Preprint
Article

An Evolutionary RGD Motif in the Spike Protein of SARS-CoV-2 may Serve as a Potential High Risk Factor for Virus Infection?

Altmetrics

Downloads

2119

Views

2374

Comments

0

This version is not peer-reviewed

Submitted:

27 February 2020

Posted:

28 February 2020

You are already at the latest version

Alerts
Abstract
Pneumonia caused by a new coronavirus SARS-CoV-2 has caused serious harm to people's lives and health in Wuhan, China. By February 26, 2020, over 80,000 people were infected and 2,814 died from the infection. The initial route of infection is the binding of the spike protein (S protein) of the virus to the angiotensin-converting enzyme 2 (ACE2). From bioinformatics analysis, we found that the S protein of SARS-CoV-2 produced an evolutionary mutation of K403R compared with the S protein of SARS-CoV, forming an adjacent RGD motif at the interaction surface. As the RGD motif is considered as a ligand for many cell surface integrins, we proposed that the binding of S protein of SARS-CoV-2 with integrins may facilitate the infection process of the virus. Therefore, high-throughput virtual screening was performed by choosing the key residues of S protein interface of SARS-CoV-2 and the adjacent RGD motif as potential binding site, to search for the potential agents targeting interaction of S protein of SARS-CoV-2 with both ACE2 and integrins as potential therapeutic drugs. Various libraries including the FDA-approved drugs etc. were screened, and Nadide, Losartan, 9'''-Methyllithospermate B and Leonurine etc. were identified as representative potential drugs candidate for COVID-19.
Keywords: 
Subject: Medicine and Pharmacology  -   Pathology and Pathobiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated