Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

Article
Performance Comparisons of Bio-micro Genetic
Algorithms on Robot Locomotion

Francisco A. Chavez-Estrada'*(", Jacobo Sandoval-Gutierrez 2*(, Juan C. Herrera-Lozada 30, M.
Olguin-Carbajal 3, Daniel L. Martinez-Vazquez?(", Miguel Herndndez-Bolafios 3 and Israel
Rivera-Zarate 3

1 Ingenieria, Instituto Tecnolégico de Tlalnepantla del Tecnolégico Nacional de México (ITTLA del TecNM),

Estado de México 054070, México; frchaveze1400@alumno.ipn.mx or fachavez@ittla.edu.mx.

Procesos Productivos, Universidad Auténoma Metropolitana, Unidad Lerma (UAML), Lerma de Villada,
Estado de México CP 52006, México.; j.sandoval@correo.ler.uam.mx, d.martinez@correo.ler.uam.mx
Instituto Politécnico Nacional, Centro de Innovacién y Desarrollo Tecnolégico en Cémputo (CIDETEC-IPN),
Ciudad de México 07700, México.; jlozada@ipn.mx, molguinc@ipn.mx, irivera@ipn.mx, mbolanos@ipn.mx
* Correspondence: j.sandoval@correo.ler.uam.mx or fachavez@ittla.edu.mx; Tel.: +527282827002 ext. 3011

Featured Application: The specific application of the work can be found at https://youtu.be/
ctJLINSq27Q

Abstract: This paper presents a novel micro-segmented genetic algorithm (1isGA) to identify the best
solution for the locomotion of a quadruped robot designed on a rectangular ABS plastic platform.
We compare our algorithm with three similar algorithms found in the specialized literature: a
standard genetic algorithm (GA), a micro-genetic algorithm (#GA), and a micro artificial immune
system (¢ AIS). The quadruped robot prototype guarantees the same conditions for each test. The
platform was developed using 3D printing for the structure and can accommodate the mechanisms,
sensors, servomechanisms as actuators. It also has an internal battery and a multicore embedded
system (mES) to process and control the robot locomotion. This research proposes a ysGA that
segments the individual into specific bytes. #GA techniques are applied to each segment to reduce
the processing time; the same benefits as the GA are obtained, while the use of a computer and
the high computational resources characteristic of the GA are avoided. This is the reason why
some research in robot locomotion is limited to simulation. The results show that the performance
of usGA is better than the three other algorithms (GA, uGA and AIS). The processing time was
reduced using a mES architecture that enables parallel processing, meaning that the requirements for
resources and memory were reduced. This research solves the problem of continuous locomotion of
a quadruped robot, and gives a feasible solution with real performance parameters using a ysGA
bio-micro algorithm and a mES architecture.

Keywords: Micro segmented Genetic Algorithm; Multicore Embedded System; Parallel Processing

1. Introduction

The solutions found by genetic algorithm (GA) [1] methods can improve traditional techniques;
they are well known for being robust when used for numerical optimization and are applied where
there are no standard techniques. In view of the strengths of these algorithms, some researchers have
applied GA approaches to solve the problem of locomotion of legged robots. Arranz de la Pefa et
al. [2] used a GA for the locomotion of a quadruped robot. This approach automatically generated
solutions and selected the best option for robot locomotion with 12 degrees of freedom (DOF). Research
by Mutka et al. [3] improved stability in robot locomotion with a dynamic system composed of four

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1796-3810
https://orcid.org/0000-0002-5578-4389
https://orcid.org/0000-0000-000-000X
https://orcid.org/0000-0000-000-000X
https://orcid.org/0000-0000-000-000X
https://youtu.be/ctJLINSq27Q
https://youtu.be/ctJLINSq27Q
http://dx.doi.org/10.3390/appxx010005
http://www.mdpi.com/journal/applsci
https://doi.org/10.20944/preprints202003.0079.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

20f 21

spring-mass subsystems and a tail-like inertial appendage. A tail with two DOFs was used as a
counterweight, and its mass center was able to shift to balance the body of the robot, increasing the
number of DOFs but contributing to maintaining autonomy and improving the performance of robot
locomotion. One of the main contributions of this study was the use of an ABS plastic platform, as this
is a flexible material that contributes to stability during robot locomotion. In the first prototype, the
platform was designed using rigid PLA plastic, and the robot locomotion was unstable.

The GAs are the most representative instances of the evolutionary algorithms (EAs). These are
population algorithms that are used to generate a set of up to thousands of individuals (i.e. solutions
to a problem). The best individuals within this population are then found, with frequent changes being
made to the characteristics of the individuals. Changes are controlled by systematically applying the
genetic operators of selection, crossover, mutation and replacement, which contribute to maintaining
the diversity of the population, as indicated in [4]. Individuals are initially randomly generated, and
genetic operators are applied to each, so the improvements generated by these operators have a direct
impact on the performance of the algorithm.

Within the population, each individual is differentiated based on its fitness value, which is
obtained empirically according to the problem to be solved. The fitness function is the objective
function of the optimization problem, as described by Asteroth and Hagg [5] and Burke et al. [6]. Fig.
1 shows the operation of a standard GA for robot locomotion. One of the main features of the GA is
its dependence on a randomly generated population of individuals. There is a certain computational
cost linked to the size of the population, which arises from memory use, processing time and energy
consumption. A hardware implementation of the genetic operators for these algorithms [7] can
improve their performance and facilitate the production of solutions in this type of process.

