Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

The Complexity of Number Theory

Frank Vega
Joysonic, Uzun Mirkova 5, Belgrade, 11000, Serbia
vega.frank@gmail.com

—— Abstract

The Goldbach’s conjecture has been described as the most difficult problem in the history of
Mathematics. This conjecture states that every even integer greater than 2 can be written as the
sum of two primes. This is known as the strong Goldbach’s conjecture. The conjecture that all
odd numbers greater than 7 are the sum of three odd primes is known today as the weak Goldbach
conjecture. A principal complexity class is NSPACE(S(n)) for some S(n). We show if the weak
Goldbach’s conjecture is true, then the problem PRIMES is not in NSPACE(S(n)) for all S(n) =
o(log n). This proof is based on the assumption that if some language belongs to NSPACE(S(n)),
then the unary version of that language belongs to NSPACE(S(log n)) and vice versa. However, if
PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n), then the strong Goldbach’s conjecture is
true or this has an infinite number of counterexamples. Since Harald Helfgott proved that the weak
Goldbach’s conjecture is true, then the strong Goldbach’s conjecture is true or this has an infinite
number of counterexamples, where the case of infinite number of counterexamples statistically seems
to be unlikely. In addition, if PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n), then the
Twin prime conjecture is true. Moreover, if PRIMES is not in NSPACE(S(n)) for all S(n) = o(log
n), then the Beal’s conjecture is true. Since the Beal’s conjecture is a generalization of Fermat’s
Last Theorem, then this is also a simple and short proof for that Theorem. In mathematics, the
Riemann hypothesis is consider to be the most important unsolved problem in pure mathematics. If
PRIMES is not in NSPACE(S(n)) for all S(n) = o(log n), then the Riemann hypothesis is true.

2012 ACM Subject Classification Theory of computation — Complexity classes; Theory of com-
putation — Regular languages; Theory of computation — Problems, reductions and completeness;
Mathematics of computing — Number-theoretic computations

Keywords and phrases complexity classes, regular languages, reduction, number theory, conjecture,

primes

1 Introduction

1.1 Goldbach’s conjecture

Number theory is a branch of pure mathematics devoted primarily to the study of the integers
and integer-valued functions [30]. Goldbach’s conjecture is one of the most important and
unsolved problems in number theory [14]. Nowadays, it is one of the open problems of
Hilbert and Landau [14]. Goldbach’s original conjecture, written on 7 June 1742 in a letter
to Leonhard Euler, states: “... at least it seems that every number that is greater than 2 is
the sum of three primes” [10]. This is known as the ternary Goldbach conjecture. We call a
prime as a natural number that is greater than 1 and has exactly two divisors, 1 and the
number itself [33]. However, the mathematician Christian Goldbach considered 1 as a prime
number. Euler replied in a letter dated 30 June 1742 the following statement: “Every even
integer greater than 2 can be written as the sum of two primes” [10]. This is known as the
strong Goldbach conjecture.

Using Vinogradov’s method [32], it has been showed that almost all even numbers can
be written as the sum of two primes. In 1973, Chen showed that every sufficiently large
even number can be written as the sum of some prime number and a semi-prime [6]. The
strong Goldbach conjecture implies the conjecture that all odd numbers greater than 7 are
the sum of three odd primes, which is known today as the weak Goldbach conjecture [10]. In

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-8210-4126
mailto:vega.frank@gmail.com
https://doi.org/10.20944/preprints202002.0379.v3
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

2 The Complexity of Number Theory

2012 and 2013, Peruvian mathematician Harald Helfgott published a pair of papers claiming
to improve major and minor arc estimates sufficiently to unconditionally prove the weak
Goldbach conjecture [16], [17]. In this work, we prove the strong Goldbach’s conjecture is
true or this has an infinite number of counterexamples.

1.2 Twin prime conjecture

On the other hand, the question of whether there exist infinitely many twin primes has been
one of the great open questions in number theory for many years. This is the content of the
twin prime conjecture, which states that there are infinitely many primes p such that p + 2
is also prime [15]. In addition, the Dubner’s conjecture is an as yet unsolved conjecture by
American mathematician Harvey Dubner [11]. It states that every even number greater than
4208 is the sum of two t-primes, where a t-prime is a prime which has a twin [11]. We prove
there are infinite even numbers that comply the Dubner’s conjecture, where this also implies
that the twin prime conjecture is true [11].

1.3 Beal’s conjecture

Fermat’s Last Theorem was first conjectured by Pierre de Fermat in 1637, famously in the
margin of a copy of Arithmetica where he claimed he had a proof that was too large to
fit in the margin [33]. This theorem states that no three positive integers a, b, and ¢ can
satisfy the equation a™ + 0™ = ¢" for any integer value of n greater than two [33]. It is not
known whether Fermat found a valid proof or not [33]. His proof of one case (n = 4) by
infinite descent has survived [33]. After many intents, the proof of Fermat’s Last Theorem
for every integer n > 2 was finally accomplished, after 358 years, by Andrew Wiles in 1995
[34]. However, the Andrew’s proof seems to be quite different to the simple and unknown
proof that Fermat claimed.

