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The Riemann Hypothesis
Frank Vega

Abstract. Let’s define 6(z) = (3 ,<, % —loglogz — B), where B &~ 0.2614972128 is the
Meissel-Mertens constant. The Robin theorem states that d(x) changes sign infinitely
often. Let’s also define S(z) = 6(x) — =, where 0(x) is the Chebyshev function. It is
known that S(z) changes sign infinitely often. Using the Nicolas theorem, we prove that
when the inequalities §(z) < 0 and S(z) > 0 are satisfied for some number = > 127,
then the Riemann Hypothesis should be false. However, the Mertens second theorem
states that limg— o0 6(x) = 0. Moreover, we know that limgz— o0 S(x) = 0. In this way,
this work could mean a new step forward in the direction for finally solving the Riemann
Hypothesis.

1 Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and complex
numbers with real part  [1]. Let N;, =2 x 3 x5 x 7 x 11 x -+ X p,, denotes
a primorial number of order n such that p, is the n*"* prime number. Say
Nicolas(p;,) holds provided

H 4 > e7 x loglog N,.

-1
QINn q

The constant v ~ 0.57721 is the Euler-Mascheroni constant, log is the nat-
ural logarithm, and ¢ | N,, means the prime number ¢ divides to N,,. The
importance of this property is:

Theorem 1.1  [6], [7]. Nicolas(p,) holds for all prime number p, > 2 if
and only if the Riemann Hypothesis is true.

In mathematics, the Chebyshev function 0(x) is given by
f(z) = logp
p<z

where p < x means all the prime numbers p that are less than or equal to x.
We use the following property of the Chebyshev function:

Theorem 1.2  [10]. For z > 1:

b(a) = (1+ (@) x

1

where €(x) < 3757
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Let’s define S(z) = 6(z) — . We know this:

Theorem 1.3  [3].

T(CONY

r—o00 I
which it could be restated as:

lim S(z) = 0.

Nicolas also proves that

Theorem 1.4  [7]. For x > 121:
S(x) __ S@)?

zxlogr 22 xlogx’

loglog6(x) > loglogx +

It is a known result that:
Theorem 1.5  [8]. S(x) changes sign infinitely often.
The famous Mertens paper provides the statement:

Theorem 1.6  [5].
q 1 (1 1
o (I, ) - X022 (15 )
g<z q<z k=2 >z

where B ~ 0.2614972128 is the Meissel-Mertens constant.

Let’s define:
1
o(x) = — —loglogz — B

Robin theorem states the following result:
Theorem 1.7  [9]. 6(x) changes sign infinitely often.
In addition, the Mertens second theorem states that:

Theorem 1.8  [5].
mli}n;o d(z) = 0.
Putting all together yields the proof that when the inequalities 6(z) < 0
and S(xz) > 0 are satisfied for some number z > 127, then the Riemann
Hypothesis should be false.
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2 Central Lemma

Lemma 2.1 Forx > 127:

Proof By the theorem 1.2, Vz > 127:

S(x) :0(x)—x

’ :(lfe(x))xxfx
_ox (Ut - 1)
:(1+5(m)a—71)
=e(x)

1

< 2 x logx
<1

3 Main Theorem

Theorem 3.1 If the inequalities §(x) < 0 and S(x) > 0 are satisfied for
some number x > 127, then the Riemann Hypothesis should be false.

Proof For some number x > 127, suppose that simultaneously Nicolas(p)
holds and the inequalities §(z) < 0 and S(z) > 0 are satisfied, where p is the
greatest prime number such that p < z. If Nicolas(p) holds, then

H 1S erx log 0(x).
qg—1
q<z

We apply the logarithm to the both sides of the inequality:
log H LA N v + loglog 6(x).

quq—l

We use that theorem 1.6:
q 1 (1 1
o (%5 ) =S g 053 (2 x).
q<z q<z k=2 >z

Besides, we use that theorem 1.4:

S(x) S

zxlogx 22 xlogx’

loglog6(x) > loglogx +
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Putting all together yields the result:

e )
> 7 + loglog 0(z)
S(x) S(z)?

> logl — .
=78 ng+xxlogx 22 x log x

Let distribute it and remove ~ from the both sides:

1 - S(z)  S(z)?
quoglogmBZ( Z ) logmx( ;)7 552)>

q<z k=2 q>w

We know that 6(z) = Zq<x ; —loglogxz — B. Moreover, we know that

(St _sePys,

T 2

S(

Certainly, according to the lemma 2.1, we have that Tm) < 1. Consequently,

2
we obtain that @ > SSCLZ) under the assumption that S(z) > 0, since for
every real number 0 < x < 1, the inequality > 2 is always satisfied. To
sum up, we would have that

= (1 1
— - —1>0
(2 7)

because of

log x

However, the inequality

oo
X (1)
k=2 q>1:

is never satisfied when §(z) < 0. By contraposition, Nicolas(p) does not hold
when d(z) < 0 and S(x) > 0 are satisfied for some number = > 127, where
p is the greatest prime number such that p < x. In conclusion, if Nicolas(p)
does not hold for some prime number p > 127, then the Riemann Hypothesis
should be false due to the theorem 1.1. [ ]

4 Discussion

The Riemann Hypothesis has been qualified as the Holy Grail of Mathemat-
ics [4]. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US 1,000,000 prize for the first correct so-
lution [2]. In the theorem 3.1, we show that if the inequalities d(z) < 0 and
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S(zx) > 0 are satisfied for some number x > 127, then the Riemann Hypothesis
should be false. Nevertheless, the well-known theorem 1.8 states that

lim §(z) = 0.
xr—r 00

In addition, the theorem 1.3 states that
lim S(z) = 0.

T—r 00
Indeed, we think this work could help to the scientific community in the global
efforts for trying to solve this outstanding and difficult problem.
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