

# The Riemann Hypothesis

Frank Vega

*Abstract.* Let's define  $\delta(x) = (\sum_{q \leq x} \frac{1}{q} - \log \log x - B)$ , where  $B \approx 0.2614972128$  is the Meissel-Mertens constant. The Robin theorem states that  $\delta(x)$  changes sign infinitely often. Let's also define  $S(x) = \theta(x) - x$ , where  $\theta(x)$  is the Chebyshev function. It is known that  $S(x)$  changes sign infinitely often. Using the Nicolas theorem, we prove that when the inequalities  $\delta(x) \leq 0$  and  $S(x) \geq 0$  are satisfied for some number  $x \geq 127$ , then the Riemann Hypothesis should be false. However, the Mertens second theorem states that  $\lim_{x \rightarrow \infty} \delta(x) = 0$ . Moreover, we know that  $\lim_{x \rightarrow \infty} S(x) = 0$ . In this way, this work could mean a new step forward in the direction for finally solving the Riemann Hypothesis.

## 1 Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part  $\frac{1}{2}$  [1]. Let  $N_n = 2 \times 3 \times 5 \times 7 \times 11 \times \dots \times p_n$  denotes a primorial number of order  $n$  such that  $p_n$  is the  $n^{\text{th}}$  prime number. Say  $\text{Nicolas}(p_n)$  holds provided

$$\prod_{q|N_n} \frac{q}{q-1} > e^\gamma \times \log \log N_n.$$

The constant  $\gamma \approx 0.57721$  is the Euler-Mascheroni constant,  $\log$  is the natural logarithm, and  $q | N_n$  means the prime number  $q$  divides to  $N_n$ . The importance of this property is:

**Theorem 1.1** [6], [7].  $\text{Nicolas}(p_n)$  holds for all prime number  $p_n > 2$  if and only if the Riemann Hypothesis is true.

In mathematics, the Chebyshev function  $\theta(x)$  is given by

$$\theta(x) = \sum_{p \leq x} \log p$$

where  $p \leq x$  means all the prime numbers  $p$  that are less than or equal to  $x$ . We use the following property of the Chebyshev function:

**Theorem 1.2** [10]. For  $x > 1$ :

$$\theta(x) = (1 + \varepsilon(x)) \times x$$

where  $\varepsilon(x) < \frac{1}{2 \times \log x}$ .

---

2010 Mathematics Subject Classification: Primary 11M26; Secondary 11A41, 11A25.

Keywords: Riemann hypothesis, Nicolas theorem, Chebyshev function, prime numbers.

Let's define  $S(x) = \theta(x) - x$ . We know this:

**Theorem 1.3** [3].

$$\lim_{x \rightarrow \infty} \frac{\theta(x)}{x} = 1,$$

which it could be restated as:

$$\lim_{x \rightarrow \infty} S(x) = 0.$$

Nicolas also proves that

**Theorem 1.4** [7]. For  $x \geq 121$ :

$$\log \log \theta(x) \geq \log \log x + \frac{S(x)}{x \times \log x} - \frac{S(x)^2}{x^2 \times \log x}.$$

It is a known result that:

**Theorem 1.5** [8].  $S(x)$  changes sign infinitely often.

The famous Mertens paper provides the statement:

**Theorem 1.6** [5].

$$\log \left( \prod_{q \leq x} \frac{q}{q-1} \right) = \sum_{q \leq x} \frac{1}{q} + \gamma - B - \sum_{k=2}^{\infty} \left( \frac{1}{k} \times \sum_{q>x} \frac{1}{q^k} \right)$$

where  $B \approx 0.2614972128$  is the Meissel-Mertens constant.

Let's define:

$$\delta(x) = \left( \sum_{q \leq x} \frac{1}{q} - \log \log x - B \right).$$

Robin theorem states the following result:

**Theorem 1.7** [9].  $\delta(x)$  changes sign infinitely often.

In addition, the Mertens second theorem states that:

**Theorem 1.8** [5].

$$\lim_{x \rightarrow \infty} \delta(x) = 0.$$

Putting all together yields the proof that when the inequalities  $\delta(x) \leq 0$  and  $S(x) \geq 0$  are satisfied for some number  $x \geq 127$ , then the Riemann Hypothesis should be false.

## 2 Central Lemma

**Lemma 2.1** For  $x \geq 127$ :

$$\frac{S(x)}{x} < 1.$$

**Proof** By the theorem 1.2,  $\forall x \geq 127$ :

$$\begin{aligned} \frac{S(x)}{x} &= \frac{\theta(x) - x}{x} \\ &= \frac{(1 + \varepsilon(x)) \times x - x}{x} \\ &= \frac{x \times ((1 + \varepsilon(x)) - 1)}{x} \\ &= (1 + \varepsilon(x) - 1) \\ &= \varepsilon(x) \\ &< \frac{1}{2 \times \log x} \\ &< 1. \end{aligned}$$

■

## 3 Main Theorem

**Theorem 3.1** If the inequalities  $\delta(x) \leq 0$  and  $S(x) \geq 0$  are satisfied for some number  $x \geq 127$ , then the Riemann Hypothesis should be false.

