
 

1 
 

              On the Relationship between the Cosmological Background Field               
                                                   and the Higgs Field  
 
           
Engel Roza 
Philips Research Labs, Eindhoven, The Netherlands (retired) 
Email: engel.roza@onsbrabantnet.nl 

Summary 
It is shown that the relationship between gravity and quantum physics can be described in terms of 
the symmetry break of space due to elementary constituents, dubbed as “darks”, which constitute a 
universal energetic background field that extends from the cosmological level down to the nuclear 
level. It requires (a) the awareness of the polarisable second elementary dipole moment of a recently 
discovered third Dirac particle type, next to the electron-type and the Majorana-type, and (b) the 
awareness that Einstein’s Lambda is not a constant of nature, but, instead, a covariant integration 
constant with a value that depends on the scope of the cosmological system under consideration, 
such as solar systems and galaxies, eventually showing up as the Cosmological Constant at the level 
of the universe. The relationship has been made explicit by relating the two major gravitational 
constants of nature (the gravitational constant and Milgrom’s acceleration constant) with the two 
major nuclear constants of nature (the weak interaction boson and the Higgs boson). 
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1. Introduction 
 
Present-day theory of quantum physics as well as present-day theory of gravity rely upon the 
presence of an omni-present energetic background field. In quantum physics, this field is 
known as the “Higgs field”. It is required for explaining the origin of mass. It has an axiomatic 
definition, conceived in 1964,[1]. In gravity, the existence of the background field is required 
to explain the accelerated expansion of the universe, known since 1998, [2]. This 
cosmological background field has been defined on the basis of Einstein’s Cosmological 
Constant [3]. It is also known as “dark energy”. It would be odd if two different energetic 
background fields would exist next to each other. More logical would be if the Higgs field 
and the cosmological background field would be the same. In both cases the unavoidable 
conclusion is that there is not such a thing as “empty space”, but that space is filled with an 
energetic fluidum. This conclusion has given rise to the idea of conceiving the vacuum as an 
entropic medium filled with energetic constituents, in this article to be annotated as darks.  
As long as these darks are not subject to any directional energetic influence, their motions 
remain fully chaotic. In that state the vacuum is fully symmetric, because its state before and 
after a time interval of “closed eyes” with an arbitrary translation or rotation of the 
observer, is just the same [4]. It means that the awareness of a Higgs field and a 
Cosmological Constant implies a symmetry break, respectively in nuclear space and in 
cosmological space. This is the issue that will be discussed in this article.  
 
In [5,6,7,8,9] it has been argued that if the cosmological background field would consist of 
energetic uniformly distributed polarisable vacuum particles, the dark energy would give an 
explanation for the dark matter problem as well, because vacuum polarization would evoke 
a gravitational equivalent of the well-known Debije effect [10]. With the difference, though, 
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that the central force from a gravitational nucleus is enhanced just opposite to the 
suppression of the Coulomb force from an electrically charged nucleus in an ionized plasma. 
This picture fits to the Higgs field of nuclear particle physics as well, albeit that the energetic 
background particles would show the true Debije effect, in the sense that they would 
exponentially suppress a central nuclear force such as required to explain the short range of 
nuclear forces. It corresponds more or less with the common view that mass-less force 
carrying particles are retarded by a surrounding field of energy, thereby gaining mass 
[11,12]. 
 
The modeling of the omni-present background energy by energetic vacuum particles, 
requires a model for its elementary constituent (the dark). This element must be a source of 
energy, and must be force feeling as well. In those aspects it resembles an electron, which is 
ultimately the source of electromagnetic energy, and which is sensitive to the fields spread 
by other electrons. However, where the dark in the cosmological background field must be 
polarisable under the gravitational potential, an electron is non-polarisable under an electric 
potential. The electric dipole moment of an electron is zero, while a dark should have a non-
zero gravitational dipole moment. In [9, 13,14] the suggestion has been made that these 
particles could be of the particular Dirac type as theorized back in 1937 by Ettore Majorana 
[15]. There is, however, no convincing argument why a Majorana particle would have a 
dipole moment that is polarisable in a scalar potential field. It is recognized, though, that 
Dirac’s theory contains some heuristic elements. Recently, the author of this article found a 
third type Dirac particle, next to the electron type and the Majorana type [16]. This third has 
the unique property that, unlike the electron type, it possesses a dipole moment that is 
polarisable in a scalar potential field. It is my aim to show in this article that this third 
matches with the dark. In the next paragraph first a summary will be given of the third. 
Thereafter a view will be given on the  cosmological background energy and its impact on 
gravity. 
 