P
‘ Random generation | 6‘
of the population o
Selection of the wn AR
best individual T nnan
i [
1 HRRRRREE=—
ol | | “I
[Cmim J lIllllIl‘___%__L.'.
[Mutation] —]
¥
|_ Elitism J ViAo
.. + _ .
Funetion — i
| evaluation ‘ x
* -
[Lo 5= [0.1] ... 5,=[0.1]
the function
[Signal | ________________
Generation PWM 1 =0
L]
| Actuators |

Figure 1. Flowchart for a standard GA for robot locomotion
2. Background

The GA is applied to find solutions to problems of optimization of systems with various DOF and
in which traditional methods are not easily adjusted. In the case of robot locomotion, Gumiel applied
a GA to a robot called Aibo [8]. In [9], Suzuki performed an optimization of the impulse trajectory of
the legs by applying a GA. Parker and Torino [10] applied a cyclic GA to generate a running sequence.

In the research study in [11], optimization, speed and learning on the fly were evaluated, and four
GAs were analyzed: a GA, a covariance matrix adaptation evolution strategy (CMA-ES), a swarm

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

30f21

optimization of particles (PSO) algorithm and a differential evolution (DE) approach. The results
were compared and it was found that none of these algorithms was significantly better than the
others. In [12], a central pattern generator (CPG) was combined with a bio-inspired multi- objective
evolve algorithm to optimize a gear by reducing vibration and increasing speed, stability and behavior
using a simulation platform and Ren et. al [13] a gait generator based on CPGs modulated was
studied. Other researchers have focused their efforts [14] on energy optimization by improving the
trajectories of a robot when walking using a GA. In [15], a GA was used to produce a CPG and solve
the problem of locomotion in robots with legs. Another research study [16] used a mimetic fingerprint
matching algorithm and a real chromosome chain, running on a Pentium 2.1 GHz computer, and
found that solutions had higher efficiency but took more time. For the implementation of algorithms
in hardware to provide locomotion to robots with legs, the use of computers as a primary control loop
is very common. In this investigation, integrated multi-core systems (mES) were used, which have a
high parallel processing capacity, similar to a computer, allowing to reduce the execution time. The
algorithms, which are implemented using an eight-core embedded system (ES), also allow for parallel
processing, with the objective of reducing the processing time to less than one second and solving
the problem of robot locomotion. This research is a continuation of micro genetic algorithm cited by
Chavez et al., based on a novel estimator, for locomotion of a quadruped robot [17]. In [18], a yGA was
developed with a sharing function based on the similarity and H-measure of DNA sequences. This
algorithm obtained better DNA sequences and improved the computational efficiency. IN relation
to the intrinsic execution of bio-inspired algorithms in embedded systems, a micro-artificial immune
system (pAIS) was presented in [19] to solve numerical optimization problems; in this micro algorithm,
a cloning scheme was proposed with a population of only five individuals (antibodies in the AIS
context) with the purpose of hardware implementation.

In this study, we propose an alternative method of using #GA with small populations, and
use segmented elements or individuals to reduce the size of the binary chain. This allows for a
reduction in the processing time for the search for solutions to less than one second, thus guaranteeing
performance similar to that of the GA. We use a binary chromosome chain and an embedded 8
MHz system to solve the problem of robot locomotion using parallel programming. This allows the
system to find the solution in less than one second. Several of the works cited above were limited to
simulations due to the high computational cost required to find solutions. The new algorithm, called
the micro-segmented genetic algorithm (ysGA), segments the individual chain into bytes and applies
evolutionary techniques to each. This contributes to reducing the processing time to less than 0.5 s.
Our hypothesis is that reducing the number of individuals in a population will decrease the number of
evaluations of the objective function, thus increasing the speed of convergence.

The main contributions of this paper are as follows: (i) the proposed usGA outperforms other
GA, uGA and pAlIS algorithms; (ii) segmented elements or individuals are used to reduce the size of
the binary chain; (iii) the programming of the algorithm was carried out and tested on an embedded
system; and (iv) improved performance is seen due the the use of parallel processing.

The remainder of the paper is organized as follows. Section 3 introduces the design and
organization of the system. Section 4 presents the novel micro segmented genetic algorithm. Section 5
describes the setup of the experiments. Section 6 presents the experimental results and a discussion.
Finally, conclusions are given in Section 7.

3. Design of the robotic platform

The locomotion model of a mammal was used for the design of the quadruped robot prototype
(see Figure 2). The structure of the robot prototype designed in this research includes the frame or
body of the robot and four legs, each of which has three links joined by servomotors (see Figure 3).

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

40f 21

-

Figure 2. Quadruped robot platform with 12 degrees of freedom

d

Link 3

Servo = Servomechanism

Figure 3. Mechanical design of a robot leg

In the first prototype, the thickness of the pieces of PLA was 0.003 m. With this design, the
locomotion of the robot was unstable due to the thinness and rigidity of the pieces causing deformations
and stresses in the links. To solve this problem, the finite element method (FEM) was applied and a

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

50f21

static analysis of the parts was carried out using the SolidWorks application to detect the stresses in
the links (Figure 4).