**Proof** For some number  $x \geq 127$ , suppose that simultaneously Nicolas( $p$ ) holds and the inequalities  $\delta(x) \leq 0$  and  $S(x) \geq 0$  are satisfied, where  $p$  is the greatest prime number such that  $p \leq x$ . If Nicolas( $p$ ) holds, then

$$\prod_{q \leq x} \frac{q}{q-1} > e^\gamma \times \log \theta(x).$$

We apply the logarithm to the both sides of the inequality:

$$\log \left( \prod_{q \leq x} \frac{q}{q-1} \right) > \gamma + \log \log \theta(x).$$

We use that theorem 1.6:

$$\log \left( \prod_{q \leq x} \frac{q}{q-1} \right) = \sum_{q \leq x} \frac{1}{q} + \gamma - B - \sum_{k=2}^{\infty} \left( \frac{1}{k} \times \sum_{q>x} \frac{1}{q^k} \right).$$

Besides, we use that theorem 1.4:

$$\log \log \theta(x) \geq \log \log x + \frac{S(x)}{x \times \log x} - \frac{S(x)^2}{x^2 \times \log x}.$$

Putting all together yields the result:

$$\begin{aligned} & \sum_{q \leq x} \frac{1}{q} + \gamma - B - \sum_{k=2}^{\infty} \left( \frac{1}{k} \times \sum_{q>x} \frac{1}{q^k} \right) \\ & > \gamma + \log \log \theta(x) \\ & \geq \gamma + \log \log x + \frac{S(x)}{x \times \log x} - \frac{S(x)^2}{x^2 \times \log x}. \end{aligned}$$

Let distribute it and remove  $\gamma$  from the both sides:

$$\sum_{q \leq x} \frac{1}{q} - \log \log x - B - \sum_{k=2}^{\infty} \left( \frac{1}{k} \times \sum_{q>x} \frac{1}{q^k} \right) > \frac{1}{\log x} \times \left( \frac{S(x)}{x} - \frac{S(x)^2}{x^2} \right).$$

We know that  $\delta(x) = \sum_{q \leq x} \frac{1}{q} - \log \log x - B$ . Moreover, we know that

$$\left( \frac{S(x)}{x} - \frac{S(x)^2}{x^2} \right) \geq 0.$$

Certainly, according to the lemma 2.1, we have that  $\frac{S(x)}{x} < 1$ . Consequently, we obtain that  $\frac{S(x)}{x} \geq \frac{S(x)^2}{x^2}$  under the assumption that  $S(x) \geq 0$ , since for every real number  $0 \leq x < 1$ , the inequality  $x \geq x^2$  is always satisfied. To sum up, we would have that

$$\delta(x) - \sum_{k=2}^{\infty} \left( \frac{1}{k} \times \sum_{q>x} \frac{1}{q^k} \right) > 0$$

because of

$$\frac{1}{\log x} \times \left( \frac{S(x)}{x} - \frac{S(x)^2}{x^2} \right) \geq 0.$$

However, the inequality

$$\delta(x) - \sum_{k=2}^{\infty} \left( \frac{1}{k} \times \sum_{q>x} \frac{1}{q^k} \right) > 0$$

is never satisfied when  $\delta(x) \leq 0$ . By contraposition, Nicolas( $p$ ) does not hold when  $\delta(x) \leq 0$  and  $S(x) \geq 0$  are satisfied for some number  $x \geq 127$ , where  $p$  is the greatest prime number such that  $p \leq x$ . In conclusion, if Nicolas( $p$ ) does not hold for some prime number  $p \geq 127$ , then the Riemann Hypothesis should be false due to the theorem 1.1.  $\blacksquare$

## 4 Discussion

The Riemann Hypothesis has been qualified as the Holy Grail of Mathematics [4]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the first correct solution [2]. In the theorem 3.1, we show that if the inequalities  $\delta(x) \leq 0$  and

$S(x) \geq 0$  are satisfied for some number  $x \geq 127$ , then the Riemann Hypothesis should be false. Nevertheless, the well-known theorem 1.8 states that

$$\lim_{x \rightarrow \infty} \delta(x) = 0.$$

In addition, the theorem 1.3 states that

$$\lim_{x \rightarrow \infty} S(x) = 0.$$

Indeed, we think this work could help to the scientific community in the global efforts for trying to solve this outstanding and difficult problem.

## References

- [1] Peter B. Borwein, Stephen Choi, Brendan Rooney, and Andrea Weirathmueller. *The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike*, volume 27. Springer Science & Business Media, 2008.
- [2] Keith J. Devlin. *The Millennium Problems: The Seven Greatest Unsolved Mathematical Puzzles Of Our Time*, volume 100. Basic Books New York, NY (USA), 2002.
- [3] Thomas H. Grönwall. Some asymptotic expressions in the theory of numbers. *Transactions of the American Mathematical Society*, 14(1):113–122, 1913. doi:10.2307/1988773.
- [4] Gilles Lachaud. L'hypothese de Riemann: le Graal des mathématiciens. *La Recherche Hors-Série*, (20), 2005.
- [5] Franz Mertens. Ein Beitrag zur analytischen Zahlentheorie. *J. reine angew. Math.*, 1874(78):46–62, 1874. URL: <https://doi.org/10.1515/crll.1874.78.46>, doi:10.1515/crll.1874.78.46.
- [6] Jean-Louis Nicolas. Petites valeurs de la fonction d'Euler et hypothese de Riemann. *Séminaire de Théorie des nombres DPP, Paris*, 82:207–218, 1981.
- [7] Jean-Louis Nicolas. Petites valeurs de la fonction d'Euler. *Journal of number theory*, 17(3):375–388, 1983. doi:10.1016/0022-314X(83)90055-0.
- [8] David J Platt and Timothy S Trudgian. On the first sign change of  $\theta(x) - x$ . *Math. Comput.*, 85(299):1539–1547, 2016.
- [9] Guy Robin. Sur l'ordre maximum de la fonction somme des diviseurs. *Séminaire Delange-Pisot-Poitou Paris*, 82:233–242, 1981.
- [10] J. Barkley Rosser and Lowell Schoenfeld. Approximate Formulas for Some Functions of Prime Numbers. *Illinois Journal of Mathematics*, 6(1):64–94, 1962. doi:10.1215/ijm/1255631807.

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Email: [vega.frank@gmail.com](mailto:vega.frank@gmail.com)