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Abstract: Let Ψ(n) = n · ∏q|n
(

1 + 1
q

)
denote the Dedekind Ψ function where q | n means the prime q divides

n. Define, for n ≥ 3; the ratio R(n) = Ψ(n)
n·log log n where log is the natural logarithm. Let Nn = 2 · . . . · qn be the

primorial of order n. A trustworthy proof for the Riemann hypothesis has been considered as the Holy Grail of

Mathematics by several authors. The Riemann hypothesis is a conjecture that the Riemann zeta function has its

zeros only at the negative even integers and complex numbers with real part 1
2 . There are several statements

equivalent to the famous Riemann hypothesis. We show if the inequality R(Nn+1) < R(Nn) holds for n big

enough, then the Riemann hypothesis is true. In this note, we prove that R(Nn+1) < R(Nn) always holds for n
big enough.
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1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the
negative even integers and complex numbers with real part 1

2 . It is considered by many to be the
most important unsolved problem in pure mathematics. The hypothesis was proposed by Bernhard
Riemann (1859). The Riemann hypothesis belongs to Hilbert’s eighth problem on David Hilbert’s list
of twenty-three unsolved problems. This is one of the Clay Mathematics Institute’s Millennium Prize
Problems. In recent years, there have been several developments that have brought us closer to a proof
of the Riemann hypothesis. There are many approaches to the Riemann hypothesis based on analytic
number theory, algebraic geometry, non-commutative geometry, etc [1].

The Riemann zeta function ζ(s) is a function under the domain of complex numbers. It has zeros
at the negative even integers: These are called the trivial zeros. The zeta function is also zero for other
values of s, which are called nontrivial zeros. The Riemann hypothesis is concerned with the locations
of these nontrivial zeros. Bernhard Riemann conjectured that the real part of every nontrivial zero of
the Riemann zeta function is 1

2 .
The Riemann hypothesis’s importance remains from its deep connection to the distribution of

prime numbers, which are essential in many computational and theoretical aspects of mathematics.
Understanding the distribution of prime numbers is crucial for developing efficient algorithms and im-
proving our understanding of the fundamental structure of numbers. Besides, the Riemann hypothesis
stands as a testament to the power and allure of mathematical inquiry. It challenges our understanding
of the fundamental structure of numbers, inspiring mathematicians to push the boundaries of their
field and seek ever deeper insights into the universe of mathematics.

2. Background and Ancillary Results

In mathematics, the Chebyshev function θ(x) is given by

θ(x) = ∑
q≤x

log q

with the sum extending over all prime numbers q that are less than or equal to x, where log is the
natural logarithm. We know the following inequalities:
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Proposition 1. For x ≥ −1 and 0 ≤ r ≤ 1 (This is a useful variant of Bernoulli’s inequality [2]):

(1 + x)r ≤ 1 + r · x.

Proposition 2. For x > −1 [3, pp. 1]:

x
1 + x

≤ log(1 + x).

Leonhard Euler studied the following value of the Riemann zeta function (1734) [4].

Proposition 3. We define [4, (1) pp. 1070]:

ζ(2) =
∞

∏
k=1

q2
k

q2
k − 1

=
π2

6
,

where qk is the kth prime number (Mathematicians also use the notation qn to represent the nth prime number).
By definition, we have

ζ(2) =
∞

∑
n=1

1
n2 ,

where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

∞

∑
n=1

1
n2 =

∞

∏
k=1

q2
k

q2
k − 1

=
π2

6
,

where π ≈ 3.14159 is a well-known constant linked to several areas in mathematics such as number theory,
geometry, etc.

The number γ ≈ 0.57721 is the Euler-Mascheroni constant which is defined as

γ = lim
n→∞

(
− log n +

n

∑
k=1

1
k

)

=
∫ ∞

1

(
− 1

x
+

1
⌊x⌋

)
dx.

Here, ⌊. . .⌋ represents the floor function. In number theory, Ψ(n) = n · ∏q|n

(
1 + 1

q

)
is called the

Dedekind Ψ function, where q | n means the prime q divides n.

Definition 1. We say that Dedekind(qn) holds provided that

∏
q≤qn

(
1 +

1
q

)
≥ eγ

ζ(2)
· log θ(qn).

A natural number Nn is called a primorial number of order n precisely when,

Nn =
n

∏
k=1

qk.

We define R(n) = Ψ(n)
n·log log n for n ≥ 3. Dedekind(qn) holds if and only if R(Nn) ≥ eγ

ζ(2) is satisfied.
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Proposition 4. Unconditionally on Riemann hypothesis, we know that [5, Proposition 3 pp. 3]:

lim
n→∞

R(Nn) =
eγ

ζ(2)
.