The cosmological and gravity view to be developed in this article relies, next to the 
awareness of the darks, on a particular interpretation of the   parameter in Einstein’s Field 
Equation. Different from the common perception that Einstein’s   is a constant of nature, 
usually identified as the Cosmological Constant, it is in the author’s view a covariant 
integration constant that may have different values depending on the scope of a 
cosmological system under consideration. Because it may depend on other attributes but 
just time-space coordinates, such as mass content, for instance, it may have different values 
at the level of solar systems, galaxies and the universe. Only at the latter level, it is justified 
to identify the   as the Cosmological Constant indeed. At that level, by the way, the 
cosmological system is in a state of maximum symmetry and maximum entropy. The viability 
of this view will be proven by a calculation of Milgrom’s empirical acceleration constant of 
dark matter.  
 
After that, it will be shown that the novel Dirac particle applies to quarks as well, ending up 
in a model for the nuclear domain, in which the common Lagrangian description of the Higgs 
field is harmonized with a nuclear energetic background field with similar characteristics as 
the cosmological one. Finally it is shown in verifiable formulae how these fields are related.  
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2. Summary of the third 
 
The canonic formulation of Dirac’s particle equation reads as [17,18],  
 

0)i( 0   
 cm . 

 
In which  is the 4 x 4 unity matrix and in which the 4 x 4 gamma matrices have the 
properties,  
 

0    if   ;  and 1;1 22
0  i .                                                                         (1) 

 
As usual, c is the vacuum light velocity,  is the reduced Planck constant and 0m is the rest 
mass of the particle. Whereas the canonical set is given by, 
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the  -set of the third type has been found as [16], 
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where i are the Pauli matrices. 
 
Although the wave equation of the electron type and that of the “third” are hardly different, 
there is a major difference in an important property. Both have two dipole moments. A first 
one, to be indicated in this text as the first dipole moment, is associated with the elementary 
angular momentum ħ. The second one, to be indicated as the second dipole moment is 
associated with the vector ħ/c.  These dipole moments show up in the calculation of the 
excess energy of the particle in motion subject to a vector potential ),,,( 0 zyx AAAAA . In the 
canonic case (2a) we have, 
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 where  is the Pauli vector, defined by 

kji 321   ,                                                                                                                           (3) 

In which ( kj,i, ) are the spatial unit vectors and in which B  and E are field vectors derived 
from the vector potential. The redundancy in (3) allows writing it as, 

02
Δ

m
eE  (  ħ B + i  ħ/c E ),                                                                                                      (4) 
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The electron has a real first dipole moment ( 02/ me ), known as the magnetic dipole 
moment, and an imaginary second dipole moment ( cme 02/i  ), known as the anomalous 
electric dipole moment. The spin vector 2/S  has an eigen value 2/1S . In the case 
that the Dirac particle is of the third type, as defined by (2b), we have [16], 
 

02
Δ

m
eE  (  ħ B   ħ/c E ),                                                                                                      (5) 

This third type Dirac particle has two real dipole moments, generically without identifying it 
as an electromagnetic one, to the amounts of  , respectively c/ . If the dark would be 
of the electron type, it would not be polarisable in a gravitational field, because such a field 
is Coulomb-like and is unable to polarize an imaginary second dipole moment. If, however, 
the dark is a third type, its second dipole moment can be polarized under influence of a 
scalar potential field. This field is not necessarily the electromagnetic one. The coupling 
factor is not necessarily the elementary electric charge. If the field is just a static one, eq. (5) 
can be written as, 
 

(
2

Δ
0m

gE 
  ħ/c )0A ,                                                                                                                   (6) 

 
In which g is a generic coupling factor. Hence, taking into account that the eigen value of the 
spin vector with the state variable   is 2/12/  S , the dipole moment p of a single 
particle in a gravity field (where 0mg  ), is given by, 
 

p
c2
 .                                                                                                                                                 (7)                                                                                                                            

 
Hence, the third type is a candidate for being the elementary constituent of the cosmological 
background energy. Further profiling of this constituent will be given in the next paragraph. 