VN Mises (KQT/cme 2|

3.922¢+001

1.596e+001

. 3.269e+001
. 2,942e+001
- 2.615e+001
L 2.288e+001
B 1.962¢001
| 1.635¢+001
L 1.308e+001

. 9813e+000
6,545¢+000

l 3.277e+000
8.929¢-003

Figure 4. Mechanical design of a link using the finite element method

This analysis indicated the deformations and stress zones in the links and allowed us to determine
the new physical characteristics for the second version of the prototype. In this version, the parts were
manufactured in ABS plastic with thickness 0.004 m. Pieces that were subject to a greater torque force
(TF) or force (F) per volume unit had a thickness of 0.006. The dimensions of the reinforced pieces are
shown in Table 1. A rectangular platform was used to allow the installation of four legs, IO electronics
and servomotors (devices required for control) and batteries. The legs are arranged symmetrically in
each corner to ensure that the center of gravity was within the support polygon, and to guarantee that
the torque on each leg was distributed evenly. The four legs need to support 0.75 kg, corresponding to
the weight of the robot, and each of the servomechanisms has a 2.0 kg/cm torque, a consumption of
0.16 A, and a 5V source.

Table 1. Dimensions of the robot parts

Part Length (m) Width (m) Thickness (m) Centers (m)
Rectangular structure of the robot 0.190 0.160 0.004 0.110
Link1 (d) 0.060 0.045 0.003 0.035
Link1 (a2) 0.095 0.004 0.014 0.070
Link1 (a3) 0.060 0.030 0.004 0.045
Servomotor 0.029 0.014 0.038 NA

4. Segmented micro genetic algorithm

Fitness is the driving force for both Darwinian natural selection and genetic algorithms [20]. This
parameter can be measured in several explicit or implicit ways. In this research, we used an explicit
measurement. The individuals of the population are 32-bit binary chains, and their fitness is their
equivalent decimal value. Individuals with higher decimal values survive and reproduce to generate
a population that evolves towards the solution. The chromosomes or individuals generated in the
algorithm are tested to determine their fitness

This measurement controls the ability of the genetic operators to modify the characteristics of the
random population. It seeks to maximize the movement of a robot with legs, and the goal is that each
link in a robot leg reaches its maximum value. In this case, the best individuals are those with a fitness
value high enough to achieve the target of walking.

Thus, the individual solution or fitness is the decimal value represented by 7 (i, g) for an individual
iin a generation g:

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

6 of 21

N
r(i,g) = Z% [s(i,j) — (i j)] 1)
=

where s(i, j) is the desired value, c(i,j) is the value obtained by the algorithm, and N is the
number of events. The design of the GA begins by identifying and describing the parameters that
determine the robot locomotion by trotting.

A GA generates a random population of individuals represented by the values c(i, j), made up of
32-bit binary strings or four bytes. The first three bytes represent the displacement angles in each link;
the desired value for each of these is s(7, j) = 255, representing the maximum allowed displacement for
each link. The fourth byte represents the impulse time in milliseconds (¢;) or foot support time on the
ground. This is used for locomotion, and is part of the period of advance (T) i.e. the time it takes for a
leg to complete an advance cycle (support-impulse-advance). Each individual or solution contains the
values required by the servomechanisms to produce the robot walking pattern (RWP), see Fig. 5.

Top view Side view Impulse time (7))

I [,,
1
/

SUP!’“" Impulse
p(ll‘llt point

~—

R A
TARGET B3/ . . BO
s(i,j) 1111 1111 1111 1111 1111 1111 1111 llll\

/ \ / \ / N/

B7 - BO B7 -—- BO B7 - B0 B7 - B0
OBTAINED O\I]Il 111}1 1{)11 110/1 0\001 001/1 1{001 11;1
H)))
6: 2 93 L

Figure 5. Relationship between the links in a leg and the binary structure of the chromosome or
individual

The angle displacements of a leg depend on the movements of the links /1, I, and I3 and are
determined by ©@1, ©; and @3, respectively. Changes in speed are determined by the time of impulse or
time interval in which a robot leg is touching the surface (t;). These processes determine the first stage
of robot locomotion, and there are four parameters for each leg that determine the robot’s locomotion
(see Figure 5).

The maximum displacement is obtained when the links have an angular value: ®; = 90° (fixed
value), ®; = 20° and ©3 = 40°. In each case, the maximum theoretical value of the angle that each link
of the robot can reach is 255°, corresponding to 1111 1111 in binary notation, due to the constraints
on the system. In Figure 5, the individual segmentation is represented by four bytes, and the yGA is
applied to each segment with the aim of reducing the processing time.

In the design of the algorithm, we use the concepts described by Goldberg [4] regarding the uGA,
which is an algorithm based on small populations of individuals. It was determined that a population
of 12 individuals ensures fast convergence to feasible solutions. A flowchart for the algorithm using
these concepts is given in Figure 6).