The well-known asymptotic notation Ω was introduced by Godfrey Harold Hardy and John
Edensor Littlewood [6]. In 1916, they also introduced the two symbols ΩR and ΩL defined as [7]:

f (x) = ΩR(g(x)) as x → ∞ if lim sup
x→∞

f (x)
g(x)

> 0;

f (x) = ΩL(g(x)) as x → ∞ if lim inf
x→∞

f (x)
g(x)

< 0.

After that, many mathematicians started using these notations in their works. From the last century,
these notations ΩR and ΩL changed as Ω+ and Ω−, respectively. There is another notation: f (x) =
Ω±(g(x)) (meaning that f (x) = Ω+(g(x)) and f (x) = Ω−(g(x)) are both satisfied). Nowadays, the
notation f (x) = Ω+(g(x)) has survived and it is still used in analytic number theory as:

f (x) = Ω+(g(x)) if ∃k > 0 ∀x0 ∃x > x0 : f (x) ≥ k · g(x)

which has the same meaning to the Hardy and Littlewood older notation. For x ≥ 2, the function f
was introduced by Nicolas in his seminal paper as [8, Theorem 3 pp. 376], [9, (5.5) pp. 111]:

f (x) = eγ · log θ(x) · ∏
q≤x

(
1 − 1

q

)
.

Finally, we have Nicolas’ Theorem:

Proposition 5. If the Riemann hypothesis is false then there exists a real b with 0 < b < 1
2 such that, as

x → ∞ [8, Theorem 3 (c) pp. 376], [9, Theorem 5.29 pp. 131]:

log f (x) = Ω±(x−b).

Putting all together yields a proof for the Riemann hypothesis.

3. Main Result

The following inequality is a trivial result:

Lemma 1. Let ϵ1 be a positive integer between 0 and e − 1 (i.e. 0 < ϵ1 < e − 1). Then,

log
(

1 − e−1 · (ϵ1 + 1)
)
≥ − e−1 · (ϵ1 + 1)

1 − e−1 · (ϵ1 + 1)
.

Proof. We can apply the Proposition 2 since −e−1 · (ϵ1 + 1) > −1. Therefore, we only need to replace
x by −e−1 · (ϵ1 + 1) in the following expression

x
1 + x

≤ log(1 + x).

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or
at least hope) that it is true. Nevertheless, there exist some implications in case the Riemann hypothesis
could be false. The following is a key Lemma.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2024                   doi:10.20944/preprints202002.0379.v13

https://doi.org/10.20944/preprints202002.0379.v13


4 of 9

Lemma 2. If the Riemann hypothesis is false, then there exist infinitely many prime numbers qn such that
Dedekind(qn) fails (i.e. Dedekind(qn) does not hold).

Proof. Let’s define a function called g(x):

g(x) =
eγ

ζ(2)
· log θ(x) · ∏

q≤x

(
1 +

1
q

)−1
.

This function is based on some previously proven results (reference: [5, Theorem 4.2 pp. 5]). It involves
several things: the constants γ and ζ(2), the Chebyshev function θ(x), and a product considering all
prime numbers less than or equal to x.

We’re interested in a specific condition, called Dedekind(qn) (see Definition 1). This proof ar-
gues that Dedekind(qn) could fail under the possibility that the Riemann hypothesis is false. That
circumstance involves infinitely many natural numbers x0 greater than or equal to 5. We claim that
Dedekind(qn) fails for infinitely many prime numbers qn such that qn refers to the largest prime num-
ber less than or equal to x0. For this x0, the value of g(x0) must be greater than 1 (or equivalently,
log g(x0) > 0).

There’s a previously established relationship between g(x) and f (x) [5, Theorem 4.2 pp. 5]:

log g(x) ≥ log f (x)− 2
x

.

If the Riemann hypothesis (RH) is false, then there must be infinitely many natural numbers x for
which log f (x) = Ω+(x−b) by Proposition 5. This result depends on another number b between 0
and 1

2 (i.e. 0 < b < 1
2 ). Nicolas proved the general case log f (x) = Ω±(x−b), but we only need to use

the notation Ω+ under the domain of the natural numbers. According to the Hardy and Littlewood
definition, this would mean

∃k > 0 ∀y0 ∃y > y0 : log f (y) ≥ k · y−b.

The previous inequality is log f (y) ≥
(

k · y−b · √y
)
· 1√

y , where we notice that

lim
y→∞

(
k · y−b · √y

)
= ∞

for k > 0 and 0 < b < 1
2 . Now, this implies

∀y0 ∃y > y0 : log f (y) ≥ 1
√

y
.

