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The material derivative is important in continuum physics. This Letter shows that the expression d
dt =

∂

∂ t +(v ·∇),

used in most literature and textbooks, is incorrect. The correct expression d(:)
dt = ∂

∂ t (:)+v · [∇(:)] is formulated.

In continuum physics, there are two ways of describing
continuous media or flows, the Lagrangian description and the
Eulerian description. In the Eulerian description, the materi-
al derivative with respect to time must be defined. For mass
density ρ(x, t), flow velocity v(x, t) = vkek, and stress tensor
σ = σi jei⊗e j, the material derivatives are given by:

dρ

dt
=

∂ρ

∂ t
+

∂ρ

∂xk

∂xk

∂ t
=

∂ρ

∂ t
+v1

∂ρ

∂x1 +v2
∂ρ

∂x2 +v3
∂ρ

∂x3 , (1)
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∂v

∂ t
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∂xk
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∂ t
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and

dσ
dt

=
∂σ

∂ t
+

∂σ

∂xk

∂xk

∂ t
=

∂σ

∂ t
+v1

∂σ

∂x1 +v2
∂σ

∂x2 +v3
∂σ

∂x3 , (3)

respectively, where t is time, x= xkek is position, ek is a base
vector and vk =

∂xk
∂ t is the flow velocity.

In most textbooks, handbooks and encyclopedia, such as
Refs. 1–12, the above material derivatives are expressed as:

dρ

dt
=

∂ρ

∂ t
+(v ·∇)ρ, (4)

dv
dt

=
∂v

∂ t
+(v ·∇)v, (5)

and

dσ
dt

=
∂σ

∂ t
+(v ·∇)v, (6)

where the gradient operator∇= ek
∂

∂xk
.

To simplify Eqs. (1)–(3) further, a differential operator is
introduced as follows:

d
dt

=
∂

∂ t
+(v ·∇). (7)

This operator is used by most fluid mechanics textbook-
s, including well-known graduate textbooks such as Lan-
dau & Lifshitz,1,2 Prandtl,3,4 Anderson,5 Pope,6 Cengel
& Cimbala,7, Kundu et al.8, Woan9, wikipedia10,11 and
britannica12.
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In the latest version of Landau & Lifshitz,13 the material
derivative of flow velocity is given in another form:

dv
dt

=
∂v

∂ t
+(v∇)v. (8)

Besides the books mentioned above, there is a large amount
of literature in fluid mechanics taking the same expressions as
Refs. 1 and 13. This makes it difficult for readers to identify
which expression for the material derivative is correct, causing
great confusion to both students and scholars.

Although some authors, such as Lighthill,14 Batchelor,15

Frisch,16, Nhan & Nam17, Xie,18 and Zhao19 have used the
correct expression, it seems that most fluid mechanics text-
books and academic literature have adopted an incorrect ex-
pression for the material derivative as in Ref. 1. Therefore,
to revive the great influence of Landau in physics and fluid
mechanics, we attempt to address this issue in this dedicated
paper, where we revisit the material derivative to show why
Eqs. (7) and (8) are incorrect, and derive a correct expression
using standard tensor calculus.

In Landau & Lifshitz,1 the material derivative is given as:

dx
∂v

∂x
+dy

∂v

∂y
+dz

∂v

∂ z
= (dr ·grad)v. (9)

Although Landau’s fluid mechanics is well known worldwide,
the above expression is incorrect.

Proof:
Since v · grad = v · ∇ = (viei) · (∂ je j) =
vi, jei · e j = vi, jδi j = divv, and (v · grad)v =
(v ·∇)v = (v j,iei · e j)(vkek) = δi jv j,ivkek =
vi,ivkek = (divv)v, where the divergence is
divv = ∂v1

∂x1 + ∂v2
∂x2 + ∂v3

∂x3 , so (divv)v = ( ∂v1
∂x1 +

∂v2
∂x2 +

∂v3
∂x3 )v. Thus:

(v ·grad)v 6= v1
∂v

∂x1 + v2
∂v

∂x2 + v3
∂v

∂x3 . (10)

In the latest version of Landau & Lifshitz,13 for reasons
which are unclear, the material derivative expression has been
changed to dv

dt = ∂v
∂ t +(v∇)v; this is also incorrect.

Proof:
Since v∇= (viei)(∂ je j) = vi, jeie j,

(v∇)v = (v j,ieie j)(vkek) = (v j,ieie j)(vkek),
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which indicates that v∇ is a 3rd-order tensor
rather than a vector. Thus:

(v∇)v 6= v1
∂v

∂x1 + v2
∂v

∂x2 + v3
∂v

∂x3 . (11)

To obtain the correct formulation of the material derivative,
we perform some basic tensor calculus20. The del operator
is a vector differential operator, and defined by ∇ = ei

∂

∂xi
.

An important note concerning the del operator∇ is in order.
Two types of gradients are used in continuum physics: left and
right gradients. The left gradient is the usual gradient and the
right gradient is the transpose of the forward gradient operator.

To see the difference between the left and right of gradients,
consider a vector functionA= Ai(x)ei. The left gradient of a
vector A is∇⊗A≡ e j

∂

∂x j
⊗ (Aiei) =

∂Ai
∂x j
e j⊗ei = Ai, je j⊗

ei, or written as ∇A ≡ e j
∂

∂x j
(Aiei) =

∂Ai
∂x j
e jei = Ai, je jei.