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

7 of 21

Random
Population

e g-====m===memema--

Random
Population

> Initial
Population
-t

Intemal Cycle

L 4
| Selection |

| Crossover |

I Mutation |

4
| New |
Population

b4

Nominal NO
Convergence

General
Convergence

I
I
|
r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
A ¥
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

NO

LYES

Update Equations

Figure 6. uGA flowchart

In Figure 6, the algorithm starts with a random population of 12 individuals, and the best is
copied to the initial population. Several experiments were applied to the genetic operators, such as
two mutations per segment, two crossovers per segment, increasing or decreasing the population by
generation and others that are not reported in this research. Finally, the parameters were defined as
one random crossover and one random mutation of a bit for each segment selected. These conditions
allow for faster nominal convergence to the solution (see Figure 7).

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

8 of 21

uAG with one mutation and crosses by

200 segment
250 —————
200 /_’_/-/—, _Targat
* —10
Z 150 1
100 12
0
@ 123456 7 8 91011 121314151617 18
o Generation
c
=
L uAG with two mutation and crosses by
300 segment
g 20 Eg — Rroet
Z 150 I
12
100 —I3
50
0
135 7 911131517 1921232527 29 3133 3537 39

Generation

Figure 7. nGA with two mutations and crossovers vs. one mutation and one crossover

The evolution process in the yAG is executed in the nominal convergence. The 12 individuals of
the active population remain and are evolved n times to the solution. When nominal convergence is
reached, the best individual is copied to the next initial population, and for general convergence, the
11 remaining individuals will be generated at random.

In this way, the internal and external cycles of yGA achieve better results. The internal cycle
achieves nominal convergence reaching the solution for the first best string, and the external cycle
will terminate when the general convergence reaches the stop criterion, getting the first three best
individuals (0, 1 and 2). The characteristics of the yGA such as a small population allow for fast
convergence to the solution. The best individual is formed from the bytes with the best fitness (bytes 0,
1 and 2), which will generate the maximum displacement in the robot links and will try to maintain a

straight line.

5. Robot locomotion

Locomotion is a continuous re-configuration or action that a system performs to improve the task
being executed. The system must be reconfigured until the maximum displacement of the links is
reached. The system generates a pattern of movements or CPG, and these are designed using coupled
oscillators that generate a sinusoidal function [21] (see Equation (2) and Figure 8).

70 * temp.individual [i]
2 % 255

q(j) = temp.individual[i] * sin() &)

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

9of 21

Figure 8. 1GA with two mutations and crossovers vs. one mutation and one crossover

temp.individual[i] is the binary value of the best individual resulting of the evolution of the
usGA. The indices i of the bytes that form the first four best individuals are 0, 1, 2 and 3. The best
temp.individual[i] is 255 (1111 1111). This is the maximum theoretical amplitude that the CPG can
reach for each link. This parameter is also related to the angle displacement. 4(j) is the numerical value
of the angle that will displace the link resulting from the evolution of the best individuals found. The
maximum value that can be obtained is 255° (1111 1111). j = 1,2 and 3. Each value ¢(j) is multiplied
by a constant K; to obtain the displacement angle (Adj). The constant K; is obtained by considering the
maximum angular value (max_ang_val_j) allowed for each joint. The proportionality relationship is:

255 — max_ang_val_j
q(j) — Adj

The displacement angle (Adj) required for the articulation is obtained as shown in Equation (3):

Adj = q(j)(max_ang_val_j/255) = ‘I(j)Kj ©)

where K; = max_ang_val_j/255 for j = 1,2 and 3.

The first stage of the robot locomotion trotting was completed. The sequences of displacements
for the articulations in one leg were applied to the three remaining legs of the four-legged robot,
with a phase shift of 90° with respect to each leg based on their distribution in a clockwise direction.
The correlation temporal reference generated between the legs when walking gives rise to the phase
relationships between each of the legs during locomotion. The period (T) and the support factor ()
are related, and it is shown that when the robot is walking, two legs are on the ground, and two are in
the air, as shown in Figure 9.

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

10 of 21

Walking
0.5

B

LF

LH

T:Period

Figure 9. Phase diagram for walking

The robot executes the learning second stage by means of a gyroscope sensor, which allows it to
find the optimum impulse time (¢7). This system achieves the best displacement, i.e. locomotion in
a straight line, which implies that all the legs have the same displacement. The impulse time ¢; is a
parameter of the system. This was achieved by comparing the ideal displacement (by simulation of
the direct kinematics of the system) versus the real displacement direction using the gyroscope sensor,
as shown in Figure 10.

Locomotion results

Lt

Fitness
Degrees

Step length

f

Real position

0 10 20 30 40 50 60

r T I I] I

— Relative error E

0.4 —

02 -
0 WW*‘_\/ J
0 10 20 30 40 50

60

Fitness
Error value

110
[~ \ | | |
08 -

100 —
85 —
80 —
85 —
80 —
78 =

ol \ | | | |

0 10 20 30 40 50 60

— |

Time (ms)
I |

Ll

Generation

Figure 10. Ideal versus real positions of the walking robot

Figure 10 shows the differences between the real and ideal positions during locomotion of the
robot. The lowest error is found between generations 10 to 12, and t; = 90 ms is adopted as the
parameter for locomotion. This is maintained up to generation 25. The error decreases and the system
tries to follow the ideal locomotion function.