This inequality would mean that under a false RH, there are infinitely many natural numbers
x where log f (x) ≥ 1√

x . Here’s how this connects back to our original function g(x). Because of
1√
x0

> 2
x0

for x0 ≥ 5, hence if the false RH scenario holds, then there must be infinitely many such x0

where log g(x0) > 0.
Finally, the proof establishes a link between these positive log g(x0) values and the prime numbers.

It shows that if the logarithm of g(x0) is positive for a specific x0 ≥ 5, then it must also be positive for
the largest prime number qn less than or equal to x0. This connection arises from the properties of the
terms used in the definition of g(x) and the Chebyshev function.

Lemma 3. If R(Nn) is strictly decreasing (i.e. R(Nn) > R(Nn+1)) for n big enough then Dedekind(qn) holds
for n big enough.
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Proof. Assume R(Nn) > R(Nn+1) for n > n0 and that Dedekind(qm) fails for m > n0 that is

R(Nm) <
eγ

ζ(2)
,

then for n ≥ m + 1 we have R(Nn+1) < R(Nn) <
eγ

ζ(2) . This implies

lim sup
n→∞

R(Nn) <
eγ

ζ(2)

contradicting Proposition 4.

This is the main insight.

Theorem 1. The inequality R(Nn) > R(Nn+1) holds for n big enough.

Proof. By Lemma 3, Dedekind(qn) holds for n big enough if the following inequality is satisfied for a
sufficiently large value of n:

R(Nn+1) < R(Nn).

This translates to:
∏q≤qn+1

(
1 + 1

q

)
log θ(qn+1)

<
∏q≤qn

(
1 + 1

q

)
log θ(qn)

.

Applying logarithms to both sides and expanding the terms, we get:

log log θ(qn+1) > log log θ(qn) + ∑
qn<q≤qn+1

log
(

1 +
1
q

)
.

Dividing both sides by log log θ(qn+1) (since qn+1 is large enough to ensure log log θ(qn+1) > 0), we
have:

1 >
log log θ(qn)

log log θ(qn+1)
+

∑qn<q≤qn+1
log
(

1 + 1
q

)
log log θ(qn+1)

.

Taking exponentials of both sides yields:

e > exp
(

log log θ(qn)

log log θ(qn+1)

)
·
(

∏
qn<q≤qn+1

(
1 +

1
q

)) 1
log log θ(qn+1)

.

For a sufficiently large prime qn+1, we can leverage the property e = x
1

log x for x > 0 to obtain:

e = (log θ(qn+1))
1

log log θ(qn+1) .

Therefore, it suffices to show that:

log θ(qn+1) > ∏
qn<q≤qn+1

(
1 +

1
q

)
.

This simplifies to:

log θ(qn+1) > 1 +
1

qn+1
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which is trivially true for n big enough. That would mean

e · (1 − ϵ2) =

(
∏

qn<q≤qn+1

(
1 +

1
q

)) 1
log log θ(qn+1)

for some positive integer ϵ2 between 0 and 1 (i.e. 0 < ϵ2 < 1). Besides, we have:

1 + ϵ1 = exp
(

log log θ(qn)

log log θ(qn+1)

)
where ϵ1 is a positive integer between 0 and e − 1 (i.e. 0 < ϵ1 < e − 1). Our goal is to prove:

e > (1 + ϵ1) · e · (1 − ϵ2),

which simplifies to:

ϵ2 >
ϵ1

ϵ1 + 1
.

We can also see that:

1 − e−1 ·
(

∏
qn<q≤qn+1

(
1 +

1
q

)) 1
log log θ(qn+1)

= ϵ2.

Using Proposition 1 and the fact that 1 ≤ log log θ(qn+1) (due to a sufficiently large qn+1), we obtain

(
∏

qn<q≤qn+1

(
1 +

1
q

)) 1
log log θ(qn+1)

=

(
1 +

1
qn+1

) 1
log log θ(qn+1)

≤ 1 +
1

qn+1 · log log θ(qn+1)

< 1 +
1

qn+1 · log log θ(qn+1)− 1

=
log log θ(qn+1)

log log θ(qn+1)− 1
qn+1

.

So, we arrive at:

1 − e−1 · log log θ(qn+1)

log log θ(qn+1)− 1
qn+1

< ϵ2.

Combining steps, this follow as

1 − e−1 · log log θ(qn+1)

log log θ(qn+1)− 1
qn+1

>
ϵ1

ϵ1 + 1
.