On the other hand, there is a similar and unsolved conjecture called the Beal’s conjecture
[20]. This conjecture states if A* + BY = C*#, where A, B, C, x, y and z are positive integers
and z, y and z are all greater than 2, then A, B and C must have a common prime factor
[33]. Fermat’s Last Theorem can be seen as a special case of the Beal’s conjecture restricted
to x = y = z. Billionaire banker Andrew Beal claims to have discovered this conjecture
in 1993 while investigating generalizations of Fermat’s Last Theorem [20]. This conjecture
has occasionally been referred to as a generalized Fermat equation [4] and the Mauldin or
Tijdeman-Zagier conjecture [12].

Beal offered a prize of US $1,000,000 to the first person who tries to resolve it [33]. For
example, the solution 32 + 63 = 3° has bases with a common factor of 3, and the solution
76 + 77 = 983 has bases with a common factor of 7. There are some particular cases which
have been proved for this conjecture [8], [25], [29], [5]. There are considerable advances on
this topic [22], [9]. We contribute on this subject showing the Beal’s conjecture is true.

1.4 Riemann hypothesis

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part % Many
consider it to be the most important unsolved problem in pure mathematics [27]. It is of
great interest in number theory because it implies results about the distribution of prime
numbers [27]. It was proposed by Bernhard Riemann (1859), after whom it is named [27].
In 1915, Ramanujan proved that under the assumption of the Riemann hypothesis, the

https://doi.org/10.20944/preprints202002.0379.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

F. Vega 3

inequality:

Zd < e’ xn xloglogn
d|n

holds for all sufficiently large n, where v & 0.57721 is the Euler’s constant and d|n means that
the natural number d divides n [19]. The largest known value that violates the inequality is
n = 5040. In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only
if the Riemann hypothesis is true [19]. Using this inequality, we prove that the Riemann
hypothesis is true.

2 Background Theory

In 1936, Turing developed his theoretical computational model [31]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions
related to this theoretical model for computation [31]. A deterministic Turing machine has
only one next action for each step defined in its program or transition function [31]. A
nondeterministic Turing machine could contain more than one action defined for each step of
its program, where this one is no longer a function, but a relation [31].

Let ¥ be a finite alphabet with at least two elements, and let 3* be the set of finite
strings over ¥ [3]. A Turing machine M has an associated input alphabet ¥ [3]. For each
string w in ¥* there is a computation associated with M on input w [3]. We say that M
accepts w if this computation terminates in the accepting state, that is M(w) = “yes” [3].
Note that M fails to accept w either if this computation ends in the rejecting state, that
is M (w) = “no”, or if the computation fails to terminate, or the computation ends in the
halting state with some output, that is M (w) = y (when M outputs the string y on the
input w) [3].

Another relevant advance in the last century has been the definition of a complexity class.
A language over an alphabet is any set of strings made up of symbols from that alphabet [7].
A complexity class is a set of problems, which are represented as a language, grouped by
measures such as the running time, memory, etc [7]. The language accepted by a Turing
machine M, denoted L(M), has an associated alphabet 3 and is defined by:

L(M)={we X" : M(w) = “yes”}.

Moreover, L(M) is decided by M, when w ¢ L(M) if and only if M(w) = “no” [7]. We use
o-notation to denote an upper bound that is not asymptotically tight. We formally define
o(g(n)) as the set

o(g(n)) ={f(n): for any positive constant ¢ > 0, there exists a constant

ng > 0 such that 0 < f(n) < ¢ x g(n) for all n > ng}.

For example, 2 x n = o(n?), but 2 x n? # o(n?) [7].

In theoretical computer science and formal language theory, a regular language is a formal
language that can be expressed using a regular expression [2]. The complexity class that
contains all the regular languages is REG. The complexity class NSPACE(f(n)) is the set of
decision problems that can be solved by a nondeterministic Turing machine M, using space
f(n), where n is the length of the input [21].

From the early days of automata and complexity theory, two different models of Turing
machines are considered, the offline and online machines [18]. Each model has a read-only

https://doi.org/10.20944/preprints202002.0379.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

4 The Complexity of Number Theory

input tape and some work tapes [18]. The offline machines may read their input two-way
while the online machines are not allowed to move the input head to the left [18]. In the
terminology of the (generalized) Turing machine models are called two-way and one-way
Turing machines, respectively [18]. The complexity class 1-NSPACE(f(n)) is the set of
decision problems that can be solved by a nondeterministic one-way Turing machine M,
using space f(n), where n is the length of the input [21].

3 Results

3.1 Goldbach’s conjecture

» Definition 1. We define the weak Goldbach’s language Ly g as follows:
Lwg = {12*"T10P090" : n € NAn > 4Ap,q and v are odd primes N2xn-+1=p+q+r}.
We define the strong Goldbach’s language Lg as follows:
Lg = {12*"0P07 : n € NAn >3 Ap and q are odd primes N2 xn=p+q}.

» Theorem 2. If the weak Goldbach’s conjecture is true, then the weak Goldbach’s language
Lw¢ is non-regular. Moreover, if the strong Goldbach’s conjecture is true, then the strong
Goldbach’s language Lg is non-reqular.

Proof. If the weak Goldbach’s conjecture is true, then the weak Goldbach’s language Ly ¢
is equal to the another language L’ defined as follows:

L' = {12 tg2xntl . e NAn > 4}

We can easily prove that L’ is non-regular using the Pumping lemma for regular languages
[26]. Moreover, if the strong Goldbach’s conjecture is true, then the strong Goldbach’s
language Lg is equal to the another language L defined as follows:

L' = {12*"0**" :n € NAn > 3}.

We can easily prove that L” is non-regular using the Pumping lemma for regular languages
as well [26]. <

» Definition 3. We define the weak verification Goldbach’s language Ly as follows:
Lwve ={(2xn+1,p,q,r): such that 12*"T10P090" € Lyq}.

We define the strong verification Goldbach’s language Ly as follows:
Lyve ={(2xn,p,q) : such that 1**"0P07 € Lg}.

» Definition 4. We define the weak Goldbach’s language with separator Ly sa as follows:
Lwsc = {02 TH0P40940" : such that 12X T10P090" € Ly g}

and we define the strong Goldbach’s language with separator Lsa as follows:
Lsc = {02*"#0P#0% : such that 12*"0P07 € Lg}

where 7 is the blank symbol.

https://doi.org/10.20944/preprints202002.0379.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

F. Vega 5

» Lemma 5. The weak Goldbach’s language with separator Ly sa is the unary representation
of the weak verification Goldbach’s language Lywvg. The strong Goldbach’s language with
separator Lgg is the unary representation of the strong verification Goldbach’s language

Lyg.
Proof. This is trivially true from the definition of these languages. <
» Theorem 6. If Lyyvg € NSPACE(S(n)) for some S(n) = o(logn), then Lywg € REG.

Proof. In case of Lyyg € NSPACE(S(n)) for some S(n) = o(logn), then there is a
nondeterministic Turing machine which decides Ly sg that uses space that is smaller
than ¢ x loglogn for all ¢ > 0, because of Ly gg is the unary version of Ly vy due to
Lemma 5 [13]. Certainly, the standard space translation between the unary and binary
languages actually works for nondeterministic machines with small space [13]. This means
that if some language belongs to NSPACE(S(n)), then the unary version of that language
belongs to NSPACE(S(logn)) [13]. In this way, we obtain that Ly se € REG because
of REG = NSPACE(o(loglogn)) [21]. In addition, we can reduce in a nondeterministic
constant space the language Ly to Ly sa just nondeterministically inserting the blank
symbol # within two arbitrary positions between the 0’s on the input. Moreover, this
nondeterminism reduction inserts the blank symbol # between the 1’s and 0’s and converts
the 1’s to 0’s from the original input of Ly just generating the final output to Ly sg-
Consequently, we prove Ly ¢ € REG under the assumption that Lyvg € NSPACE(S(n))
for some S(n) = o(logn), since REG is also the complexity class of languages decided by
nondeterministic Turing machines in constant space [28]. <

» Theorem 7. Ly vg ¢ NSPACE(S(n)) for all S(n) = o(logn).

Proof. If the weak Goldbach’s conjecture is true, then Ly ¢ ¢ REG as a consequence of
Theorem 2. However, if Lyyyvg € NSPACE(S(n)) for some S(n) = o(logn), then Ly €
REG due to Theorem 6. In this way, the weak Goldbach’s conjecture cannot be true
under the assumption that Ly ve € NSPACE(S(n)) for some S(n) = o(logn). Since the
weak Goldbach’s conjecture is true, then we obtain that Lyyvg ¢ NSPACE(S(n)) for all
S(n) = o(logn) [16], [17]. <

The checking whether a number is prime can be decided in polynomial time by a
deterministic Turing machine [1]. This problem is known as PRIMES [1].

» Theorem 8. PRIMES ¢ NSPACE(S(n)) for all S(n) = o(logn).

Proof. From the Theorem 7, we obtain that Ly vg ¢ NSPACE(S(n)) for all S(n) = o(logn).
However, the checking of whether the four numbers on the input are odds and proving the
equality of the sum’s equation can be done in NSPACE(o(logn)). Certainly, the verification
of the odd property could be done in constant space. In addition, the verification of the
equality of the sum’s equation 2 x n+ 1 = p+ ¢ + 7 can be done in NSPACE(o(logn)).

Indeed, given four natural numbers p, g, 7 and ¢ in binary encoding, it is obviously possible
to check in NSPACE(logn) whether p + ¢ +r = t. We need to go through corresponding
bits from p, ¢, r and ¢ starting from least significant bits to most significant bits. So for each
i from 1 to n, we check if p, g, and t have compatible/matching bits at position ¢ (i.e. p;,
qi, ri, and t; are compatible). Then, we keep track of any carry bit in constant space and
move to index ¢ + 1. We just need to keep track of ¢ written in binary. If n is the greatest
bit length between p, ¢, r and ¢, then we need logn bits to keep track of i. However, we can
keep track of i using o(logn) space.

https://doi.org/10.20944/preprints202002.0379.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

6 The Complexity of Number Theory

The position i is stored using a triple (a, b, ¢) of binary strings that represent positive
integers. In the least significant bit position we use (1,0,0). For a current bit position ¢ in a
triple (a, b, ¢), we move for the new bit position ¢ + 1 using the rules of the following steps:

1. f0<a< L%j, then the next step 7 + 1 into the new bit position is (a + 1,b, ¢),
2. elseifa = L@J, then the next step i + 1 into the new bit position is (0,0, 1),
3. else if a = 0 then:
a. if ¢ = |logn], then the next step ¢ + 1 into the new bit position is (a,b+ 1, 1) otherwise
if ¢ # |logn|, then the next step i + 1 into the new bit position is (a,b,c+ 1).

Every triple (a,b,c) represents the bit position a < |2 | when a > 0 or [] +

(llogn] x b) + ¢ when a = 0. In this way, b and ¢ always comply with ¢ < |logn]| and

b < w Certainly, this is based on the following equation

llogn]

n n—)
- 1 ___—osn- _
LlognJ + Llogn] x |logn| "

However, the bit length of |logn] is bounded by log|logn|. In addition, the bit length
of Llognj is bounded by logn — loglogn. Moreover, the bit length of the integer part of

% is bounded by log(n — | 557]) — log[log n|. Since we add the bit length of ¢ in case
of a =0, then this will be log(n — | 557]). In this way, the whole computation is bounded

by log(n — [555]) or logn —loglogn space. Furthermore, we use a single triple (a’,b’,¢) to

put the head into the bit positions of the binary numbers:

1. if we want to put the head of the tape into the bit position (a’, ¥, ¢’) inside of a binary
string, then we just set the head in the least significant bit position and move to the
left while we decrement in 1 the bit position using the same rules that we used for
incrementing until we reach the value (1,0,0)

2. and after that, if we want to put the head of the tape into the bit position (a’,¥’, ")
inside of another binary string, then from the current position in the head tape, we move
to the right while we just increment in 1 the bit position from the value (1,0, 0) using
the same rules above until the head will stay in the least significant bit position of the
current binary string reaching the previous value (a’, ¥, ¢’)

3. and while we doing that, we copy the bits p;, ¢;, r;, and t; to the work tapes from the bit
position i that represents (a’,0’,¢) and do the necessary verification

4. and finally, when we finish all that, then we erase the bits p;, ¢;, r;, and t; and create the
next step ¢ + 1 from the value (a’,¥’,) into the new bit position using the same rules
above.

However, we know that logn —loglogn = o(logn) and log(n — |25]) = o(logn) for

n > 3 where the whole computation can be done in a nondeterministic way because of it is
indeed deterministic [24]. In addition, the ultimate remaining verification that we need to
analyze in Lyyy ¢ is whether p, ¢ and r are primes. Since the other properties can be done in
NSPACE(o(logn)) excluding the primality test and Ly vg ¢ NSPACE(S(n)) for all S(n) =
o(logn), then we have as unique remaining possibility that PRIMES ¢ NSPACE(S(n)) for
all S(n) = o(logn). <

» Theorem 9. The strong Goldbach’s conjecture is true or this has an infinite number of
counterexamples.

https://doi.org/10.20944/preprints202002.0379.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

F. Vega 7

Proof. If the strong Goldbach’s conjecture is false, then Lg € REG or L¢ is non-regular
and its complement is infinite, since every finite set is regular and REG is also closed under
complement [24]. However, this implies that the exponentially more succinct version of L,
that is Ly, should be in NSPACE(S(n)) for some S(n) = o(logn), because of REG =
NSPACE(o(loglog n)) and the same algorithm that decides Lg in NSPACE(o(loglogn)) could
be easily transformed into a slightly modified algorithm that decides Ly ¢ in NSPACE(S(n))
for some S(n) = o(logn) [21], [13]. Actually, Lg could be reduced to Lg¢ in a nondetermin-
istic constant space following the idea of steps in Theorem 6 and Lg¢g is the unary version
of Ly due to Lemma 5. As we mentioned before, the standard space translation between
the unary and binary languages actually works for nondeterministic machines with small
space [13]. This means that if some unary language belongs to NSPACE(S(logn)), then
the binary version of that language belongs to NSPACE(S(n)) [13]. It is not possible that
Ly € NSPACE(S(n)) for some S(n) = o(logn), because of PRIMES ¢ NSPACE(S(n))
for all S(n) = o(logn). Certainly, the verification of whether p and ¢ are primes need to
be done in order to accept the elements of this language. Consequently, we obtain that
Lg ¢ REG, since it is not possible that Lg € NSPACE(o(loglogn)) under the result of
Ly ¢ NSPACE(S(n)) for all S(n) = o(logn). In this way, we obtain a contradiction just
assuming that the strong Goldbach’s conjecture is false and Lg € REG. In contraposi-
tion, we have the strong Goldbach’s conjecture is true or this has an infinite number of
counterexamples. |

3.2 Twin prime conjecture
» Definition 10. We define the Dubner’s language Lp as follows:
Lp = {12%"0P0? : n € NAn > 2104 A p and q are t-primes A2 x n =p+ q}.

» Theorem 11. If the Dubner’s conjecture is true, then the Dubner’s language Lp is
non-regular.

Proof. If the Dubner’s conjecture is true, then the Dubner’s language Lp is equal to the
another language L’ defined as follows:

L' = {12"0?*™ . n € NAn > 2104},

We can easily prove that L’ is non-regular using the Pumping lemma for regular languages
as well [26]. <

» Definition 12. We define the verification Dubner’s language Ly p as follows:
Lyp ={(2 xn,p,q) : such that 1**™0P0% € Lp}.

» Definition 13. We define the Dubner’s language with separator Lsp as follows:
Lsp = {0%*"#0P#07 : such that 1**"0P0? € Lp}

where # is the blank symbol.

» Lemma 14. The Dubner’s language with separator Lgp is the unary representation of the
verification Dubner’s language Ly p.

Proof. This is trivially true from the definition of these languages. |

https://doi.org/10.20944/preprints202002.0379.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

8 The Complexity of Number Theory

» Theorem 15. There are infinite even numbers that comply the Dubner’s conjecture.