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

11 of 21

At this point, we use the GA to optimize the configuration for the links in the links robot. The
value of the fourth byte represents the impulse time, and is obtained when the robot is displaced in a
straight line due to the gyroscope sensor lectures. The #GA evaluates the fitness of each individual,
and the best solutions are processed in two ways:

1. The best individual is copied to the next generation.
2. The best individual is decoded to obtain the displacement angles of the servomotors and to
generate the locomotion of the robot.

The movements of the servomechanisms are controlled by pulse width modulation signals. These
signals are generated by the yGA executed in the embedded system, which creates all the signals
required for the servomechanisms of the legs, thus generating the locomotion pattern of the robot.

The second objective of this research is to create a random generation of the strings used to build
the individuals and to apply the genetic operators (mutation and crossover) with the aim of reducing
the processing time. In this case, we also segment the individuals into four chains of eight bits by
applying mutation and indexing the four chains. Only the string of every individual will access by
eight changes (Figure 11).

Crossover{(m‘ i) 16 changes
i=0 \
4 changes
100, 1(1) 1(0), I(1)
— ~
V1] VI2] VI3] VI4] V(1 V[4]
= i=0 [T]\ \
/ /1
\ \
;. /2
\ \
/ /3
\ \
i=31 i=7 i=7 Il /

b)

Figure 11. Mutation process

When applying the genetic crossover operator to individuals of 32 bits, this implies 16 changes for
every individual, as shown in Figure 12. In this case, we also segment individuals into four 8-bit strings
by applying the crossover operator and indexing the four strings; thus, each individual structure will
undergo four changes.

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

12 of 21

Mutation 32 changes

i=0 bit processing
bhit processing

- bit processing

8 changes
V1[1] V[2] V]3] V|4 VI[1]... V|[4]

- =0 i=0 bit processing
) bit processing

i ‘ _ - - bit processing

bit processing
i=31 i=7 i=7 bit processing

a) b)

Figure 12. Applying crossover to segmented individuals

When processing segments directly, the decoding process is not required, which saves processing
time. Applying the genetic operators of mutation and crossover segmentation reduces the processing
time if we index the four segments for each individual. Segmenting individuals allows us to apply the
evolutionary technique to each segment formed of one byte to optimize processing, as follows:

1. Generating four 8-bit segments per individual instead of 32-bit individuals allows the processor
to generate the population in less time.

2. When processing segments directly, the decoding process is not required, which involves a
saving in processing time.

3. Applying the genetic operators of mutation and crossover segments reduces processing time if
we index the four segments of each individual.

6. Parallel processing algorithms

A sequential algorithm processes one task at a time, and one task after another. The sequential
algorithm used in this study and the flow diagram are shown in Figure 13.

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

13 of 21

Start sequential program

B e
Micro genetic algorithm (nGA)
v
Solution is evaluated to determine
the best angle displacements and
impulse

Best solution ?

v VES

The central pattern generator (CPG)
is produced for the actuators

Y

Legl
Set:
Legd 01,02, 03 and
ngz impulse time by
each leg

Legd

Y

Update sensors

Figure 13. Flowchart for the sequential algorithm

The sequential algorithm is executed on a parallax activity embedded system board, and in the
first task, the GA is executed to find the best solution. In the second task, the CPG signals are generated
at the same time that generating the electrical signals to move the actuators @1, ®;, ®3 and a pulse ¢;.
The values are applied sequentially to legs 1, 3, 2 and 4, in this order, which produces the locomotion
of the robot in a trotting pattern.

The parallel algorithm is executed on the same embedded multi-core system, which has eight
processor cores and can divide a task or execute different tasks at the same time. A flowchart of the
process is given in Figure 14.

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

14 of 21

| Start parallel program |

i > » »
[|

| Micro genetic algorithm (pGA)I Set:
©1,02,03 and impulse
Solution is evaluated to determine time by each leg
the best angle displacements and * &
impulse |I,egs 1 and 3 “l,egs 2 and 4|

Update
sensors

NO YES
Best solution ?
v YES
The central pattern generator
(CPG) is produced for the actuators
[

Synchronizer | [Synchronizer|
Legs 2 and 4 | |Legsland 3

Figure 14. Flowchart for the parallel algorithm

Four cores were enabled at the same time, and were used to execute the following tasks:

—_

. The first core executes the ysGA, finds the best solution, and generates the CPG for locomotion.

2. The second core takes the signals from the CPG and produces the electrical signals for the
actuators of legs 1 and 3.

3. The third takes the signals from the CPG and produces the electrical signals for the actuators of
legs 2 and 4.

4. The fourth core processes the sensor signals.

Each core executes a different task at the same time, in parallel. This reduces the processing time
in comparison to sequential processing

7. Experiments

In the first stage, the four bio-algorithms are evaluated by applying them to the locomotion of the
robot. The following process was used in the tests of the algorithms, which allowed for a comparison
between them in terms of performance:

. An initial population of 12 individuals is randomly generated.

. Each subsequent generation has 12 individuals.

. Each individual is formed of a string of 30 bits.

. In the usGA algorithm, each individual is formed of four bytes.

. Selection is applied based on elitism (the best individual per generation).

A crossover is applied to each individual, selected randomly.

Mutation is applied to a bit in each byte, selected randomly.

. The algorithm stops when a solution is found.

