
Article

Temporal convolutional networks applied to
energy-related time series forecasting

Pedro Lara-Benítez 1,†,* , Manuel Carranza-García 1,† , José M. Luna-Romera 1 and José C.
Riquelme 1

1 Division of Computer Science, University of Sevilla, ES-41012 Seville, Spain
* Correspondence: plbenitez@us.es
† These authors contributed equally to this work.

Abstract: Modern energy systems collect high volumes of data that can provide valuable information
about energy consumption. Electric companies can now use historical data to make informed
decisions on energy production by forecasting the expected demand. Many deep learning models
have been proposed to deal with these type of time series forecasting problems. Deep neural networks,
such as recurrent or convolutional, can automatically capture complex patterns in time series data
and provide accurate predictions. In particular, Temporal Convolutional Networks (TCN) are a
specialised architecture that has advantages over recurrent networks for forecasting tasks. TCNs
are able to extract long-term patterns using dilated causal convolutions and residual blocks, and
can also be more efficient in terms of computation time. In this work, we propose a TCN-based
deep learning model to improve the predictive performance in energy demand forecasting. Two
energy-related time series with data from Spain have been studied: the national electric demand, and
the power demand at charging stations for electric vehicles. An extensive experimental study has been
conducted, involving more than 1900 models with different architectures and parametrisations. The
TCN proposal outperforms the forecasting accuracy of Long Short-Term Memory (LSTM) recurrent
networks, which are considered the state-of-the-art in the field.
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1. Introduction

Forecasting electricity demand is currently amongst the most important challenges for the
industries. Due to the increasingly high level of electricity consumption, electrical companies need
to manage efficiently the production of energy. Sustainable production plans are required to meet
demands and account for important challenges of this century such as global warming and energy
crisis. Smart meters now provide useful data that can help to understand consumption patterns and
monitor power demand more efficiently. Data mining techniques can use this information to learn from
historical past data and predict the expected demand to make decisions accordingly. Obtaining accurate
forecasts can be essential for the future electricity market considering the increasing penetration of
renewable energies. However, forecasting power demand is a complex task that involves many factors
and requires sophisticated machine learning models to produce high-quality predictions.

Statistical-based models, such as the Box-Jenkins model called ARIMA, were for many years the
state-of-the-art for electricity time series forecasting [1,2]. However, machine learning models have
proven to provide better performance for problems of this domain. Artificial neural networks (ANNs)
[3], support vector machines (SVMs) [4,5] and regression trees [6] have been applied successfully for
diverse power demand prediction tasks. More recently, deep learning (DL) has emerged as a very
powerful approach for time series forecasting. DL models are especially suitable for big-data temporal
sequences due to their capacity to extract complex patterns automatically without feature extraction
pre-processing steps [7]. As an evolution from simple ANNs, deep fully connected networks have been
applied for load forecasting problems [8]. However, fully connected networks are unable to capture the
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temporal dependencies of a time series. Consequently, more specialised DL models such as recurrent
neural networks (RNNs) and convolutional neural networks (CNNs) started to gain importance in the
time series forecasting field. These networks can encode efficiently the underlying patterns of time
series by transforming the temporal problem into a spatial architecture [9].

In the recent literature, a significant amount of studies presenting results of the application
of RNNs to energy-related time series forecasting can be found [10,11]. Among all existing RNN
architectures, long short-term memory (LSTM) networks have been the most popular due to their
capacity to solve problems of previous RNN such as gradient explosion and vanishing gradient [12]. It
has been considered a standard forecasting model for several tasks such as traffic prediction [13], solar
power forecasting [14], financial market predictions [15] or electricity price prediction [16]. Although
CNNs were originally designed for computer vision tasks, they are also suitable for time series data
since they can extract high-level features from data with a grid topology. Despite the popularity of
RNNs, several works using convolutional networks can be found. In both [17,18], the authors proposed
CNN models for short-term load forecasting that provides comparable results to LSTM models. Other
works have been able to build deep convolutional networks than can outperform LSTM networks
for electricity demand [19] and solar power data problems [20]. Furthermore, in all these works, the
CNN models proved to be more suitable for real-time applications giving their faster training and
testing execution time. The properties of local connectivity and parameter sharing of convolutional
networks reduce the number of trainable parameters compared to RNNs, hence they can be trained
more efficiently. There have also been proposals using hybrid models that combine convolutional and
LSTM layers. In [21], the output features maps of a CNN are fed to a RNN that provides the prediction.
Other approaches consider combining the features extracted in parallel from a CNN and a LSTM
to improve the forecasting using electricity demand data [22] or financial data [23]. These ensemble
proposals can enhance the predictive performance by fusing the long-term patterns captured by the
LSTM and the local trend features obtained with the CNN.

More recently, a specialised CNN architecture known as temporal convolutional networks (TCN)
has acquired popularity due to their suitability to deal with time-series data. TCNs were first proposed
in [24], in which they are compared to several RNNs over sequence modelling tasks. TCNs use
causal dilated causal convolution in order to be able to capture longer-term dependencies and prevent
information loss. Furthermore, they present other advantages over RNNs such as lower memory
requirements, parallel processing of long sequences as opposed to the sequential approach of RNNs,
and a more stable training scheme. Several works have already used successfully TCNs for time series
forecasting tasks: the original architecture using stacked dilated convolutions was proposed in [25] to
improve the performance of LSTM networks for financial domain problems; [26] designed a deep TCN
for multiple related time series with an encoder-decoder scheme, evaluating over data from the sales
domain; the study in [27] proposes a multivariate time series forecasting model for meteorological data,
which outperforms several popular deep learning models. However, to the best of our knowledge, the
potential of TCNs has not yet been explored for univariate time series forecasting problems related to
electricity demand data.