Proof. If the Dubner’s conjecture is false, then Lp € REG or Lp is non-regular and its
complement is infinite, since every finite set is regular and REG is also closed under com-
plement [24]. However, this implies that the exponentially more succinct version of Lp,
that is Ly p, should be in NSPACE(S(n)) for some S(n) = o(logn), because of REG =
NSPACE(o(loglogn)) and the same algorithm that decides Lp in NSPACE(o(loglogn)) could
be easily transformed into a slightly modified algorithm that decides Ly p in NSPACE(S(n))
for some S(n) = o(logn) [21], [13]. Actually, Lp could be reduced to Lgp in a nondetermin-
istic constant space following the idea of steps in Theorem 6 and Lgp is the unary version of
Ly p due to Lemma 14. As we mentioned before, the standard space translation between
the unary and binary languages actually works for nondeterministic machines with small
space [13]. This means that if some unary language belongs to NSPACE(S(logn)), then
the binary version of that language belongs to NSPACE(S(n)) [13]. It is not possible that
Lyp € NSPACE(S(n)) for some S(n) = o(logn), because of PRIMES ¢ NSPACE(S(n))
for all S(n) = o(logn). Certainly, the verification of whether p and ¢ are t-primes need to
be done in order to accept the elements of this language. Consequently, we obtain that
Lp ¢ REG, since it is not possible that Lp € NSPACE(o(loglogn)) under the result of
Lyp ¢ NSPACE(S(n)) for all S(n) = o(logn). In this way, we obtain a contradiction just
assuming that the Dubner’s conjecture is false and Lp € REG. In contraposition, we have
there are infinite even numbers that comply with the Dubner’s conjecture, since in case of
Lp would be finite, then we obtain that the Dubner’s conjecture is false and Lp € REG
and we prove that is not possible. |

» Lemma 16. The twin prime conjecture is true.

Proof. The Theorem 15 implies that there exists an infinite number of t-primes, and thus
there will be an infinite number of twin prime pairs as well [11]. |

3.3 Beal’'s conjecture

» Definition 17. For a specific choice of exponents (x,y, z) where z,y,z € N and z,y,z > 3,
we define the Beal’s language L as follows:

Lp ={1"0"0" :p,q,r e NAp<qAr=p+q}

where when p =1 then r has not a perfect z-root or r has a perfect z-root and there are no
positive integers p and q such that r = p+ q, p has a perfect x-root and q has a perfect y-root
otherwise when p > 1 then r = p+ q, r has a perfect z-root, p has a perfect x-root and q has
a perfect y-root. Moreover, if p > 1 then for a fized value of v, the greatest common divisor
of p, ¢ and r has the smallest possible value between all the possible numbers p and q with the
following properties: r = p+ q, p has a perfect x-root and q has a perfect y-root. In addition,
if p> 1 then p, ¢ and r are not co-primes.

» Theorem 18. If the Beal’s conjecture is true, then the Beal’s language Lp is non-regular.

Proof. If the Beal’s conjecture is true, then the Beal’s language Lp is equal to the another
language L’ defined as follows:

L'={1"0":neNAn>2}.

We can easily prove that L’ is non-regular using the Pumping lemma for regular languages
[26]. <

https://doi.org/10.20944/preprints202002.0379.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

F. Vega 9

» Definition 19. We define the verification Beal’s language Ly g as follows:
Lyp ={(r,p,q) : such that 1"0P07 € Lp}.

» Definition 20. We define the Beal’s language with separator Lsp as follows:
Lgp = {0"#0P#07 : such that 1"0P07 € Lp}

where F# is the blank symbol.

» Lemma 21. The Beal’s language with separator Lgp is the unary representation of the
verification Beal’s language Ly g.

Proof. This is trivially true from the definition of these languages. <
» Theorem 22. coLyp ¢ 1-NSPACE(S(n)) for all S(n) = o(logn).

Proof. The complement coLy g must check the factorization into prime numbers or the
greatest common divisor in order to prove that the three numbers are co-primes, since the
greatest common divisor can in principle be computed by determining the prime factorizations
of the three numbers [15]. Certainly, coLy g should contain the possible counterexamples
of the Beal’s conjecture for the chosen exponents (z,y, z) in coLyg. The COMPOSITE
problem is the complement of PRIM ES language. Indeed, the computation of the greatest
common divisor cannot be computed in 1-NSPACE(S(n)) for some S(n) = o(logn), because
of this would imply that the COMPOSITE problem is in 1-NSPACE(S(n)) for some
S(n) = o(logn) as well.

Certainly if this could be true, then we can go from the numbers 2 to n — 1 and check
whether the greatest common divisor with n is not 1 and decide whether n is composite.
This could be nondeterministically done on input n just choosing arbitrarily another number
lesser than n and greater than 1, but instead of putting in the work tapes, then this will put
with n in the output tape just using constant space in one-way. After that, we use the space
composition reduction just using the previous output of n and some 2 < i <n —1 into a
new nondeterministic Turing machine that would compute the greatest common divisor in
1-NSPACE(S(n)) for some S(n) = o(logn) using (n,%) as input [24]. Since I-NSPACE(S(n))
for some S(n) = o(logn) is closed under 1-NSPACE-reductions with constant space, then
the whole computation could be done in 1-NSPACE(S(n)) for some S(n) = o(logn).

