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Abstract: In this manuscript we report new effects of resonance detuning on various dynamical
parameters of a generic 3—wave system. Namely, for suitably chosen values of detuning the
variation range of amplitudes can be significantly wider than for exact resonance. Moreover, the
range of energy variation is not symmetric with respect to the sign of the detuning. Finally,
the period of the energy oscillation exhibits non-monotonic dependency on the magnitude of
detuning. These results have important theoretical implications where nonlinear resonance analysis
is involved, such as geophysics, plasma physics, fluid dynamics. Numerous practical applications
are envisageable e.g. in energy harvesting systems.
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1. Introduction

Numerous natural phenomena exhibit linear and nonlinear resonances. In many technical cases
occurrence of resonance must to be avoided, the widely known Tacoma Bridge dramatic collapse
being an example for this. In other cases, the goal is to approach the state of exact resonance, by
reducing resonance detuning, in order to increase the efficiency of a process or device. To give a
notion of linear resonance, we consider a linear oscillator (or pendulum) driven by a small force. We
say, that the resonance occurs, if the eigenfrequency w of a system coincides with the frequency of the
driving force Q). In this case, for small enough resonance detuning, |2 — w| > 0, the amplitude of the
linear oscillator becomes smaller with increasing detuning.

The simplest case of nonlinear resonance is a set of three waves Aje
conditions of the following form

i(kjxj=wjt) fulfilling resonance

witwytws = 0, D)
kitky+tks = 0, (2)

where k; € 72, wj = w(kj) are the wave vectors and frequencies respectively. Drawn from these
resonance conditions, resonance detuning in the nonlinear case can be defined in a number of ways,
e.g. as a frequency detuning or phase detuning.
In the physical literature, for frequency detuning defined as
w + wy — w3 = Aw < min {wi},
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the assumption prevails, that bigger detuning results in smaller variation of amplitudes, e.g. [1]. Quite
consistently the study of phase detuning in (2) in a 3—wave system demonstrated that the variation
range of wave amplitudes becomes smaller with growing dynamical phase [2].

In this manuscript we study the effects of frequency detuning in (1) by means of the numerical
simulation. As an example we take a resonant triad of atmospheric planetary waves from [3]. Our
numerical simulations show that the detuned system behaviour was correctly understood for |Aw| >
6 > 0. However, there exists a transitional range of the detuning magnitude Aw where the dynamics
of this system is much more complicated. As our results depend only on the general form of the
dynamical system given below, they are applicable to a wide class of physical systems.

2. Model equations

The dynamical system for detuned resonance of three complex-valued amplitudes A;,i =1,2,3
reads

NiA; = —2iZ(No — N3)AjAze 89T,
NoAy = —2iZ(N3 — Nyj)AjAze 89T,
N3A3 = 2iZ(N1*N2)A1AzeiAwT,

(and their complex conjugate equations) where the dot denotes differentiation with respect to the slow
time T = t/e, Aw := Aw/¢, € being a small parameter. The dynamical system for exact resonance is
obtained by setting Aw = 0. It can be rewritten in amplitude/phase variables as:

NiC; = —2Z(N;— N3)CoCssiny, )

NoC, = —2Z(N3— Np)CiCssiny, (4)

N3C3 = —2Z(Nj— Np)C1Cysiny, (5)
i Ny — N3 -2

= Aw-—-2ZCCC3( ———C;“ + 6

¥ 1C 3( N Gl (6)

N G+ N Gy )cos P, (7)

where C;(T) = |A;(T)| is the real amplitude, ¢ := 6; + 6, — 605 is the dynamical phase and 6;(T) =
arg A;(T). In what follows we will focus on the evolution of the energy of the high-frequency mode
&3(T).

3. Amplitudes

In Fig. 1 we show the energy evolution in the resonant triad given in Table 1 for several values
11

of the frequency detuning Aw = Aw/¢ € [— 3, 3]; e.g. in geophysical applications € ~ O(102). From
these graphs it can be seen that the period T and the range of the energy variation, defined as

A& (Aw) = (m?xéo - mtiné"’), 8)

N —

are non-monotonic functions of the detuning Aw.

