
max,+∞

)
.

The reason to regard these regions separately is that the main characteristics (i.e. energy variation

∆E , energy oscillation period τ and the phase variation ∆ψ) behave differently in each region. Our

findings are summarized in Table 2, where all the quantities E , τ and ψ are followed by ± sign

denoting the their variation in the region (+: increase, −: decrease). The first column corresponds to

the direction of increasing values of ∆ω ∈ (−∞→ +∞), while the second column corresponds to the

opposite direction ∆ω ∈ (−∞← +∞).

The most interesting observation is, that the energy variation range during the system evolution

can be significantly larger for a suitable choice of the detuning ∆ω 6= 0 compared to the exact

resonance case ∆ω = 0. There are two values of which provide significant amplifications to ∆E .

On Fig. 2 the global maximum is located on the left of ∆ωst, while on Fig. 3 it is on the right of ∆ωst.

These two cases differ only by the initial energy distribution among the triad modes (see Tab. 1, initial

conditions (a) & (b)).

Similar computations have been performed for other resonant triads and the qualitative behavior

of the energy variation has always been similar to Figs. 2 & 3. Namely, the global maximum is located

on the left of ∆ωst when the high frequency mode ω3 contains initially most of the energy, and to the

right of ∆ωst in the opposite case.

It is important to stress that the energy variation ∆E (∆ω) at the global maximum ∆ω
(g)
max is

always significantly higher than at the point of exact resonance, i.e. ∆E (∆ω
(g)
max) > ∆E (0). The

highest ratio ∆E (∆ω)/∆E (0) is attained when the local minimum ∆ωst coincides with the point of

exact resonance. In this case we can find a ∆ω that the amplification ∆E (∆ω)/∆E (0) is of at least one

order of magnitude. A simple phase space analysis allows to locate the local minimum.

4. Phase space analysis

On Figs. 4 – 6 we depict the typical phase portraits of the dynamical system (3) – (7) in

phase-amplitude variables. For illustration we choose the triad given in Tab. 1 with the initial energy

distribution (a). In these pictures we represent the high-frequency mode C3 on the horizontal axis,

while the dynamical phase ψ is on the vertical.
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Figure 1. Energy evolution in the triad given in Table 1, for different values of the detuning ∆ω.
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Figure 2. Typical dependency of the energy variation range ∆E on the frequency detuning ∆ω for the

case when the high frequency mode ω3 has the maximal energy (initial condition (a)). The vertical

red dashed line shows the location of ∆ω
(1)
max, while the vertical black solid line shows the location of

∆ω
(2)
max. Finally, the blue dash-dotted line shows the amplitude obtained the exact resonance.
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Figure 3. Typical dependence of the energy variation range ∆E on the frequency detuning ∆ω for the

case when the high frequency mode ω3 has the lowest energy (initial condition (b)).
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(a) ∆ω = 0.1 (b) ∆ω = 0.31 (c) ∆ω = 0.315

Figure 4. Phase portraits of the dynamical system (3) – (7) in (C3, ψ) variables for the triad from the

Tab. 1(a). Positive increasing detuning.

(a) ∆ω = −0.1 (b) ∆ω = −0.235 (c) ∆ω = −0.25

Figure 5. Phase portraits of the dynamical system (3) – (7) in (C3, ψ) variables for the triad from the

Tab. 1(a). Negative decreasing detuning.

The main finding is a pronounced asymmetry between the phase portraits for positive and

negative values of the detuning ∆ω: the position of the stationary point right on the horizontal axis

C3 (there are other stationary points for ψ 6= 0) is very different; the shape of the periodic orbit differs

(see Figs. 4(b) & 5(b)); the transition from closed to snake-like integral curves takes place for different

values of |∆ω|, e.g. ≈ 0.31 on Fig. 4(c) and ≈ −0.24 on Fig. 5(c); the shape of the integral curves

is different; the phase portraits look alike, but differ in size by one order of magnitude. In order to

demonstrate how big this difference is for opposite values of ∆ω we depicted on the same Fig. 6 the

periodic cycles from Figs. 4(a) & 5(a).

A simple phase space analysis reveals the reason for the presence of a local minimum of ∆E in

Figs. 2 & 3. Indeed, it can happen that the initial conditions coincide with the system equilibrium

point, which depends on ∆ωst.

5. Conclusions

It was demonstrated that the introduction of frequency detuning significantly enriches the

dynamics of a 3−wave resonance system. Moreover, the effects of detuning are highly nonlinear

and highly non-monotonic with respect to the detuning parameter. The main findings of this study

are outlined hereinbelow:

• The range of values of frequency detuning ∆ω can most conveniently be divided into five

regions of different behaviour, not all of them present in any case. The behavior of the main

parameters of system (3) – (7) over those five regions is summarized in Tab. 2.
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Figure 6. Simultaneous plot of two phase portraits and integral curves for the detunings ∆ω = ±0.1

shown at Figs. 4(a) & 5(a) correspondingly.

• The amplitude of energy variation (8) in a triad with suitably chosen detuning (∆ω 6= 0) can

be significantly higher than in the case of exact resonance, i.e. ∆ω ≡ 0. The maximal amplification

as compared to exact resonance is attained when ∆ωst coincides with the point of exact resonance. In

this case one of the zones (III) or (IV) disappears.

• The phase portraits along with the shape and size of the periodic cycles are substantially

different for ∆ω > 0 and ∆ω < 0. This means that any complete analysis of detuned resonance

must include both positive and negative values of the detuning parameter ∆ω.

The notion of resonance enhancement via frequency detuning, as the title of this manuscript says,

contradicts what we would expect from our physical intuition. However, there exists a simple

qualitative explanation for that. Indeed, our intuition comes from a linear pendulum

ẍ + ω2x = 0 (9)

taken usually as a model for a linear wave, and a resonance is regarded due to an action of an external

force.

On the other hand, the dynamical system for 3−wave resonance can be transformed into the

Mathieu equation which describes a particular case of the motion of an elastic pendulum

ẍ + [ω2
pen − λ cos(ωspr)]x = 0, (10)

where ωpen and ωstr are frequencies of pendulum- and spring-like motions, [4]. Regarding resonance

detuning ∆̃ω as a frequency of an external force for (10), our findings can be understood in the

following way. The detuned 3−wave system has the maximal range of the energy amplitudes

variation when the elastic pendulum interacts resonantly with the external forcing. Detailed study
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of this effect is upcoming, using the approach developed in [5] for an elastic pendulum subject to the

external force.
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