However, this would be a contradiction according to Theorem 8, since the language
PRIMES ¢ NSPACE(S(n)) for all S(n) = o(logn). The reason is because of NSPACE(S(n))
is closed under complement for S(n) > logn [21]. Hence, if PRIMES ¢ NSPACE(S(n))
for all S(n) = o(logn), then COMPOSITE ¢ NSPACE(S(n)) for all S(n) = o(logn)
[21]. Furthermore, if COMPOSITE ¢ NSPACE(S(n)) for all S(n) = o(logn), then
COMPOSITE ¢ 1-NSPACE(S(n)) for all S(n) = o(logn) [21]. In addition, the integer
factorization cannot be done in 1-NSPACE(S(n)) for some S(n) = o(logn), due to this needs
to check whether the composition of factors are solely composed of prime numbers. Since
coLy p depends mostly on the factorization into prime numbers or the computation of the
greatest common divisor in order to accept its elements, then coLy g ¢ 1-NSPACE(S(n)) for
all S(n) = o(logn). <

» Theorem 23. The Beal’s conjecture is true.

Proof. If the Beal’s conjecture is false, then coLp € REG or coLp is non-regular and is infin-
ite, since every finite set is regular and REG is also closed under complement [24]. However,

https://doi.org/10.20944/preprints202002.0379.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

10 The Complexity of Number Theory

this implies that the exponentially more succinct version of coL g, that is coLy g, should be
in 1-NSPACE(S(n)) for some S(n) = o(logn), because of REG = 1-NSPACE(o(loglogn))
and the same algorithm that decides coLp in 1-NSPACE(o(loglogn)) could be easily trans-
formed into a slightly modified algorithm that decides coLy g in 1-NSPACE(S(n)) for some
S(n) = o(logn) [21], [13]. Actually, coLp could be reduced to coLgp in a nondeterministic
constant space following the idea of steps in Theorem 6 and coLgp is the unary version of
coLy g due to Lemma 21. As we mentioned before, the standard space translation between
the unary and binary languages actually works for nondeterministic machines with small
space [13]. This means that if some unary language belongs to 1-NSPACE(S(logn)), then
the binary version of that language belongs to 1-NSPACE(S(n)) [13]. In this way, we obtain
that coLp ¢ REG, since it is not possible that coLp € 1-NSPACE(o(loglogn)) under the
result of coLy g ¢ 1-NSPACE(S(n)) for all S(n) = o(logn) as a consequence of Theorem 22.
Consequently, we obtain a contradiction just assuming that the Beal’s conjecture is false and
coLp € REG. In contraposition, we have the Beal’s conjecture is true or this has an infinite
number of counterexamples both for a specific choice of exponents (z,y, z), since coLp uses a
specific choice of exponents (z,y, z). The Darmon-Granville theorem uses Faltings’s theorem
to show that for every specific choice of exponents (x,y, z), there are at most finitely many
co-prime solutions for (A, B, C) [9], [12]. In conclusion, we obtain that necessarily the Beal’s
conjecture is true for this specific choice of exponents (x,y, z) as the remaining only option.
Since we took arbitrarily the exponents (x,y, z), then the Beal’s conjecture will be true for
every specific choice of exponents (z,y, 2). <

3.4 Riemann hypothesis

» Definition 24. We define the Robin’s language L as follows:

Lp={a"b™c™ :ne NAn>5040 Am; = Zd/\mQ = [e7 x n x loglogn]}.
d|n

» Theorem 25. If the Riemann hypothesis is true, then the Robin’s language Lg is non-
reqular.

Proof. We can easily prove this using the Pumping lemma for regular languages [26]. <«
» Definition 26. We define the verification Robin’s language Ly g as follows:
Lygr = {(n,my,msy) : such that a™b™ ™ € Lg}.
» Definition 27. We define the Robin’s language with separator Lgr as follows:
Lsr = {0"#0™ #0™2 : such that a"b™'c™? € Lg}
where # is the blank symbol.

» Lemma 28. The Robin’s language with separator Lgg is the unary representation of the
verification Robin’s language Ly .

Proof. This is trivially true from the definition of these languages. <

» Theorem 29. Ly ¢ 1-NSPACE(S(n)) for all S(n) = o(logn).

https://doi.org/10.20944/preprints202002.0379.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

F. Vega 11

Proof. The language Ly g cannot be computed in 1-NSPACE(S(n)) for some S(n) = o(logn),
because of this would imply that the PRIMES problem is in 1-NSPACE(S(n)) for some
S(n) = o(logn) as well. Certainly if this could be true, then we can find mg = [e7 x
n x loglogn] and check whether the triple (n,n + 1,m2) is an element of Ly g and decide
whether n is prime. Indeed, a number n is prime if and only if the sum of its divisors is
n + 1 [15]. This could be nondeterministically done on input n just choosing arbitrarily
another number mo, but instead of putting in the work tapes, then this will put with n
and n + 1 in the output tape just using constant space in one-way. We are able to do this,
because of msy should be polynomially bounded by the input n. After that, we use the
space composition reduction just using the previous output of n, n + 1 and some ms into
a new nondeterministic Turing machine that would decide whether the instance belongs
to Lyg in I-NSPACE(S(n)) for some S(n) = o(logn) using (n,n + 1,mz) as input [24].
Since 1-NSPACE(S(n)) for some S(n) = o(logn) is closed under 1-NSPACE-reductions
with constant space, then the whole computation could be done in 1-NSPACE(S(n)) for
some S(n) = o(logn). However, this would be a contradiction according to Theorem
8, since the language PRIMES ¢ NSPACE(S(n)) for all S(n) = o(logn). Certainly, if
PRIMES ¢ NSPACE(S(n)) for all S(n) = o(logn), then PRIMES ¢ 1-NSPACE(S(n))
for all S(n) = o(logn) [21]. Consequently, we obtain that Lyr ¢ 1-NSPACE(S(n)) for all
S(n) = o(logn). <

» Theorem 30. The Riemann hypothesis is true.

