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Correct expression of the material derivative in continuum physics
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The material derivative is important in continuum physics. This Letter shows that the expression

d _ 0

E—;‘F(UV),

used in most literature and textbooks, is incorrect. The correct expression dzgr) =5 ( )+v-[V(:)] is formulated.

In continuum physics, there are two ways of describing
continuous media or flows, the Lagrangian description and the
Eulerian description. In the Eulerian description, the materi-
al derivative with respect to time must be defined. For mass
density p(z,t), flow velocity v(x,t) = viey, and stress tensor
o = 0;je; ® e}, the material derivatives are given by:

dp dp dpdx dp ap ap ap
o tanar T e Tga s
di 9t ox, 9t or ”‘al Vzaz V3a3’
and

do _ 8a+aaaxk do N do n do n do 3)
di ot ox o ot laxd o TVox

respectively, where 7 is time, & = x ey is position, e is a base
vector and v = % is the flow velocity.
In most textbooks, handbooks and encyclopedia, such as

Refs. 1-12, the above material derivatives are expressed as:

dp dp

o (v-V)p, “4)

dv Jdv

Ezg—F(’U-V)’U, (5)
and

do Jdo

T or +(v-V)v, (6)

where the gradient operator V = ey aa

To simplify Eqgs. (1)—(3) further, a dlfferentlal operator is
introduced as follows:

d d

7o +(v-V). @)
This operator is used by most fluid mechanics textbook-
s, including well-known graduate textbooks such as Lan-
dau & Lifshitz,l’2 Prandtl,>* Anderson,’ Pope,6 Cengel
& Cimbala,’ , Kundu et al.8, Woang, wikipedialo’11 and
britannica!?.
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In the latest version of Landau & Lifshitz,!? the material
derivative of flow velocity is given in another form:

dv Jdv

E = E + (’UV)’U. (8)

Besides the books mentioned above, there is a large amount
of literature in fluid mechanics taking the same expressions as
Refs. 1 and 13. This makes it difficult for readers to identify
which expression for the material derivative is correct, causing
great confusion to both students and scholars.

Although some authors, such as Lighthill,14 Batchelor, !’
Frisch,!®, Nhan & Nam!7, Xie,!8 and Zhao'® have used the
correct expression, it seems that most fluid mechanics text-
books and academic literature have adopted an incorrect ex-
pression for the material derivative as in Ref. 1. Therefore,
to revive the great influence of Landau in physics and fluid
mechanics, we attempt to address this issue in this dedicated
paper, where we revisit the material derivative to show why
Egs. (7) and (8) are incorrect, and derive a correct expression
using standard tensor calculus.

In Landau & Lifshitz,' the material derivative is given as:

P P P
ax 2% v ay?® 4 a2

o R 5= (dr - grad)v. )

Although Landau’s fluid mechanics is well known worldwide,
the above expression is incorrect.

Proof:

Since v -grad = v -V = (vie;) - (dje;) =
Vi j€i - €j = Vi7j6,'j = diV’U, and (’U . grad)v =
(’U . V)’U = (Vj’,'e,' . ej)(vkek) = (SijVj’inek =
viivrer = (divo)v, where the divergence is

divo = 24 + 23 + 23, so (divo)v = (34 +
d d
53+ a;g)v Thus:
dv dv Jv
(v'grad)v;évl@ —|—vz8 2+V3a (10)

In the latest version of Landau & Lifshitz,'? for reasons
which are unclear the material derivative expression has been

changed to ¢ i %‘t’ + (vV)w; this is also incorrect.

Proof:

Since vV = (viei)(ajej) = Vi j€i€j,

(vVV)v = (v;eie;)(viex) = (vjieie;)(viek),
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which indicates that vV is a 3rd-order tensor
rather than a vector. Thus:

v v

dv
(vV)v;«févlﬁ—i—vz8 5 —|—V3ax3.

Y

To obtain the correct formulation of the material derivative,
we perform some basic tensor calculus?’. The del operator
is a vector differential operator, and defined by V = e,-a%.
An important note concerning the del operator V is in order.
Two types of gradients are used in continuum physics: left and
right gradients. The left gradient is the usual gradient and the
right gradient is the transpose of the forward gradient operator.

To see the difference between the left and right of gradients,
consider a vector function A = A;(x)e;. The left gradient of a

VectorAlsV®A_e]ax ® (Aie;) —g ’ej®el:Ai7jej®

e;, or written as VA = e]a—xi(A,e,) = Wj{e]e, = A jeje;.

The right gradient of a vector Ais AQV = (A;e;) ® ej% =
J

%e,-@ej = A, je;®ej, or written as AV = (A;ei)eja%j =
gA’e ej =A; jeie;, where A; j = ‘z:j

The gradient of a scalar function is a vector, the divergence
of a vector-valued function is a scalar V - A, and the gradient
of a vector-valued function is a second-order tensor V A. Al-
though the del operator has some of the properties of a vector,
it does not have them all, because it is an operator. For in-
stance, V - A is a scalar (called the divergence of A) whereas
A -V is a scalar differential operator, where A is a vector.
Thus the del operator V does not commute in this sense.

It worth to emphasise that the right gradient of a vector AV
is a more natural one, is often used in defining the deforma-
tion gradient tensor, displacement gradient tensor, and veloci-
ty gradient tensor. It is clear that AV = (V A)T.

1. Mass density p = p(x,¢) is a scalar-valued function of

x and ¢ and its differential is dp = at Pt +3 ap ‘h 7dt. For a

scalar ap - =PV =Vp,sodp= atthJr(pV) dt = atdtJr
~(Vp)dt or, dividing both sides by dt,
dp dp _dp
oo +(pV)- v—§+v~(Vp). (12)

2. Flow velocity v = v(x,1) is a Vector-valued function of
x and ¢ and its differential is dv = at pdt + 52 a” a'“"a’t For a

vector gv =v®V =0V = (Vo). Strlctly speaking, the
right gradient of v should be written as v ® V; here, in order
to agree as far as possible with conventional presentation, we
write v ® V = vV and, similarly for the left gradient V®
v=Vwv. Hence (vV)-v=v-(Vv)anddv = at vdt+(vV)-

vdt = Wdt +wv-(Vv)dt, or, dividing both sides by df,

dv :al+(vv),v:%+

Y TERrT v- (Vo). (13)

3. The 2nd order stress tensor o = o(x,t) is a tensor-

valued function of « and ¢ and its differential is do = %—‘;’dr +

do 893

92 - 224y, For an arbitrary tensor 2 =o'V # (Vo) hence
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do = %—tdt + (oV) - vdt, or dividing both sides by dt leads
to 4o = a—‘t’ +(oV)-v. Since (6V)-v=v-(Vo),
do Jdo
A A . 14
a o Y (Vo) 19

If an operator must be introduced for the material deriva-
tive, it should be in the following form:
di:) d

R TORR AL} (15)

For a scalar function f(x,t), this leads to ‘g = %{ +v-(Vf).

If f is considered as a distributed function of gas molecules in
their phase space, this derivative is as in Eq. (3.2) in Physical
Kinetics by Lifshitz and Pitaevskii.”

For a vector function u(x,?), Eq. (15) yields %‘ = %—’t‘ +
v-(Vu). For a tensor function A(x,t), Eq. (15) yields % =
A 1y (VA).

Using the material derivative operator ét) = at( )—H; [V(:
)], the Navier-Stokes momentum equation is given by o T
(Vv) = vV — 7Vp, where p is flow pressure and Vv is
kinematic Viscos1ty

Assuming det Vv # 0, the Navier-Stokes momentum equa-
tion can be rewritten as:

gﬁ) (Vo)™!
dv
)
If the incorrect material derivative % = % +(v-V)isusedin
the Navier-Stokes momentum equation, then Eq. (16) cannot
be obtained.

The mistake in the definition % = % + (v - V) is mainly

the incorrect representation of v - V; V is a gradient operator
rather than a vector, so that:

<vV2v —V
P (16)
= (V). (szv - EVp -

J 0 0
v-V=(viertvertvies)-(e15 7 +erg s tesy )
dvi  Jdwn 8\}3 d d J
“on Taw a7 an Vg s

In conclusion, the material derivative operator is correctly

defined as: (g) = at( ) +v-[V()].
Availability of data: There are no data in this theoretical
article.

L. D. Landau and E. M. Lifshitz, Fluid Mechanics (English version) (1987).

2E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Elsevier (Singapore)
Ltd, 2008)

3L. Prandtl, Fiihrer durch die Stromungslehre, Herbert Oertel (ed.) (Springer
Vieweg, 2012).

4L. Prandtl, Prandtl’s essentials of fluid mechanics, Herbert Oertel (ed.)
(Springer-Verlag, 2004).

5J. D. Anderson, Computational Fluid Dynamics—the basics with applica-
tions (The McGraw-Hill Companies, Inc., 1995).

6S. B. Pope, Turbulent flows (Cambridge University Press, 2000).

7Y. A. Cengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Ap-
plications (McGraw-Hill Education, Inc., 2010).


https://doi.org/10.20944/preprints202003.0030.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 April 2020

8P, K. Kundu, I. M. Cohen and D. R. Dowling, Fluid Mechanics (Elsevier,
2012).

9G. Woan, The Cambridge Handbook of Physics Formulas, Cambridge Uni-
versity Press (2000)

1Ohttps://en.wikipedia.org/wiki/Gauge_covariant_derivative

https://en.wikipedia.org/wiki/Navier_Stokes_equations

2https://www.britannica.com/science/Navier-Stokes-equation

BL. D. Landau and E. M. Lifshitz, Fluid Mechanics (Russian version) (2017).

145, Lighthill, Waves in Fluids (Cambridge University Press, 1978)

d0i:10.20944/preprints202003.0030.v2

13G. K. Batchelor, An introduction to fluid dynamics (Cambridge University
Press, 2007)

loy, Frisch, Turbulence (Cambridge University Press, 1995)

7P.T. Nhan and M.D. Nam, Understanding viscoelasticity an introduction to
rheology (Springer-Verlag Berlin Heidelberg,2013).

18X C. Xie, Modern Tensor Analysis and Its Applications in Continuum Me-
chanics (Fudan University Press, 2014)

19Y. P. Zhao, Lectures on Mechanics (Science Press, China, 2018)

203 N. Reddy, An Introduction to Continuum Mechanics, (Cambridge Uni-
versity Press NY, 2007).


https://doi.org/10.20944/preprints202003.0030.v2