A graph showing the characteristics of the dependency of the energy variation range A& (Aw)
on the frequency detuning Aw is shown in Fig. 2. This particular curve was computed for parameters
given in Tab. 1. The graph can conveniently be divided into the five regions which are separated
by particular values of the frequency detuning Acw: Awr(jgfx) correspond to local maxima, Aws; is the
position of the local minimum, and Aw = 0 corresponds to exact resonance. So, the regions are:

() Aw € (—o0, Awak];

() Aw € (Awaly, min{0, Aws}];

do0i:10.20944/preprints202002.0347.v1
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Table 1. Physical parameters used in numerical simulations.

Parameter [ Value
Resonant wavevectors, [m;, 1] [4,12], [5,14], [9,13]
Resonant frequencies, 2m;/ nj(nj +1) | 0.0513, 0.0476, 0.0989
Resonant triad parameters, N, i 156, 210, 182
Interaction coefficient, Z 7.82
Initial energy distribution (a), % 20%, 30%, 50%
Initial energy distribution (b), % 40%, 40%, 20%
Initial dynamical phase, ¢ 0.0

Table 2. Behaviour of physical parameters A&, T and ¢ in different regions.

Region/Range | — \ —
0 MG+, T4, Dy | BE—, T, Dyt
(I AE—, T+, Ap— | AEH+, T—, A+
(IID) AE—, T+, Ap— | AE+, T—, A+
) AE+, T—, AP+ | AE—, T—, Ap—
V) AE—, T—, M+ | AE+, T+, Ap—

(I Aw € (min{0, Awst}, max{0, Aws}];

(IV) Aw € (Awst, Awiam];

(V) Aw € (Awggx,—i—w).

The reason to regard these regions separately is that the main characteristics (i.e. energy variation
A&, energy oscillation period T and the phase variation Ay) behave differently in each region. Our
findings are summarized in Table 2, where all the quantities &, T and ¢ are followed by + sign
denoting the their variation in the region (+4: increase, —: decrease). The first column corresponds to
the direction of increasing values of Aw € (—co — +00), while the second column corresponds to the
opposite direction Aw € (—oco ¢ +o0).

The most interesting observation is, that the energy variation range during the system evolution
can be significantly larger for a suitable choice of the detuning Aw # 0 compared to the exact
resonance case Aw = 0. There are two values of which provide significant amplifications to A&
On Fig. 2 the global maximum is located on the left of Awst, while on Fig. 3 it is on the right of Awy.
These two cases differ only by the initial energy distribution among the triad modes (see Tab. 1, initial
conditions (a) & (b)).

Similar computations have been performed for other resonant triads and the qualitative behavior
of the energy variation has always been similar to Figs. 2 & 3. Namely, the global maximum is located
on the left of Awst when the high frequency mode w3 contains initially most of the energy, and to the
right of Aws; in the opposite case.

(g)

It is important to stress that the energy variation A& (Aw) at the global maximum Awpysy is
always significantly higher than at the point of exact resonance, i.e. A& (Awr(,%gx) > A&(0). The
highest ratio A& (Aw)/A&(0) is attained when the local minimum Awst coincides with the point of
exact resonance. In this case we can find a Aw that the amplification A& (Aw) /A& (0) is of at least one

order of magnitude. A simple phase space analysis allows to locate the local minimum.