Proof. If the Riemann hypothesis is false, then Lgr € REG or Lg is non-regular and
its complement is infinite, since every finite set is regular and REG is also closed un-
der complement [24]. However, this implies that the exponentially more succinct ver-
sion of Lg, that is Ly g, should be in 1-NSPACE(S(n)) for some S(n) = o(logn), be-
cause of REG = I1-NSPACE(o(loglogn)) and the same algorithm that decides Lg in
1-NSPACE(o(loglogn)) could be easily transformed into a slightly modified algorithm that
decides Ly g in 1-NSPACE(S(n)) for some S(n) = o(logn) [21], [13]. Actually, Lg could
be reduced to Lggr in a nondeterministic constant space following the idea of steps in
Theorem 6 and Lgg is the unary version of Ly g due to Lemma 28. As we mentioned
before, the standard space translation between the unary and binary languages actually
works for nondeterministic machines with small space [13]. This means that if some unary
language belongs to 1-NSPACFE(S(logn)), then the binary version of that language belongs
to 1-NSPACE(S(n)) [13]. In this way, we obtain that L ¢ REG, since it is not possible
that Lr € 1-NSPACE(o(loglogn)) under the result of Lyp ¢ 1-NSPACE(S(n)) for all
S(n) = o(logn) as a consequence of Theorem 29. Consequently, we obtain a contradiction
just assuming that the Riemann hypothesis is false and Lr € REG. Hence, we obtain that
the Riemann hypothesis is true or the Robin’s inequality has an infinite number of counter-
examples. However, the asymptotic growth rate of the sigma function can be expressed by
[19]:

: o(n)
limsup——— =e¢
n—oo M X loglogn

~

where lim sup is the limit superior and o(n) = djn @ In this way, if the Robin’s inequality
has an infinite number of counterexamples, then the previous limit superior should be false.
Since this is a previous checked result, then we have the Riemann hypothesis is true as the
remaining only option. |

https://doi.org/10.20944/preprints202002.0379.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

12 The Complexity of Number Theory

4 Conclusions

4.1 Goldbach’s conjecture

Statistical considerations that focus on the probabilistic distribution of prime numbers present
informal evidence in pos of the strong conjecture for sufficiently large integers: The greater
the integer, the more ways there are available for that number to be represented as the sum of
two other numbers, and the more “likely” it becomes that at least one of these representations
consists entirely of primes. In this way, the statement that the strong Goldbach’s conjecture
has an infinite number of counterexamples is certainly “unlikely”. To sum up, this work
represents a big step forward in showing the strong Goldbach’s conjecture should be really
true.

4.2 Beal’s conjecture

Peter Norvig, Director of Research at Google, have conducted a series of numerical searches
for counterexamples to Beal’s conjecture. Among his results, he excluded all possible solutions
having each of x,y, z = 7 and each of A, B, C' = 250,000, as well as possible solutions having
each of z,y,z = 100 and each of A, B,C = 10,000 [23]. We conclude announcing the failure
in the prolonged search of counterexamples since the Beal’s conjecture is true.

Fermat’s Last Theorem established that A™ + B™ = C™ has no solutions for n > 2 for
positive integers A, B, and C. If any solutions had existed to Fermat’s Last Theorem, then
by dividing out every common factor, there would also exist solutions with A, B, and C
co-prime which would mean they do not have a common prime factor [15]. Hence, Fermat’s
Last Theorem can be seen as a special case of the Beal’s conjecture restricted to x =y = 2
[4].

The Fermat-Catalan conjecture is that A* + BY = C* has only finitely many solutions
with A, B, and C' being positive integers with no common prime factor and x, y, and z being
positive integers satisfying % + % + % < 1 [33]. Beal’s conjecture can be restated as “All
Fermat-Catalan conjecture solutions will use 2 as an exponent”.

—— References

1 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics,
160(2):781-793, 2004. doi:10.4007/annals.2004.160.781.

2 Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algorithms.
Pearson Education India, 1974.

3 Sanjeev Arora and Boaz Barak. Computational complezity: a modern approach. Cambridge
University Press, 2009.

4 Michael A. Bennett, Imin Chen, Sander R. Dahmen, and Soroosh Yazdani. Generalized Fermat
Equations: A Miscellany, June 2014. Available at http://people.math.sfu.ca/~ichen/pub/
BeChDaYa.pdf. Retrieved 21 February 2020.

5 Frits Beukers. The generalized fermat equation, January 2006. Available at http://www.
staff.science.uu.nl/~beukel06/Fermatlectures.pdf. Retrieved 21 February 2020.

6 Jing-run Chen. On the Representation of a Large Even Integer as the Sum of a Prime and the
Product of Two Primes at Most. Sci. Sinica, 16:157-176, 1973.

7 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3 edition, 2009.