 
 

3. The cosmological background field 
 
The presence of an omnipresent background field is imposed by the vacuum solution of 
Einstein’s Field Equation with Einstein’s (cosmological) constant Λ , [19,20]. This Field 
Equation reads as, 


 T
c
GgG 4

8
 ;  RgRG

2
1

 ,                                                                                (8) 

in which T is the stress-energy function, which describes the energy and the momenta of 
the source(s) and in which R and R  are, respectively, the so-called Ricci tensor and the 
Ricci scalar. These can be calculated if the metric tensor components g are known [21,22]. 
In the case that a particle under consideration is subject to a central force only, the time-
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space condition shows a spherical symmetric isotropy. This allows to read the metric 
elements ijg from a simple line element that can be written as  
 

2222222
0

2 ddsind),(d),(d  rrrtrgqtrgs rrtt  ,                                                             (9) 
 
In which ctq i0   and 1i  . 
 
Note: The author of this article has a preference for the “Hawking metric” (+,+,+,+) for

),,,( zyxcti , like, for instance, also used by Perkins [23]. By handling time as an imaginary 
quantity instead of a real one, the ugly minus sign in the metric (-,+,+,+) disappears owing to 
the obtained full symmetry between the temporal domain and the spatial one. 
 
It means that the number of metric elements ijg reduce to a few, and that only two of them 
are time and radial dependent. With inclusion of the constant  , a wave equation for a 
particle under central force can be derived from  (8-9) as  
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If ttT were a pointlike source )()(32 tUrMcTtt  , in which )(tU  is Heaviside’s step function, 
the static solution of this equation would be provided by the Schwarzschild-de Sitter metric, 
also known as Kottler metric, [24,25,26,27]. Unfortunately, (10) does not allow deriving a 
meaningful wave equation. Taking the view that the vacuum is something else but empty 
space, makes a difference. Where an empty space with   0 corresponds with virtual 
sources T 0, the vacuum with   0 is a fluidal space with virtual sources  pT , 

with ),sin,1,1( 222 rrg   , in which Gcp 8/4  [28,29,30]. (Owing to the Hawking 
metric, p  is equal for all diagonal elements). This particular stress-energy tensor, with equal 
diagonal elements, corresponds with the one for a perfect fluid in thermodynamic 
equilibrium [22]. Inserting a massive source in this fluid will curve the vacuum to 

),sin,,( 222 rrggg rrtt   . This allows rewriting (10) as,  
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In which  22 . 
 
The validity of this equation is restricted between a low spatial limit and a high spatial limit. 
It can be found in ref. [31]. The static format of the wave equation (11) is a potential field set 
up by a pointlike source with a format that shows up as a modification of Poisson’s equation, 
such that 
 

)(8)()( 3
2

2
2

2

r
c
GMrrr

r
 


 .                                                                                            (12) 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 August 2020                   doi:10.20944/preprints202003.0052.v3

https://doi.org/10.20944/preprints202003.0052.v3


 

6 
 

Under positive space-time curving, (12) can be solved by  
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This solution gives a fit with Milgrom’s empirical enhanced gravity law for, [31], 
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in which 0a is Milgrom’s acceleration constant that characterizes the dark matter effect. This 

relates the anti-decay parameter with the mass of a galaxy. Because Λ22   as shown by 
(11), and because 0a has appeared being a constant, Einstein’s Λ is an integration constant 
with a value that is galaxy dependent. While at the level of the whole universe, Λ may be 
considered as an invariant cosmological constant, it will not be the case at the level of 
galaxies. If in (12) the sign of 2 would have been “minus” instead of “plus”, the resulting 
field would have had the format, 
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Such a “screened” field shows up as the field of an electric pointlike charge in an ionized 
atomic plasma. As shown by Debije [10], the ambient field around the pointlike charge can 
be modeled in terms of polarized electric dipoles that suppresses the source field. 
Apparently, the opposite is true for gravity. The gravity field is not suppressed, but enhanced 
instead. For a proper understanding of the role of  in (12) it is instructive writing it as, 
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and subsequently into Poisson’s format for gravity as,  
 

)(-4Φ2 rG , in which 
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Apart from the constant G4 , this format is similar to Laplace’s format for 
electromagnetism.  
 