The right gradient of a vectorA isA⊗∇≡ (Aiei)⊗e j
∂

∂x j
=

∂Ai
∂x j
ei⊗e j = Ai, jei⊗e j, or written as A∇ ≡ (Aiei)e j

∂

∂x j
=

∂Ai
∂x j
eie j = Ai, jeie j, where Ai, j =

∂Ai
x j

.
The gradient of a scalar function is a vector, the divergence

of a vector-valued function is a scalar∇ ·A, and the gradient
of a vector-valued function is a second-order tensor∇A. Al-
though the del operator has some of the properties of a vector,
it does not have them all, because it is an operator. For in-
stance,∇ ·A is a scalar (called the divergence ofA) whereas
A ·∇ is a scalar differential operator, where A is a vector.
Thus the del operator∇ does not commute in this sense.

It worth to emphasise that the right gradient of a vectorA∇
is a more natural one, is often used in defining the deforma-
tion gradient tensor, displacement gradient tensor, and veloci-
ty gradient tensor. It is clear thatA∇= (∇A)T .

1. Mass density ρ = ρ(x, t) is a scalar-valued function of
x and t and its differential is dρ = ∂ρ

∂ t dt + ∂ρ

∂x
· ∂x

∂ t dt. For a

scalar ∂ρ

∂x
= ρ∇=∇ρ , so dρ = ∂ρ

∂ t dt+(ρ∇) ·vdt = ∂ρ

∂ t dt+
v · (∇ρ)dt, or, dividing both sides by dt,

dρ

dt
=

∂ρ

∂ t
+(ρ∇) ·v =

∂ρ

∂ t
+v · (∇ρ). (12)

2. Flow velocity v = v(x, t) is a vector-valued function of
x and t and its differential is dv = ∂v

∂ t dt + ∂v
∂x
· ∂x

∂ t dt. For a
vector ∂v

∂x
= v⊗∇ = v∇ = (∇v)T . Strictly speaking, the

right gradient of v should be written as v⊗∇; here, in order
to agree as far as possible with conventional presentation, we
write v⊗∇ = v∇ and, similarly for the left gradient, ∇⊗
v=∇v. Hence (v∇) ·v= v ·(∇v) and dv= ∂v

∂ t dt+(v∇) ·
vdt = ∂ρ

∂ t dt +v · (∇v)dt, or, dividing both sides by dt,

dv
dt

=
∂v

∂ t
+(v∇) ·v =

∂v

∂ t
+v · (∇v). (13)

3. The 2nd order stress tensor σ = σ(x, t) is a tensor-
valued function of x and t and its differential is dσ = ∂σ

∂ t dt +
∂σ
∂x
· ∂x

∂ t dt. For an arbitrary tensor ∂σ
∂x

=σ∇ 6= (∇σ)T , hence

dσ = ∂σ
∂ t dt +(σ∇) ·vdt, or dividing both sides by dt leads

to dσ
dt = ∂σ

∂ t +(σ∇) ·v. Since (σ∇) ·v = v · (∇σ),

dσ
dt

=
∂σ

∂ t
+v · (∇σ). (14)

If an operator must be introduced for the material deriva-
tive, it should be in the following form:

d(:)
dt

=
∂

∂ t
(:)+v · [∇(:)]. (15)

For a scalar function f (x, t), this leads to d f
dt =

∂ f
∂ t +v ·(∇ f ).

If f is considered as a distributed function of gas molecules in
their phase space, this derivative is as in Eq. (3.2) in Physical
Kinetics by Lifshitz and Pitaevskii.2

For a vector function u(x, t), Eq. (15) yields du
dt = ∂u

∂ t +

v · (∇u). For a tensor functionA(x, t), Eq. (15) yields dA
dt =

∂A
∂ t +v · (∇A).

Using the material derivative operator d(:)
dt = ∂

∂ t (:)+v · [∇(:
)], the Navier-Stokes momentum equation is given by ∂v

∂ t +v ·
(∇v) = ν∇2v− 1

ρ
∇p, where p is flow pressure and ν is

kinematic viscosity.
Assuming det∇v 6= 0, the Navier-Stokes momentum equa-

tion can be rewritten as:

v =

(
ν∇2v− 1

ρ
∇p− ∂v

∂ t

)
· (∇v)−1

= (v∇)−1 ·
(

ν∇2v− 1
ρ
∇p− ∂v

∂ t

)
.

(16)

If the incorrect material derivative d
dt =

∂

∂ t +(v ·∇) is used in
the Navier-Stokes momentum equation, then Eq. (16) cannot
be obtained.

The mistake in the definition d
dt =

∂

∂ t +(v ·∇) is mainly
the incorrect representation of v ·∇;∇ is a gradient operator
rather than a vector, so that:

v ·∇= (v1e1 + v2e2 + v3e3) · (e1
∂

∂x1 +e2
∂

∂x2 +e3
∂

∂x3 )

=
∂v1

∂x1 +
∂v2

∂x2 +
∂v3

∂x3 6= v1
∂

∂x1 + v2
∂

∂x2 + v3
∂

∂x3 .

In conclusion, the material derivative operator is correctly
defined as: d(:)

dt = ∂

∂ t (:)+v · [∇(:)].
Availability of data: There are no data in this theoretical
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