8 Richard Crandall and Carl Pomerance. Prime Numbers: A Computational Perspective.
Springer, 2000.

http://dx.doi.org/10.4007/annals.2004.160.781
http://people.math.sfu.ca/~ichen/pub/BeChDaYa.pdf
http://people.math.sfu.ca/~ichen/pub/BeChDaYa.pdf
http://www.staff.science.uu.nl/~beuke106/Fermatlectures.pdf
http://www.staff.science.uu.nl/~beuke106/Fermatlectures.pdf
https://doi.org/10.20944/preprints202002.0379.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2020 d0i:10.20944/preprints202002.0379.v3

F. Vega 13

9 Henri Darmon and Andrew Granville. On the equations z™ = F(z,y) and AzP + By? = Cz".
Bulletin of the London Mathematical Society, 27:513-543, 1995.

10 Leonard Eugene Dickson. History of the Theory of Numbers: Divisibility and Primality,
volume 1. New York, Dover, 2005.

11 Harvey Dubner. Twin prime conjectures. JOURNAL OF RECREATIONAL MATHEMATICS,
30(3):199-205, 2000.

12 Noam D. Elkies. The ABC’s of Number Theory. The Harvard College Mathematics Review,
1(1), 2007.

13 Viliam Geffert and Dana Pardubskd. Unary Coded NP-Complete Languages in ASPACE (log
log n). International Journal of Foundations of Computer Science, 24(07):1167-1182, 2013.
d0i:10.1007/978-3-642-31653-1_16.

14 Richard K. Guy. Unsolved Problems in Number Theory. New York, Springer-Verlag, 3 edition,
2004.

15 Godfrey Harold Hardy and Edward Maitland Wright. An Introduction to the Theory of
Numbers. Oxford University Press, 1979.

16 Harald A. Helfgott. Minor arcs for Goldbach’s problem. arXiv preprint arXiv:1205.5252, 2012.

17 Harald A. Helfgott. Major arcs for Goldbach’s theorem. arXiv preprint arXiv:1305.2897, 2013.

18 Martin Kutrib, Julien Provillard, Gy6rgy Vaszil, and Matthias Wendlandt. Deterministic
One-Way Turing Machines with Sublinear Space. Fundamenta Informaticae, 136(1-2):139-155,
2015. doi:10.3233/FI-2015-1147.

19 Jeffrey C. Lagarias. An elementary problem equivalent to the riemann hypothesis. The
American Mathematical Monthly, 109(6):534-543, 2002.

20 R. Daniel Mauldin. A Generalization of Fermat’s Last Theorem: The Beal Conjecture and
Prize Problem. Notices of the AMS, 44(11):1436-1439, 1997.

21 Pascal Michel. A survey of space complexity. Theoretical computer science, 101(1):99-132,
1992. d0i:10.1016/0304-3975(92)90151-5.

22 Abderrahmane Nitaj. On A Conjecture of Erdos on 3-Powerful Numbers. Bulletin of the
London Mathematical Society, 27(4):317-318, 1995.

23 Peter Norvig. Beal’s Conjecture: A Search for Counterexamples, October 2015. Available at
http://norvig.com/beal.html. Retrieved 21 February 2020.

24 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

25 Bjorn Poonen, Edward F. Schaefer, and Michael Stoll. Twists of 2(7) and primitive solutions
to 2 + y® = 27. Duke Mathematical Journal, 137:103-158, 2005.

26 Michael O. Rabin and Dana Scott. Finite automata and their decision problems. IBM journal
of research and development, 3(2):114-125, 1959. doi:10.1147/rd.32.0114.

27 Peter Sarnak. Problems of the millennium: The riemann hypothesis (2004), April
2005. Available at http://www.claymath.org/library/annual_report/ar2004/04report_
prizeproblem.pdf. Retrieved 1 March 2020.

28 John C. Shepherdson. The Reduction of Two-Way Automata to One-Way Automata. [IBM
Journal of Research and Development, 3(2):198-200, 1959. doi:10.1147/rd.32.0198.

29 Samir Siksek and Michael Stoll. The generalised fermat equation 22 4+ y® = 2'5. Archiv der
Mathematik, 102:411-421, 2013.

30 Joseph H. Silverman. A Friendly Introduction to Number Theory. Pearson Education, Inc., 4
edition, 2012.

31 Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course
Technology Boston, 2006.

32 Ivan M. Vinogradov. Representation of an Odd Number as a Sum of Three Primes. Comptes
Rendus (Doklady) de I’Académie des Sciences de I’USSR, 15:169-172, 1937.

33 David G. Wells. Prime Numbers, The Most Mysterious Figures in Math. John Wiley & Sons,
Inc., 2005.

34 Andrew Wiles. Modular elliptic curves and Fermat’s Last Theorem. Annals of Mathematics,
141(3):443-551, 1995. doi:0.2307/2118559.

http://dx.doi.org/10.1007/978-3-642-31653-1_16
http://dx.doi.org/10.3233/FI-2015-1147
http://dx.doi.org/10.1016/0304-3975(92)90151-5
http://norvig.com/beal.html
http://dx.doi.org/10.1147/rd.32.0114
http://www.claymath.org/library/annual_report/ar2004/04report_prizeproblem.pdf
http://www.claymath.org/library/annual_report/ar2004/04report_prizeproblem.pdf
http://dx.doi.org/10.1147/rd.32.0198
http://dx.doi.org/0.2307/2118559
https://doi.org/10.20944/preprints202002.0379.v3