After simple distribution, we make

ϵ1 + 1
ϵ1

−
e−1 · ϵ1+1

ϵ1
· log log θ(qn+1)

log log θ(qn+1)− 1
qn+1

> 1

and

1 >
e−1 · (ϵ1 + 1) · log log θ(qn+1)

log log θ(qn+1)− 1
qn+1

where
log log θ(qn+1)−

1
qn+1

> e−1 · (ϵ1 + 1) · log log θ(qn+1).
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Using further manipulations, we arrive at:

− 1
qn+1

>
(

e−1 · (ϵ1 + 1)− 1
)
· log log θ(qn+1).

and
1 < qn+1 ·

(
1 − e−1 · (ϵ1 + 1)

)
· log log θ(qn+1)

which is
0 < log qn+1 + log

(
1 − e−1 · (ϵ1 + 1)

)
+ log log log θ(qn+1)

after of applying the logarithm to both sides. That could be rewritten as

0 < − e−1 · (ϵ1 + 1)
1 − e−1 · (ϵ1 + 1)

+ log qn+1 + log log log θ(qn+1)

by Lemma 1. That is equivalent to

1
e · (ϵ1 + 1)−1 − 1

< log qn+1 + log log log θ(qn+1)

since
e−1 · (ϵ1 + 1)

1 − e−1 · (ϵ1 + 1)
=

1
e · (ϵ1 + 1)−1 − 1

after multiplying the fraction (so above as below) by e · (ϵ1 + 1)−1. The inequality

1
e · (ϵ1 + 1)−1 − 1

< log qn+1 + log log log θ(qn+1)

is the same as
1

exp
(

1 − log log θ(qn)
log log θ(qn+1)

)
− 1

< log qn+1 + log log log θ(qn+1)

because of

ϵ1 = exp
(

log log θ(qn)

log log θ(qn+1)

)
− 1.

We can further deduce that

1

exp
(

1 − log log θ(qn)
log log θ(qn+1)

)
− 1

< log qn+1 + log log log θ(qn+1)

holds whenever

log qn+1 + log log log θ(qn+1) < exp
(

1 − log log θ(qn)

log log θ(qn+1)

)
· (log qn+1 + log log log θ(qn+1))

also holds. Finally, we can infer that

log qn+1 + log log log θ(qn+1) < exp
(

1 − log log θ(qn)

log log θ(qn+1)

)
· (log qn+1 + log log log θ(qn+1))

trivially holds by the fact that

exp
(

1 − log log θ(qn)

log log θ(qn+1)

)
> 1

and
(log qn+1 + log log log θ(qn+1)) > 0
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under the supposition that n is big enough.

This is the main theorem.

Theorem 2. The Riemann hypothesis is true.

Proof. In virtue of Lemmas 2 and 3, the Riemann hypothesis is true if the inequality

R(Nn+1) < R(Nn)

holds for n big enough. Consequently, the Riemann hypothesis is true by Theorem 1.

4. Discussion

In number theory, the difference between consecutive prime numbers is called a prime gap. The nth

prime gap refers specifically to the difference between the prime numbers at positions n and (n + 1) in
the sequence of primes.

In 1936, Harald Cramér, a Swedish mathematician, proposed a conjecture about the size of prime
gaps. Cramér conjecture states that the difference between consecutive prime gaps grows no faster
than the square of the logarithm of the larger prime gap (i.e. qn+1 − qn = O((log qn)2)). Here, the big
O notation represents an upper bound on the order of magnitude of a function.

However, there’s growing evidence that Cramér conjecture might be incorrect [10]. Recent
research suggests the conjecture may be violated for infinitely many prime gaps. This conclusion is
based on results from a yet-to-be-peer-reviewed paper [11, Proposition 4 pp. 5; Proposition 7 pp. 7].
While Theorem 1 in this work seems to disprove the conjecture, its validity depends on the full
publication of [11] through peer review.

5. Conclusion

The Riemann hypothesis holds immense significance not only for number theory, but also for
fields as diverse as cryptography and particle physics. A proof wouldn’t just offer deep insights
into the nature and distribution of prime numbers, the fundamental building blocks of integers. It
would fundamentally reshape various mathematical landscapes, sparking entirely new lines of inquiry.
For example, a proven Riemann hypothesis could lead to more efficient methods of prime number
generation, which are crucial for securing online communication in cryptography. Furthermore, its
implications might extend beyond pure mathematics, potentially influencing our understanding of the
distribution of energy levels in complex systems studied in particle physics. In essence, a resolution to
the Riemann hypothesis could be a catalyst for groundbreaking discoveries across a wide range of
scientific disciplines.
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