. Each algorithm is run 10 times and the average result was stored. Each algorithm was
implemented separately using the same prototype quadruped robot and executed on the mES.

. The GA, uAIS and usGA were executed to identify the generation (x axis) in which convergence

to the solution is reached, and the corresponding fitness of the best individual (y axis). The

fitness of the first three algorithms is calculated as 1073741824 (230) and the fourth is 255 (28). In

the case of uAlIS, the proposal of Herrera et al. was used [19], which considers five antibodies of

30 bits each and the same cloning and stranding operators.

O 0Nl WN

—
o

The second stage of experimentation involved comparing the sequential and parallel processing
times for the usGA algorithm.

1. Animpulse time I = 70 ms was set for both processes.
2. The usGA sequential algorithm shown in Figure 6 was implemented in the mES.

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

15 of 21

3. The time taken by the robot to move one meter in a straight line over a smooth surface was
measured for the sequential algorithm, and then for the parallel algorithm.

4. The test was executed five times, and a displacement-time speed data table was constructed for
each algorithm.

8. Discussion and results

Experiments on the four algorithms were carried out to identify the best performing algorithm in
terms of the shortest time and the lowest number of generations in which the solution for locomotion
is found. Figures 15 to 18 show these parameters.

The GA shows the worst performance of around 7.188 s, with 911 generations needed to obtain
the solution for locomotion. In these conditions, learning to walk is slow; it is not continuous, and
7.188 s is a long time for the generation of continuous locomotion (see the information in Figure 15).

The uGA and puAIS schemes have better performance, and find solutions in less than one second.
This allows for continuous robot locomotion, meaning that learning to walk is very fast, since each
solution was found in 73 generations, in less than one second (Figure 16).

GA standard t=7.188s

%10 5

o

o

=

e —e—TARGET=1073741823

—e—BEST INDIVIDUAL

7] 0 1 L 1 1 1
@ 0 10 20 30 40 50 60
£ x10°
L ol

S

w 5t

0 L

0 10 20 30 40 50 60
Generation

Figure 15. Evolution to a solution with GA, with individuals of 30 bits

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

16 of 21

ILGA 30 bits string, t=0.765 s

X105 T T T T T
(=]
o
S
Z ——TARGET = 1073741823
—+—BEST INDIVIDUAL
) - ' ' : :
@ 0 10 20 30 40 50 60
£ 4px10°
u T T T T T

0 10 20 30 . 40 50 60
Generation

Figure 16. Evolution to a solution with pGA

The AIS scheme found the solution in 0.327s and 55 generations (Figure 17).

wAlIS, t=0.327 s

x10 °

10}
o
o
(=
x Of
=z —a—-TARGET = 1073741823

—e—BEST INDIVIDUAL

a 0 : ' |
g 0 5 10 15 20
= qpx10°

10 15 20
Generation

Figure 17. Evolution to a solution with pAIS

Our proposed pusGA scheme found a solution in the shortest time of 0.131 s and 21 generations.
The usGA has several advantages; for example, it has the characteristics of the yGA approach. The
nominal convergence accelerates finding process and the general convergence resets the algorithm and
explore a new space of solutions. The second and main advantage is that the individual chains were
segmented into bytes to find the solution in a shorter time, rather than one individual of 32 bits. The
time to find the solution was reduced with the yGA from 0.7687 s to 0.131 s, as can be seen in Figure 18.

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

17 of 21

UsGA,t=0.131s

250F p
—-TARGET=255
= 200F —#-5S0 1
pd —o—S%
150} o3
g , L L
@ 0 5 10 15 20
£
iC
200+
S ES2
I 5 S
LHeo - S3
I SO
0 " n
0 5 10 15 20
Generation

Figure 18. Evolution to a solution with the segmented yGA approach

In the design of the GA, the time required to generate individuals is lower for an 8-bit string
than for a 32-bit string. If an individual is a large string, the processing time needed to generate the
population is longer; this concept allowed us to segmented the individuals, and required less time
(0.131 s) to generate the population, as can be seen in the last experiments with the usGA.

Another concept is the application of the genetic operators. Processing time can be reduced by
eliminating cyclic structures without neglecting the application of the operator to each individual. For
example, when applying the mutation, individuals with 32 bits must be accessed 32 times by every
other individual, as shown in Figures 11 and 12. The goal is to learn to walk as soon as possible. Table
2 summarizes the results of the experiments and describes the performance of the algorithms in terms
of finding the solution, based on the time and numbers of generations.

Table 2. Summary of experimental results

Algorithm GA uGA upAIS usGA

Generations 911 73 55 21
Time (seconds) 7.188 0.765 0.327 0.131

Two micro-algorithms were evaluated for robot locomotion: a #GA with 30-bit strings and the
usGA. In each experiment, the algorithm was executed ten times and the best individual was selected
based on its fitness. The algorithm stops when finds the solution. The program determines the number
of generations and the time required to find the solution, as shown in Table 3. In the case of uGA, the
individuals are strings of 32 bits. The algorithm is executed 10 times for each configuration, and each
generation is made up of 12 individuals

Table 3. Solution times for pGA with 30-bit strings

Result Generations Time (s)

Best 64 0.5800
Worst 163 0.9390
Average 106.1 0.7687

SD 33.12 0.1182

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

18 of 21

The solution was found in times ranging between 0.58 s and 0.9390 s, and numbers of generations
of between 64 and 144. In the second case, individuals were segmented into four bytes for the usGA
approach, and the results are shown in Table 4.

