Preprint
Article

Tunable Photodetectors via in Situ Thermal Conversion of TiS3 to TiO2

Altmetrics

Downloads

353

Views

218

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

28 February 2020

Posted:

01 March 2020

You are already at the latest version

Alerts
Abstract
In two-dimensional materials research, oxidation is usually considered as a common source for the degradation of electronic and optoelectronic devices or even device failure. However, in some cases a controlled oxidation can open the possibility to widely tune the band structure of 2D materials. In particular, we demonstrate the controlled oxidation of titanium trisulfide (TiS3), a layered semiconductor that attracted much attention recently thanks to its quasi-1D electronic and optoelectronic properties and its direct bandgap of 1.1 eV. Heating TiS3 in air above 300 °C gradually converts it into TiO2, a semiconductor with a wide bandgap of 3.2 eV with applications in photo-electrochemistry and catalysis. In this work, we investigate the controlled thermal oxidation of individual TiS3 nanoribbons and its influence on the optoelectronic properties of TiS3-based photodetectors. We observe a step-wise change in the cut-off wavelength from its pristine value ~1000 nm to 450 nm after subjecting the TiS3 devices to subsequent thermal treatment cycles. Ab-initio and many-body calculations confirm an increase of the bandgap of titanium oxysulfide (TiO2-xSx) when increasing the amount of oxygen and reducing the amount of sulfur.
Keywords: 
Subject: Chemistry and Materials Science  -   Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated