

1

2 **Potential for Developing the SARS-CoV Receptor Binding Domain Recombinant Protein (RBD)**
3 **as a Heterologous Human Vaccine for SARS-CoV-2**

4

5 Wen-Hsiang Chen^{a,c*}, Peter J Hotez^{a,b,c} Maria Elena Bottazzi^{a,b,c*}

6 ^aTexas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and

7 ^bMolecular Virology & Microbiology, ^cNational School of Tropical Medicine, Baylor College of
8 Medicine, Houston, TX, USA

9

10 *Corresponding author: Wen-Hsiang Chen (Wen-Hsiang.Chen@bcm.edu) and Maria Elena
11 Bottazzi (bottazzi@bcm.edu)

12

13 **Abstract**

14 A SARS-CoV receptor-binding domain (RBD) recombinant protein was developed and
15 manufactured under current good manufacturing practices in 2016. The protein known as
16 RBD219-N1 when formulated on Alhydrogel®, induced high-level neutralizing antibodies and
17 protective immunity with low immunopathology in mice after a homologous virus challenge with
18 SARS-CoV (MA15 strain). In this report, we examined published evidence in support of whether
19 the SARS-CoV RBD219-N1 could be repurposed as a heterologous vaccine for SARS-CoV-2. Our
20 findings include evidence that convalescent serum from SARS-CoV patients can neutralize SARS-
21 CoV-2. Additionally, a review of published studies using monoclonal antibodies (mabs) raised
22 against SARS-CoV RBD and that neutralize the SARS-CoV virus *in vitro*, finds that some of these
23 mabs bind to the receptor-binding motif (RBM) within the RBD, while others bind to domains
24 outside this region within RBD. This information is relevant and supports the possibility of
25 developing a heterologous SARS-CoV RBD vaccine, especially due to the finding that the overall
26 high amino acid similarity (82%) between SARS-CoV and SARS-CoV-2 spike and RBD domains is
27 not reflected in RBM amino acid similarity (59%). However, the high sequence similarity (94%) in
28 the region outside of RBM offers the potential of conserved neutralizing epitopes between both
29 viruses.

30

31 **Keywords:** Heterologous vaccine, receptor-binding domain, subunit vaccine, coronavirus, COVID-
32 19, SARS, SARS-CoV-2

33 **Introduction**

34 Coronavirus disease 2019, or COVID-19¹, is an emerging disease caused by severe acute
35 respiratory syndrome coronavirus 2 (SARS-CoV-2). Similar to SARS coronavirus (SARS-CoV), SARS-
36 CoV-2 can cause severe respiratory illness and significant mortality among those over 60
37 years or with chronic conditions². With an estimated reproductive number (R_0) of 2.24- 3.58³,
38 the outbreak originated from Wuhan, China quickly spread across China and at least 25 other
39 nations². In addition, SARS-CoV-2 may be transmitted from infected individuals without
40 symptoms³, which could increase the challenges for controlling the outbreak without the prospect
41 of a vaccine.

42 A SARS-CoV receptor-binding domain (RBD) recombinant protein was developed and
43 manufactured under current good manufacturing practices (cGMP) in 2016⁴⁻⁶. The bulk drug
44 substance has been stored frozen (-70°C to -80°C) and is under stability testing since its
45 manufacturing, so far remaining stable. The protein known as RBD219-N1 (Figure 1a) was
46 expressed in yeast (*Pichia pastoris* X33) and purified to optimize expression yield, antigenicity,
47 and functionality, as well as immunogenicity in mice when formulated on alum^{4,6}. Moreover,
48 alum-adjuvanted RBD219-N1 induced protective immunity against homologous virus challenge
49 with SARS-CoV (MA15 lethal strain), with low immunopathology, minimizing potential safety
50 concerns⁵. The high levels of protein expression in yeast, the relative ease of purification and its
51 stability profile, raises the possibility that this vaccine could be produced at a low cost for
52 stockpiling or distribution among at-risk populations. Accordingly, we are therefore investigating
53 whether the SARS-CoV RBD recombinant protein candidate could potentially be repurposed as a
54 heterologous vaccine for SARS-CoV-2.