Table 4. Solution times from yusGA with segmeted strings

Result Generations Time (s)

Best 183.00 0.1860
Worst 375.00 0.6690
Average 280.30 0.4298
SD 56.91 0.1505

Solutions were found within times ranging between 0.186 s and 0.669 s, and numbers of
generations between 183 and 375. The time required to find the solution is reduced in usGA. As
shown in Table 4, the solution is obtained in less than one second that allows the robot to execute
locomotion. Solution times are in the range 0.186 to 0.669 s, i.e. less than in the first experiment.
However, the average numbers of generations used to find the solution for this case increases by a
factor of 2.5. This is as expected, since four values need to be found per individual.

The second experiment used sequential versus parallel processing. The speed of movement of the
quadruped robot using the sequential algorithm was between 3.1 and 3.3 cm/s with an impulse time
of 70 ms. This program has an operating range of t; =70 to 80 ms.

Table 5. Implementation times for sequential vs parallel versions

Sequential Parallel
Distance (m) Time (s) Speed (m/s) Time(s) Speed (m/s)
1 30 0.0333 23 0.0434
1 31 0.0322 23 0.0434
1 32 0.0312 21 0.0476
1 30 0.0333 23 0.0434
1 31 0.0322 20 0.0500

The speed of the quadruped robot with the parallel algorithm was between 4.3 and 5 cm/s with a
fixed value of ;=70 ms and an operating range of 60 to 150 ms. The results for both implementations
are presented in Figure 19. Execution times for the sequential and parallel programs are presented for
the experiment to measure the movement speed of the robot (Table 5). The parallel program gives a
speed that is 38 % higher than the sequential one, and the value of I; increases significantly to a range
of between 60 and 150 ms.

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

19 of 21

Processing time

m Sequential = Parallel

30 | ‘ | I ‘
0 I I I I I
1 2 3 4 5

Event

Time (s)
— — [|54
S ;=

N

Figure 19. Performance times sequential versus parallel processing.
9. Conclusions

The experimental results obtained from a performance comparison of bio-inspired micro
algorithms applied to robot locomotion show that the proposed usGA scheme obtained solutions
within a shorter processing time, and can be applied to individuals made up of binary chains. This
avoids the decoding process, and uses fewer cyclic structures when the genetic operators of mutation
and crossover are applied.

One contribution of this research in terms of hardware was the use of a minimal system with an
eight-core architecture rather than a computer, which enabled parallel processing by the four cores
of the embedded system. This enabled us to split the tasks and reduce the processing times. The
characteristics of the system improved i.e. the solutions to robot locomotion were found in less time
with parallel processing. The system also has a greater range of operation as the range of the impulse
time increased. The proposed psGA scheme is promising, as it can be implemented in new multi-core
embedded systems and generates continuous robot locomotion. The main conclusions from this work
are as follows:

1) Our proposed usGA has the best time performance of the four algorithms tested.
2) A minimal eight-core system was used for the algorithm for learning to walk.

3) The robot’s locomotion was found in less time using parallel processing.

4) The use of chain segmentation improves performance.

This work will continue in the future, with the robot learning to walk on different kinds of surfaces.
The system will save parameter data for walking, identifying the surface and configure itself. We
also have the option to focus on improving performance 4 by standardizing the genetic operators,
population size and generations ; if this micro algorithm is programmed in assembly language, this
will allow a more efficient use of embedded processor memory and thus reduce the execution time.

10. Author Contributions

Author Contributions: FA. and J. S. conceived the method and wrote the manuscript draft;, J. C.,
M.O. and D. L. helped to modify it; M.H. and L.R. performed the experiments and analysed the data.
All authors have read and approved the final manuscript.

11. Acknowledgments

The authors are grateful to the editor and the reviewers for their valuable comments and
suggestions, which have allowed us to significantly improve this paper. The authors would like
to thank Centro de Innovacién y Desarrollo Tecnolégico en Cémputo (CIDETEC), Instituto Tecnolégico

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

20 of 21

de Tlalnepantla del TecMN, Universidad Auténoma Metropolitana Lerma and CONACYT for financial
support for this research.

Abbreviations

The following abbreviations are used in this manuscript:

GA Genetic Algorithm

usGA Micro Segmented Genetic Algorithm
puAIS Micro Artificial Immune System
ABS Acrylonitrile Butadiene Styrene
mES multicore Embedded System

EAs Evolutionary Algorithms

CPG Central Pattern Generator

RWP Robot Walking Pattern

References

1. S-H. Liu. , M. Mernik and M. Crepinsek, “Exploration and exploitation in evolutionary algorithms: A
survey,” ACM Computing Surveys (CSUR), vol. 45, no. 3, pp. 1-35, 2013.

2. W.Liu, L. Zhou, H. Qian and Y. Xu, "Turning strategy analysis based on trot gait of a quadruped robot"
2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, pp. 1306-1311, 2017. doi:
10.1109/ROBIO.2017.8324598.