4. Phase space analysis

On Figs. 4 — 6 we depict the typical phase portraits of the dynamical system (3) — (7) in
phase-amplitude variables. For illustration we choose the triad given in Tab. 1 with the initial energy
distribution (a). In these pictures we represent the high-frequency mode Cs3 on the horizontal axis,
while the dynamical phase 1 is on the vertical.
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Figure 1. Energy evolution in the triad given in Table 1, for different values of the detuning Aw.
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Figure 2. Typical dependency of the energy variation range A& on the frequency detuning Aw for the
case when the high frequency mode w3 has the maximal energy (initial condition (a)). The vertical
red dashed line shows the location of Awggx, while the vertical black solid line shows the location of

Awggx. Finally, the blue dash-dotted line shows the amplitude obtained the exact resonance.
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Figure 3. Typical dependence of the energy variation range A&’ on the frequency detuning Aw for the
case when the high frequency mode w3 has the lowest energy (initial condition (b)).
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Figure 4. Phase portraits of the dynamical system (3) — (7) in (Cs, ¢) variables for the triad from the
Tab. 1(a). Positive increasing detuning.
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Figure 5. Phase portraits of the dynamical system (3) — (7) in (Cs, ¢) variables for the triad from the
Tab. 1(a). Negative decreasing detuning.

The main finding is a pronounced asymmetry between the phase portraits for positive and
negative values of the detuning Aw: the position of the stationary point right on the horizontal axis
C3 (there are other stationary points for i # 0) is very different; the shape of the periodic orbit differs
(see Figs. 4(b) & 5(b)); the transition from closed to snake-like integral curves takes place for different
values of |Aw|, e.g. =~ 0.31 on Fig. 4(c) and ~ —0.24 on Fig. 5(c); the shape of the integral curves
is different; the phase portraits look alike, but differ in size by one order of magnitude. In order to
demonstrate how big this difference is for opposite values of Aw we depicted on the same Fig. 6 the
periodic cycles from Figs. 4(a) & 5(a).

A simple phase space analysis reveals the reason for the presence of a local minimum of A& in
Figs. 2 & 3. Indeed, it can happen that the initial conditions coincide with the system equilibrium
point, which depends on Aws;.

5. Conclusions

It was demonstrated that the introduction of frequency detuning significantly enriches the
dynamics of a 3—wave resonance system. Moreover, the effects of detuning are highly nonlinear
and highly non-monotonic with respect to the detuning parameter. The main findings of this study
are outlined hereinbelow:

e The range of values of frequency detuning Aw can most conveniently be divided into five
regions of different behaviour, not all of them present in any case. The behavior of the main
parameters of system (3) — (7) over those five regions is summarized in Tab. 2.
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Figure 6. Simultaneous plot of two phase portraits and integral curves for the detunings Aw = +0.1
shown at Figs. 4(a) & 5(a) correspondingly.

o The amplitude of energy variation (8) in a triad with suitably chosen detuning (Aw # 0) can
be significantly higher than in the case of exact resonance, i.e. Aw = 0. The maximal amplification
as compared to exact resonance is attained when Aws; coincides with the point of exact resonance. In
this case one of the zones (III) or (IV) disappears.

e The phase portraits along with the shape and size of the periodic cycles are substantially
different for Aw > 0 and Aw < 0. This means that any complete analysis of detuned resonance
must include both positive and negative values of the detuning parameter Aw.

The notion of resonance enhancement via frequency detuning, as the title of this manuscript says,
contradicts what we would expect from our physical intuition. However, there exists a simple
qualitative explanation for that. Indeed, our intuition comes from a linear pendulum

¥+ w?x =0 9)

taken usually as a model for a linear wave, and a resonance is regarded due to an action of an external
force.

On the other hand, the dynamical system for 3—wave resonance can be transformed into the
Mathieu equation which describes a particular case of the motion of an elastic pendulum

i+ [w? Wpen — Acos(wspr)]x = 0, (10)

where wpen and wsyr are frequencies of pendulum- and spring-like motions, [4]. Regarding resonance
detuning Aw as a frequency of an external force for (10), our findings can be understood in the
following way. The detuned 3—wave system has the maximal range of the energy amplitudes
variation when the elastic pendulum interacts resonantly with the external forcing. Detailed study
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of this effect is upcoming, using the approach developed in [5] for an elastic pendulum subject to the
external force.
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