56 **SARS-CoV and SARS-CoV-2**

57 Like the SARS coronavirus, SARS-CoV-2 is closely related to bat SARS-like coronavirus⁷. The RBD of
58 the SARS-CoV-2 and SARS-CoV RBD219-N1 share significant amino acid sequence similarity (> 75%
59 identity, > 80% similarity) (Figure 1b) and recent evidence indicates that both viruses use the
60 human angiotensin converting enzyme 2 (ACE2) receptor for cell entry^{8,9}. Antibodies induced by
61 anti-SARS vaccines can cross-neutralize bat SARS-like coronaviruses (SL-CoVs)¹⁰; most importantly,
62 serum from a convalescent SARS-CoV patient neutralized SARS-CoV-2-driven entry⁹. These
63 findings suggest the possible cross-protection of using SARS-CoV RBD as the antigen against SARS-
64 CoV-2.

65

66 **Anti SARS-CoV RBD Neutralizing Monoclonal Antibodies**

67 It is known that the blockage of the receptor-binding motif (RBM) within the RBD and the ACE2
68 association site, is a major mechanism of SARS-CoV neutralization. However, despite the overall
69 high level of homology between the two SARS-CoV RBDs, it's been noted that the similarity of 70
70 amino acids in the RBM (S424 -494) between SARS-CoV and SARS-CoV-2 is only 59%, and thus,
71 the neutralizing antibodies (mabs) raised from the RBM of SARS-CoV may have limited cross-
72 reactivity to SARS-CoV-2. Nevertheless, several groups have shown (typically via a neutralization
73 assay in Vero E6 cells) that neutralizing antibodies do not only recognize epitopes in the RBM
74 region. Using RBD proteins expressed in mammalian cells (293T cells), He et al., reported on 27
75 anti-SARS-CoV RBD mabs with 23 of them showing neutralizing activity (Table 1), and of these,
76 some interfered with virus binding to the ACE2 receptor by affecting binding of the RBM, but
77 many achieved virus neutralization by recognizing epitopes outside of the RBM¹². In some cases,
78 it is likely that these non-RBM directed mabs caused conformational changes that indirectly

79 affected RBM binding or through mechanisms as yet undetermined¹¹. Among these 23
80 neutralizing mabs, 5 mabs, including 24H8, 19B2, 35B5,33G4 and 31H12, were used for a binding
81 study on RBD219-N1, with all 5 neutralizing mabs against both the RBM and non-RBM regions
82 also recognized the RBD219-N1 recombinant protein⁶. He et al., also found neutralizing mabs
83 against non-RBM domains using a baculovirus expressed RBD¹², while Bian et al., further identified
84 one conformational neutralizing epitope consisting S343–367, 373– 390 and 411– 428¹³, which
85 was on the RBD but outside of the RBM. Additionally, CR3022, a potent human neutralizing mab,
86 which was derived from a single-chain variable antibody fragment (scFv) phage display library was
87 shown to bind to the RBD domain, but outside the RBM region¹⁴.

88 An important conclusion of these published studies was that virus neutralization does not depend
89 on interference with the RBM. While the mechanism of action of these mabs requires additional
90 studies, some appear to bind to sites outside the RBM possibly by causing conformational changes
91 to the RBD, while others still neutralize without directly inhibiting ACE2 binding *in vitro*.

92 In more recent studies, Tian et al¹⁵ and Wrapp et al¹⁶ have used 5 anti-SARS-CoV RBD neutralizing
93 mabs to evaluate their cross-reactivity to SARS-CoV-2 RBD (Table 2). Among these 5 neutralizing
94 mabs, the four mabs that bound the epitopes in or close to RBM expectedly only had weak or no
95 binding, while CR3022, which recognized the epitope outside of RBM, showed potent binding.
96 Considering the highly conserved – a similarity of 94% - amino acid sequence of RBD region after
97 excluding the RBM (Figure 1b), the possibility remains that antibodies raised from the epitopes
98 outside of the RBM region may both show cross-reactivity and induce neutralizing antibodies.