3. A.Mutka, M. Orsag and Z. Kovacic, “Stabilizing a quadruped robot locomotion using a two degree of
freedom tail,” IEEE, 21st Mediterranean Conference on Control and Automation, pp. 1336- 1342, 2013.

4. D.E. Golberg, “Genetic algorithms in search, optimization, and machine learning,” Addison Wesley, vol.
1989, p. 102, 1989.

5. A. Asteroth and A. Hagg. “How to successfully apply genetic algorithms in practice: Representation and
parametrization,” IEEE Int. Symp. on Innovations in Intelligent Systems and Applications (INISTA), pp.
390-395, 2015.

6. E. Burke, M. Gendrau and M. Hyde, “Hyper-heuristics: A survey of the state of the art”, Journal of the
Operational Research Society, vol. 64, no. 12, pp. 1695-1724, 2013.

7. F Ahmadi, R. Tati, S. Ahmadi and V. Hossaini, "New Hardware Engine for Genetic Algorithms," 2011
Fifth International Conference on Genetic and Evolutionary Computing, Xiamen, pp. 122-126, 2011. doi:
10.1109/ICGEC.2011.37.

8. P. Gumiel-Moreno, “Implementacién de técnicas de computacién evolutiva a la programacién automética
de un robot”, Universidad Carlos III de Madrid, Madrid Espafia, 2009.

9. H. Suzuki, H. Nishi, A. Aburadani and S. Inoue, "Animal Gait Generation for Quadrupedal Robot,"
Second International Conference on Innovative Computing, Information and Control, Second International
Conference on p. 20, 2007. doi: 10.1109/ICICIC.2007.169.

10. G. B. Parker and W. T. Tarimo, “Using Cyclic Genetic Algorithms to Learn Gaits for an Actual Quadruped,”
2011 IEEE International Conference on systems, Man, and Cybernetics, Anchorage, AK, pp. 1938-1943, 2011.
doi: 10.1109/ICSMC.2011.6083871.

11. C.Caiand H. Jiang, “Performance Comparisons of Evolutionary Algorithms for Walking Gait Optimization,”
2013 International Conference on Information Science and Cloud Computing Companion, Guandzhou, pp.
129-134, 2013. doi: 10.1109/ISCCC.2013.100.

12. M. Oliveira, C Santos and L. Costa, “Sensitivity analysis of multi-objective optimization of CPG parameters
for quadruped robot locomotion,” AIP Conference Proceedings. 1479. pp. 495-498, 2012. doi:
10.1063/1.4756175.

13. Ren, D.; Shao, J.; Sun, G.; Shao, X. The Complex Dynamic Locomotive Control and Experimental Research of
a Quadruped-Robot Based on the Robot Trunk. Appl. Sci. 2019, 9, 3911.

14. P. Gonzalez de Santos, E. Garcia and R. Ponticelli, “Minimizing energy consumption in hexapod robots,”
Advanced Robotics, vol. 23, no. 6, pp. 681-704, 2009. doi: 10.1163/156855309X431677.

https://doi.org/10.20944/preprints202003.0079.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2020 d0i:10.20944/preprints202003.0079.v1

21 of 21

15. L. Teng, X. Wu, W. Chen and J. Wang, "Center of gravity balance approach based on CPG algorithm
for locomotion control of a quadruped robot,” 2013 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, Wollongong, NSW, pp. 325-329, 2013. doi: 10.1109/AIM.2013.6584112.

16. W. Sheng, G. Howells, M. Fairhurst and F. Deravi, "A Memetic Fingerprint Matching Algorithm," in
IEEE Transactions on Information Forensics and Security, vol. 2, no. 3, pp. 402-412, 2007. doi:
10.1109/TIFS.2007.902681.

17. F. A. Chavez-Estrada,]. Sandoval Gutierrez, J. C. Herrera Lozada, J. A. Alvarez Cedillo and M. Olguin
Carbajal “The electric current as key parameter in the locomotion of a quadruped robot,” DYNA New
Technologies Esparia, vol. 3, no. 1, pp. 12-20, 2016. doi: http://dx.doi.org/10.6036 / NT8074.

18. X.Peng, X. Zheng, B. Wang, C. Zhou and Q. Zhang, "A micro-genetic algorithm for DNA encoding sequences
design", 2nd International Conference on Control Science and Systems Engineering (ICCSSE), Singapore, pp.
10-14, 2016. doi: 10.1109/CCSSE.2016.7784342.

19.]. C. Herrera-Lozada, H. Taud and H. Calvo, “A micro artificial immune system”, Polibits Journal, no 43, pp.
107-111, 2011. doi: 10.17562 /PB-43-15.

20. J. R. Koza, “Genetic programming: On the programming of computers by means of natural selection”,
Kluwer Academic Publishers, vol. 1, 1994. doi: 10.1007 /BF00175355.

21. S.Rutishauser, A. Sprowitz, L. Righetti and A. J. Ijspeert, "Passive compliant quadruped robot using Central
Pattern Generators for locomotion control”, 2nd IEEE RAS and EMBS International Conference on Biomedical
Robotics and Biomechatronics, Scottsdale, AZ, pp. 710-715, 2008. doi: 10.1109/BIOROB.2008.4762878.

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.
https://doi.org/10.20944/preprints202003.0079.v1