In Debije’s theory of electric dipoles [10,32,33], 
 

gP)(rD .                                                                                                                                  (18) 
 
The vector gP  is the dipole density. From (18), 
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Assuming that in the static condition the space fluid is eventually fully polarized by the field 
of the pointlike source, )(rPg is a constant 0gP . Hence, from (19),  
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Taking into account that to first order, 
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we have from (20) and (21), 
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Hence, from (13), (14) and (20-22), 
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Taking the elementary dipole value ch 2/ into account, the volume density /N m3 of the 
darks is found as,  
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These results allow deriving an expression for Milgrom’s acceleration constant by two 
independent ways. Applying (14) to a cosmos conceived as a Hubble bubble with distributed 
baryonic mass, is a first option. Appling (24) to the universe conceived as a virtual black hole 
subject to Hawking-Bekenstein entropy is a second option. As proven in [31], both 
approaches result into the same expression, 
 

LBaa 
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15
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L t
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in which B 0.0486 is the baryonic share of the matter content in the universe and in 
which Ht 13.8 Gyear is the Hubble timescale. It can be easily verified that this expression 
yields 0a 1.25 x 10-10 m/s2, which corresponds with the known observational value. 
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4. Profiling a quark as a third type Dirac particle 

Let us proceed trying to set up a similar model for the nuclear background energy similar to 
the cosmological background energy. To do so, let us suppose, as usual by the way, that a  
quark is a Dirac particle [34]. In this text, however, under the assumption that a quark is a 
Dirac particle of the third type, the second dipole moment of which is polarisable. Hence, we 
may conceive its potential field as the sum of a far field from the monopole and a near field 
from the dipole moment. The second dipole moment cdmp 2/ , where pm  and d are 

unknown quantities, creates a near field potential field  )(Φ xGN  along the dipole axis x   

such that,  
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Note that 0Φ is expressed in energy per unit of mass (hence signed by ‘). Note that there is 

no particular reason yet to identify the 0 in (25) as the Λ -related one in (11,12). Apart 

from the near field )(Φ xGN , the quark spreads a far field )(Φ rGF . The far field is the result 

of the (monopole) mass qum )( pm  of a bare quark. Under absence of any mass generation 

mechanism, only the eigen value 2/  of the quark’s elementary angular momentum is left 
as the manifestation of this bare mass (as discussed and proven in [35], the bare mass is 
different from the quark’s constituting mass resulting from the mass generation 
mechanism). Interpreting the angular momentum as a virtual rotation with light speed at a 
fictitious radius 00 /1 wr  , in which w is an unknown dimensionless weighting constant, we 

have  
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The quantity mg is an unknown gyrometric constant. Hence, from classical field theory, 
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and,  under consideration of 0 as defined in (25), 
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Hence, the potential field of the quark along the axis set up between the dipole axis can be 
expressed as an energy )(Φ x such that  
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Similarly as the field of darks, the quark field is influenced by the energetic background field. 
However, where the gravitational field is enhanced under polarization of the background 
particles, the nuclear field is suppressed. This can be understood by re-inspection of (11). 
There is no reason why space-time curving would be restricted to massive energy. It may 
occur under a more general interpretation of energy as well. Moreover, the curving might be 
negative instead of positive like assumed for gravity. Hence, let us rewrite (11) as,   
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Like noted before, its solution under static conditions is given by (15). By taking the  
influence of 2 in account, (29) is modified into, 
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Where qum  is the unknown mass of the bare quark and where   is identified as the 
unknown decay parameter of the field due to the background energy. Note that, unlike 0  , 
this  has the same semantics now as in the gravity case, i.e., related with Einstein’s   as 

 22 . Rewriting (31) in terms of x  gives,  
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Hence, (31) is rewritten as, 
 

}1
)(
1){exp(Φ)(Φ 20 x

w
x

xx


  ; 2
0 2

Φ G
c

mqu


 .                                                         (32) 

 
Note that qum  still is the mass of the bare quark. The only difference is the change of the 
unknownw into the unknown w .  
 
As proven in ref. [35], this quark profile (32) fits to the one that can be derived from the 
heuristic Lagrangian of the Higgs field conceived in the Standard Model of particle physics. 
Other nuclear particles may couple to the field of a quark. The quantities 0Φ and   are 
subject to a particular invariant relationship,  
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0

2d
cg



 


,                                                                                                                                  (33) 

 
in which g , mind   and  are dimensionless constants. Its derivation is beyond the scope of 
this article. It can be found in previous studies such as [36,37]. The generic quantum 
mechanical coupling factor g is the square root of the electromagnetic fine structure 
constant ( 137/12 g ). The constant mind  is the normalized spacing dd min  between the 
quark and the antiquark in the archetype meson (pion), and  is a numerical factor of order 
1, the value of which is eventually established as 69.0 . This invariance, dubbed in [35] as 
the quark scaling theorem, leaves some individual freedom and can therefore be different 
for different quark flavours.  
 
The relationship with the Higgs field can be illustrated after a particular evaluation from its   
Lagrangian density )Φ(HU  that heuristically is defined as [1], 
 

4
Φ

2
Φ)Φ(

4
2

2
2

NNHU   ,                                                                                                            (34) 

where N and N are characteristic real constants. Supposing that this field is the 

background field of a pointlike quark, its potential function can be derived from application 
of the Euler-Lagrange equation on the Lagrangian,  

 

Φ)Φ(ΦΦ
2
1L 

  HU ,                                                                                                     (35) 

 
In which Φ is the source term. Unfortunately the particular format of the (broken) field 

)(HU prevents deriving an analytical solution ( )r  of from (35) subject to (34). However, 
a numerical procedure allows deriving a two-parameter expression for ( )r that closely 
approximates a true analytical solution. The result is, 
 

}1)exp({)exp()( 0 
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
r
r

r
rr





 ,                                                                                             (36) 

 
in which, 
 

 22 06.1
2
1

  N  and 2
0

2
2 3.32

4
1




N .                                                                                      (37)  

 
This result is indistinguishable from the three-parameter format derived for a third-type  
Dirac particle shown by (32),  
 

}1
)(
1){exp(Φ)(Φ 20 x

w
x

xx
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  ,                                                                                           (38) 
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under the condition that 55.0/1w .  
 
If two bare quarks, more particularly a quark and an antiquark, each producing a generic 
flow of energy of non-baryonic nature, are interacting, a quasi-stable bond is created, 
thereby producing the archetype meson, i.e. the pion. In that condition, the spacing 

dd 22 min  between quark and antiquark is determined by the condition retrieved from 
(36) as [35],  
 

853.0
2
1/)exp( minminmin  ddd ,                                                                                          (39) 

 
The bond between the quark and the antiquark can be modelled as a quantum mechanical 
oscillator with a center of baryonic mass. Something similar happens between the three 
quarks in a baryon that create a three-body quantum mechanical oscillator. The vibration 
energy of the oscillator is the dominant part of the rest mass of the pion. The contribution of 
the bare masses of the quarks to the baryonic mass is negligible. All quarks show the same 
potential function. As noted before, their 0Φ and values are subject to the scaling theorem 
(33). It means that, similarly as in the case of darks,  is a variable that get a particular value 
in a particular scope. Details can be found in [35], as well as the proofs that the decay and 
spatial range parameter   in the scope of the pion is a measure of the energetic mass 
equivalence of the Higgs boson, i.e. )(2 cmH   and that its numerical value of about 
126.5 GeV can be determined by theory.  
 
The assignment of a classical potential field to a quark is unconventional. In this paragraph 
the field has been derived from the view that the quark is a Dirac particle of a particular type 
that up to recently was unknown. It has been shown in this paragraph that the derived 
potential function is consistent with a numerical solution from the heuristic Higgs 
Lagrangian. In that respect the unconventional view on the quark as expressed by (46) is not 
in conflict with the Standard Model of particle physics.  
 
 

5. Relating cosmological properties with nuclear properties  
 

From the analyses made so far, it is fair to conclude that quarks in a meson and the 
cosmological darks are Dirac particles. In that sense they are similar to electrons. However, 
where the field of an electron is not affected in vacuum, the field of a quark is shielded by an 
energetic background field while the field of a dark is enhanced by such a field. To enable a 
proper comparison between the three particle types, a generic force F  will be defined as 
the spatial derivative of a generic potential Φ in units of energy, such that for electrons, 
darks and quarks, respectively, 
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


                                                                                                                        (40) 

 

quΦΦ
y

g
y

F







  

 
where  0,mq and g , are the coupling factors of, respectively, an electron, a classical massive 
particle and a quark to respectively, an electric potential eΦ , a gravitational potential GΦ
and a nuclear potential quΦ . Electroweak unification relates the nuclear coupling factor g
with the electromagnetic coupling factor e  by the fine structure relationship 2

0
2 4 cge  . 

Where these potential fields are specific and have specific dimensionalities, they are all 
derived from a generic potential Φ  in the dimension of energy.  
 
As discussed in paragraph 3, a classical (baryonic) mass 0m feels a gravitational force from 
another classical mass 0m as, 
 

G0 Φ
x

mF



 ;   
x

xxGm





sincosΦ 0G


 .                                                                            (41) 

 
The potential field of the quark modeled has been found in (38) as, as  
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1){exp(Φ)(Φ 20 x
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xx
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   ;   2
0 2
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c


 .                                                              (42) 

 
According to the theory developed in the previous chapters, a quark feels a force from 
another quark as, 
 

quΦ
r

gF



 .                                                                                                                                     (43) 

 
The format of the field qu matches with the format of the field (42). Expressing the far field 
component of the nuclear force in terms of a Newtonian field as 
 

GΦΦ
r

m
r

gF qu 






 ,                                                                                                                (44)   

 
in which qum is defined as the quark’s bare mass and considering  that 0Φ in (42) is energy 
per unit of mass, we get from (44) , 
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It implies that the bare mass qum of the quark depends on an elementary dipole moment 
with eigen value c2/ with dimensionality [mass x length] multiplied by  with 
dimensionality [length-1]. This mass quantity seems identifying the weak interaction between 
quarks as the equivalent of a Newtonian gravitational interaction as if a quark were an 
ordinary massive particle in classical gravitational sense. However, if the quark would have 
the same gravitational properties as a baryonic pointlike mass, the shielding of its potential 
field by the energetic background field would be the same. In fact, relationship (45) reveals 
that whereas two baryonic masses attract under Newton’s law, two quark bare masses repel 
under Newton’s law. It also means that whereas the gravitational dipoles in the energetic 
background field enhance the potential field of a baryonic source, modeled as a pointlike 
mass, the same dipoles shield the nuclear potential field of the quark.  
 
Recognizing the role of  in gravity in terms of Einstein’s  22

M , we have from (14), 
under the recognition that the quark’s bare mass qum is a Newtonian anti-gravitational 
particle, 
 

G
a

mM quM
022

5
2

  .                                                                                                                     (46) 

 
This is a basic formula for the unification of gravity with quantum physics. From (45) and 
(46), 
 

30

22
5


c

g
G
a 

 .                                                                                                                                  (47) 

 
The remaining issue for relating the relationship between cosmological quantities with 
nuclear quantities is establishing a value for the quark’s quantity  . This value is closely  
related with the massive energy Hm of the Higgs boson by,  
 

c
mcm H

H 


2
2


  .                                                                                                                    (48) 

 
Because this relation holds in the center of mass frame of a pion, a relativistic correction is 
needed from 0  . Considering that the energy of the pion is dominated by the binding 
energy between the quark and the antiquark in a meson, which is provided by the weak 
interaction boson, we may relate the massive energy  of a  pion in rest with the massive 
energy W of the weak interaction boson as, 
 

0









 W ,                                                                                                                                       (49) 

 
in which   is a dimensionless correction factor of order 1. 
 
Hence, from (46-49), 
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5
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Hm
cc

g
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


 


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 .                                                                                                            (50) 

 
With G  = 6.67 10-11 kg-1 m3 s-2,  140 MeV (pion), W 80.4 GeV (weak interaction 

boson), Hm 126.5 GeV, g 1/ 137 , the dimensionless correction facto should amount to 
67.0  for giving a fit with Milgrom’s acceleration constant 0a  1.25 10-10 m/s2.  

 
 
Discussion and conclusion 
 
Expression (50) relates the gravitational constant G  and Milgrom’s acceleration constant 0a
as the major gravitational parameters with three major nuclear parameters (Higgs boson, 
the weak interaction boson and the pion’s rest mass). The need for the heuristic correction 
factor  0.67 may seem a shortcoming. However, its numerical value rings a bell. The 
same factor shows up in the theoretically assessed relationship between the Higgs boson 

Hm  and the weak interaction boson WWm  , which has been derived as [35], 
 


W

H
md

m


 min4
  .                                                                                                                               (51) 

 
In this expression the factor is a correction factor that adapts the spacing min2d to the half 
wavelength of the weak interaction boson. This correction factor has been assessed by the 
author as  0.69 already back in 2011, and later in 2016, in studies that revealed a 
numerically verifiable expression of the gravitational constant G in terms of quantum 
mechanical quantities [35,36]. The quark model in these references are not different from 
the one described in paragraph 4 of this article, but, unfortunately, the justification as a third 
type Dirac particle was missing. Hence, the relationship between gravity and quantum 
physics shown in these articles has not been credited. Considering that mind 0.853 as 
shown in (39), Wm 80.4 GeV and  0.69 it is found from (51) that Hm 127 GeV, which 
nicely fits with experimental evidence from the detection in 2012 by CERN of a 126.5 GeV 
bosonic particle. Identifying the  in (51) as the very same  in (50), the relationship (50) 
between gravity and quantum mechanics simplifies to, 
 

3min0 )4
2

(
22

5


 d
cc

g
G
a 



 ; 

2
1/)exp( minmin  dd .                                                                       (52) 

 
It will be clear that this result reveals an extremely simple relationship between gravity and 
quantum physics. It is obtained by a theory that solves the so called “Cosmological Constant 
catastrophe” as well. This catastrophe is the disagreement between the observed values of 
vacuum energy density and the theoretical enormously large value of zero-point energy 
between quantum field energy. The problem vanishes in the theory developed in this article, 
in which the cosmological background energy and the nuclear background energy have 
appeared being the same as being captured in elementary polarisable energetic particle with 
a volume density shown by (24) as, 
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N 2
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m/ 03


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The equivalence is the same for the reason that both gravity and quantum physics have been 
described as the modulation of space-time curving on top of a bias in a weak-field 
approximation of Einstein’s Field Equation. In this view the bias is considered as an 
irrelevancy that can be ignored.  
 
Summarizing: 
In this article, quarks, as the elementary nuclear particles, and darks as elementary 
constituents of the cosmological background energy, have been described as Dirac particles 
of a particular kind, dubbed as thirds, being subject to a classical potential field. This has 
been possible by recognizing that these particular Dirac particles show a real valued 
polarisable second elementary dipole moment next to the well known elementary angular 
moment. Quite surprisingly, while the dark behaves as a common gravitational Newtonian 
particle, the bare quark behaves as an anti-gravitational Newtonian particle (while the 
constituent mass of a quark is gravitational, the bare mass is anti-gravitational).  As a result 
of this difference, the potential field of quarks is shielded by the darks, while the 
gravitational field of a baryonic kernel is enhanced by the darks, thereby giving an 
explanation for the dark matter effect in cosmology. It has been shown that the theory 
developed in this article has resulted in the view that gravity and quantum physics can be 
unified. The viability of the theory is proven by two verifiable relationships. The first one, 
documented by me before [9], is the calculated value of Milgrom’s acceleration constant 0a
from the baryonic content BΩ (= 0.0486) of the universe, shown in (14) as, 
 

H
B t
ca Ω

4
15

0  ,                                                                                                                                  (54) 

 
where (Ht 13.8 Gyear), which gives 0a  1.25 10-10 m/s2.  The second one is the novel 
relationship, shown by (52), between Milgrom’s acceleration constant as characteristic 
cosmological quantity with the energetic equivalent  of the pion mass as the 

characteristic nuclear quantity, with constants of nature, cG ,, and g  ( 137/12 g ). The 
calculated value of Milgrom’s acceleration constant from (54) amounts to 1.44 10-10 m/s2. It 
is slightly different from the one expressed by (52). It seems fair to conclude, considering  
that the correspondence between the results (52) and (54) the two is close enough for 
believing that both results strengthen each other, that the nuclear background field known 
as the Higgs field and the cosmological background field assigned to the Cosmological 
Constant are identical and embodied by the darks with a particle density shown in (53).  
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