99

100 **Concluding Comments**

101 The yeast-expressed SARS-CoV RBD219-N1 recombinant protein has been manufactured under
102 cGMP and could soon enter clinical testing. Even though blockage of the RBM is a major
103 mechanism of SARS-CoV neutralization, it was proven that neutralizing antibodies can also be
104 raised from epitopes outside of RBM. Indeed, at least one neutralizing mab that recognizes both
105 SARS-CoV and SARS-CoV-2 binds to a domain outside the RBM. Despite the low amino acid
106 similarity of RBM region between SARS-CoV and SARS-CoV-2, it's high amino acid similarity with
107 the homologous RBD from SARS-CoV-2, and its potential for raising neutralizing antibodies (when
108 formulated on alum), especially against epitopes outside the RBM, offers the possibility that it
109 might partially protect against COVID-19.

110 **References**

- 111 1. World Health Organization. 2020. WHO Director-General's remarks at the media briefing
112 on 2019-nCoV on 11 February 2020. ed.
- 113 2. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing
114 X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Li M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou
115 S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G,
116 Lam TTY, Wu JTK, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z 2020. Early Transmission
117 Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. *N Engl J Med.*
- 118 3. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, Zimmer T, Thiel V,
119 Janke C, Guggemos W, Seilmair M, Drosten C, Vollmar P, Zwirglmaier K, Zange S, Wolfel R,
120 Hoelscher M 2020. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in
121 Germany. *N Engl J Med.*
- 122 4. Chen WH, Chag SM, Poongavanam MV, Biter AB, Ewere EA, Rezende W, Seid CA,
123 Hudspeth EM, Pollet J, McAtee CP, Strych U, Bottazzi ME, Hotez PJ 2017. Optimization of the
124 Production Process and Characterization of the Yeast-Expressed SARS-CoV Recombinant
125 Receptor-Binding Domain (RBD219-N1), a SARS Vaccine Candidate. *J Pharm Sci* 106(8):1961-
126 1970.
- 127 5. Jiang S, Bottazzi ME, Du L, Lustigman S, Tseng CT, Curti E, Jones K, Zhan B, Hotez PJ 2012.
128 Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine
129 for severe acute respiratory syndrome. *Expert Rev Vaccines* 11(12):1405-1413.
- 130 6. Chen WH, Du L, Chag SM, Ma C, Tricoche N, Tao X, Seid CA, Hudspeth EM, Lustigman S,
131 Tseng CT, Bottazzi ME, Hotez PJ, Zhan B, Jiang S 2014. Yeast-expressed recombinant protein of
132 the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS
133 vaccine candidate. *Hum Vaccin Immunother* 10(3):648-658.
- 134 7. Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Hu Y, Song Z-G, Tao Z-W, Tian J-H, Pei Y-Y, Yuan
135 M-L, Zhang Y-L, Dai F-H, Liu Y, Wang Q-M, Zheng J-J, Xu L, Holmes EC, Zhang Y-Z 2020. Complete
136 genome characterisation of a novel coronavirus associated with severe human respiratory
137 disease in Wuhan, China. *bioRxiv*:2020.2001.2024.919183.
- 138 8. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L, Chen
139 H-D, Chen J, Luo Y, Guo H, Jiang R-D, Liu M-Q, Chen Y, Shen X-R, Wang X, Zheng X-S, Zhao K,
140 Chen Q-J, Deng F, Liu L-L, Yan B, Zhan F-X, Wang Y-Y, Xiao G-F, Shi Z-L 2020. Discovery of a novel
141 coronavirus associated with the recent pneumonia outbreak in humans and its potential bat
142 origin. *bioRxiv*.
- 143 9. Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S 2020. The
144 novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular
145 protease TMPRSS2 for entry into target cells. *bioRxiv*:2020.2001.2031.929042.
- 146 10. Zeng LP, Ge XY, Peng C, Tai W, Jiang S, Du L, Shi ZL 2017. Cross-neutralization of SARS
147 coronavirus-specific antibodies against bat SARS-like coronaviruses. *Sci China Life Sci*
148 60(12):1399-1402.
- 149 11. He Y, Lu H, Siddiqui P, Zhou Y, Jiang S 2005. Receptor-binding domain of severe acute
150 respiratory syndrome coronavirus spike protein contains multiple conformation-dependent
151 epitopes that induce highly potent neutralizing antibodies. *J Immunol* 174(8):4908-4915.
- 152 12. He Y, Li J, Heck S, Lustigman S, Jiang S 2006. Antigenic and immunogenic
153 characterization of recombinant baculovirus-expressed severe acute respiratory syndrome
154 coronavirus spike protein: implication for vaccine design. *J Virol* 80(12):5757-5767.
- 155 13. Bian C, Zhang X, Cai X, Zhang L, Chen Z, Zha Y, Xu Y, Xu K, Lu W, Yan L, Yuan J, Feng J, Hao
156 P, Wang Q, Zhao G, Liu G, Zhu X, Shen H, Zheng B, Shen B, Sun B 2009. Conserved amino acids

157 W423 and N424 in receptor-binding domain of SARS-CoV are potential targets for therapeutic
158 monoclonal antibody. *Virology* 383(1):39-46.

159 14. ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, Cheung CY,
160 Bakker AQ, Bogaards JA, van Deventer E, Preiser W, Doerr HW, Chow VT, de Kruif J, Peiris JS,
161 Goudsmit J 2006. Human monoclonal antibody combination against SARS coronavirus: synergy
162 and coverage of escape mutants. *PLoS Med* 3(7):e237.

163 15. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T 2020. Potent
164 binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human
165 monoclonal antibody. *Emerg Microbes Infect* 9(1):382-385.

166 16. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham BS, McLellan
167 JS 2020. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. *Science*.

168 17. ter Meulen J, Bakker AB, van den Brink EN, Weverling GJ, Martina BE, Haagmans BL,
169 Kuiken T, de Kruif J, Preiser W, Spaan W, Gelderblom HR, Goudsmit J, Osterhaus AD 2004.
170 Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. *Lancet*
171 363(9427):2139-2141.

172 18. van den Brink EN, Ter Meulen J, Cox F, Jongeneelen MA, Thijssen A, Throsby M, Marissen
173 WE, Rood PM, Bakker AB, Gelderblom HR, Martina BE, Osterhaus AD, Preiser W, Doerr HW, de
174 Kruif J, Goudsmit J 2005. Molecular and biological characterization of human monoclonal
175 antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome
176 coronavirus. *J Virol* 79(3):1635-1644.

177 19. Prabakaran P, Gan J, Feng Y, Zhu Z, Choudhry V, Xiao X, Ji X, Dimitrov DS 2006. Structure
178 of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with
179 neutralizing antibody. *J Biol Chem* 281(23):15829-15836.

180 20. Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, Hensley LE, Prabakaran P,
181 Rockx B, Sidorov IA, Corti D, Vogel L, Feng Y, Kim JO, Wang LF, Baric R, Lanzavecchia A, Curtis
182 KM, Nabel GJ, Subbarao K, Jiang S, Dimitrov DS 2007. Potent cross-reactive neutralization of
183 SARS coronavirus isolates by human monoclonal antibodies. *Proc Natl Acad Sci U S A*
184 104(29):12123-12128.

185 21. Hwang WC, Lin Y, Santelli E, Sui J, Jaroszewski L, Stec B, Farzan M, Marasco WA,
186 Liddington RC 2006. Structural basis of neutralization by a human anti-severe acute respiratory
187 syndrome spike protein antibody, 80R. *J Biol Chem* 281(45):34610-34616.

188 22. Rockx B, Corti D, Donaldson E, Sheahan T, Stadler K, Lanzavecchia A, Baric R 2008.
189 Structural basis for potent cross-neutralizing human monoclonal antibody protection against
190 lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge. *J Virol*
191 82(7):3220-3235.

192

193

194

195 **Table**

196 **Table 1.** Neutralizing monoclonal antibodies reported in He et al, 2005¹¹ were categorized based
 197 on its ability to inhibit RBM binding to the ACE2.

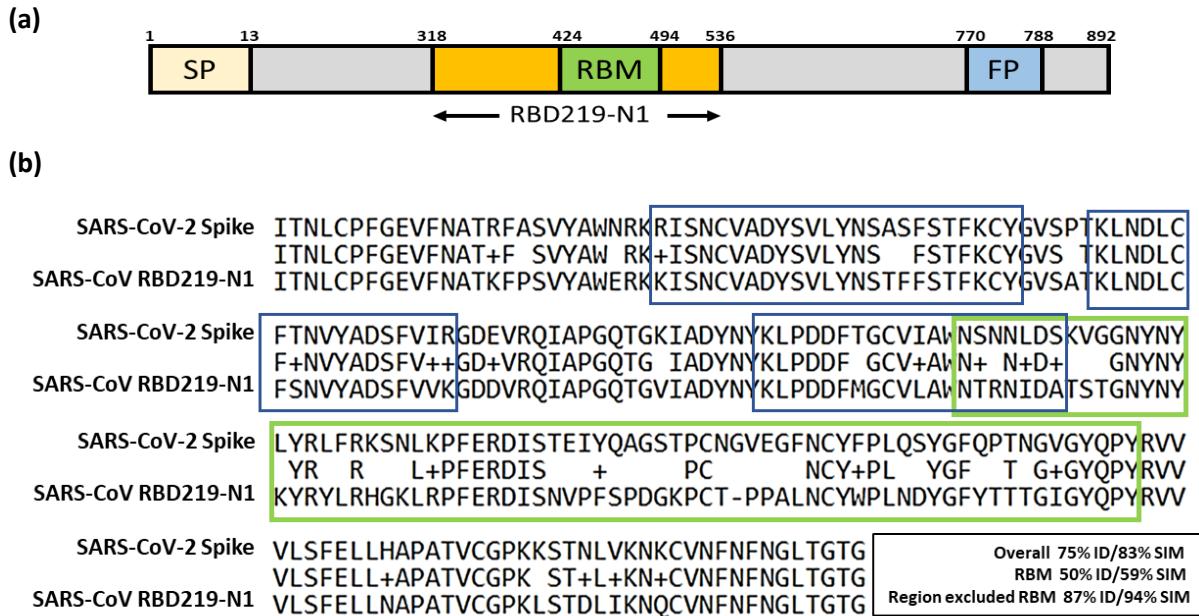
Ability to block RBM binding to ACE2	Anti SARS-CoV RBD neutralizing mAb ID#	Number of antibodies
No	9F7, 10E7, 12B11, 18C2, 24H8, 26E1, 29G2, 32H5, 20E7, 26A4, 27C1, 31H12, 30E10, 13B6	13
Partially	11E12, 18D9, 19B2	3
Yes	28D6, 30F9, 35B5, 24F4, 33G4, 38D4,	6
Not defined	26E1	1
Total		23

198

199

200 **Table 2.** Binding study of anti-SARS-CoV RBD neutralizing mAb against the SARS-CoV-2 RBD

Anti SARS-CoV RBD neutralizing mAb ID#	Binding to RBM	Cross-reactivity of mAb to SARS-CoV-2 RBD
CR3022 ¹⁴	No	Bound potently (Tian et al., 2020) ¹⁵
CR3014 ^{14,17,18}	Yes	No binding (Tian et al., 2020) ¹⁵
m396 ^{19,20}	Yes	Weakly or no binding (Tian et al., 2020; Wrapp et al., 2020) ^{15,16}
80R ²¹	Yes	No binding (Wrapp et al., 2020) ¹⁶
S230 ^{20,22}	Yes	No binding (Wrapp et al., 2020) ¹⁶


201

202

203

204

205

206

207 **Figure 1.** (a) Illustration of SARS-CoV RBD subunit S1. (b) Sequence alignment between SARS-CoV
 208 RBD219-N1 and SARS-CoV-2 spike protein. The RBM region is circled in green. An example of a
 209 neutralizing conformational epitope consisting of S343–367, 373–390 and 411–428 (reported by
 210 Bian et al.) is circled in blue, indicating neutralizing epitopes do not have to be within RBM¹³