In this work, we study the applicability and performance of TCNs for multi-step time series
forecasting over two energy-related datasets. With the first dataset, we build a deep learning model to
forecast the electricity demand in Spain based on the historical consumption data over five years. In
the second dataset, the problem is to forecast the expected energy consumption of charging stations for
electric vehicles in Spain. Our aim in this study is to present a deep learning model that uses a TCN
to obtain high accuracy on time series forecasting. We present the results obtained with several TCN
architectures and perform an extensive comparison with different LSTM models, which has been so
far the most extended approach for these type of problems. In the experimental study, we have carried
out an extensive parameter search process which involves 1998 different network architectures.

In summary, the main scientific contributions of this paper can be condensed as follows:
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• A temporal convolutional neural network model to achieve high accuracy in forecasting over
energy demand time series

• A thorough experimental study, comparing the performance of temporal convolutional with
long short-term memory networks for time series forecasting

The rest of the paper is organised as follows: Section 2 describes the materials used, the
methodology and the experiments carried out; in Section 3 the experimental results obtained are
reported and discussed; Section 4 presents the conclusions and future work.

2. Materials and Methods

In this section, we present the datasets selected for the study, the methodology to perform time
series forecasting using deep learning models, and the details of the experimental study carried out.

2.1. Datasets

In this subsection, we present the characteristics of the two energy-related datasets selected for
this study: the electric demand in Spain, and the power demand on charging stations for electric
vehicles.

2.1.1. Electric demand in Spain

The first dataset used in the experimental study covers the national electrical energy demand
in Spain ranging from 2014-01-02T00:00 to 2019-11-01T23:50. During this period, the consumption is
measured every ten minutes which makes a time series with a total length of 306721 measurements.
The data is provided by Red Eléctrica de España (the Spanish public grid) and publicly available at [28].
The dataset has been divided into two sets: the training set contains 245376 samples corresponding
to the period from 2014-01-02T00:00 to 2018-09-02T00:50; and the test set contains 61343 samples
comprising the period from 2018-09-02T01:00 to 2019-11-01T23:40. As it has been done in previous
studies using this data [29], we define the forecasting horizon to be 4 hours, which involves a prediction
of 24 time-steps.

Figure 1 plots the electric demand data at different scales. As can be seen, the time series presents
both weekly and daily seasonality. In general, the demand is higher at weekdays than at weekends
and it suffers a severe drop during night time every day.

2.1.2. Electric vehicles power consumption

The second dataset gathers information about power consumption in charging stations for electric
vehicles (EV) in Spain. This data has also been obtained from Red Eléctrica de España and can be found
at [30]. In the near future, governments will have to build infrastructures that can fulfil the demands of
the increasing EV fleet. Given their limited autonomy, the prediction of EV consumption seems crucial
to efficiently manage the power supply. In this article, we have followed the same steps to generate
the EV demand time series as in [31]. The data is collected hourly and ranges from 2015-03-02T00:00
to 2016-05-31T23:00. For each geographical area, we obtain a single value of power consumption for
every hour. Later, in order to obtain a single time series, the different zones have been aggregated
giving the total energy consumption of the Spanish EV. The forecasting horizon is set to be 48 hours,
which involves a prediction of 48 time-steps. The dataset has been divided into two sets: the training
set contains 8759 samples corresponding to the period from 2015-03-02T00:00 to 2016-02-29T23:00; and
the test set contains 2207 samples comprising the period from 2016-03-01T00:00 to 2016-05-31T23:00.

As can be seen in Figure 2, the time series presents weekly and daily patterns. Since electric
vehicles are most commonly charged at night, the time series presents peak values of demand during
the first six hours of each day. Only Sundays and Mondays present a slightly different pattern, as it is
displayed in Figure 2c.
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(a) Complete time series showing the evolution of the electric demand in Spain from 2014 to 2019.
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(b) Evolution of the electric demand in Spain during 2016.
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(c) Evolution of the electric demand during four different weeks of 2018.
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(d) Evolution of the electric demand within each day of the first week of February 2019.

Figure 1. Line plots illustrating the electric demand time series data at different scales.
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(a) Complete time series showing the evolution of EV power consumption from March 2015 to the end of May
2016.
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(b) Evolution of the EV power consumption during four different weeks.
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(c) Evolution of the EV power consumption within each day of the first week of February 2016.

Figure 2. Line plots illustrating the electric vehicle power consumption data at different scales.

2.2. Methodology

In this subsection we describe the required data preprocessing steps and the fundamental concepts
behind temporal convolutional networks.

2.2.1. Data preprocessing

In order to train a deep learning model that can predict several time-steps, a preprocessing stage
is needed to transform the original time series data. First, we perform min-max normalization to the
entire sequence to scale the values between 0 and 1, which helps to improve the convergence of deep
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networks. Secondly, we transform the sequence into instances that can be used to feed the network.
There exist several strategies to deal with multi-step forecasting problems [32]: the recursive strategy
that performs one-step predictions and feeds the result as the last input for the next prediction; the
direct strategy that builds one model for each time step; and the multi-output approach that outputs the
complete forecasting horizon vector using just one model. As suggested in recent forecasting studies
that use neural networks [33,34], in this work we adopt the MIMO strategy (Multi-Input Multi-Output)
that belongs to the last category. Instead of forecasting each time-step independently, the MIMO
approach can model the dependencies between the predicted values since it outputs the complete
forecasting window. Furthermore, this strategy avoids the accumulated errors over predictions that
appear in the recursive strategy.

Following this approach, a moving window scheme is used to create the input-output pairs that
will be fed to the neural network. All deep learning models used in this study accept as input a
fixed-length window and have an output dense layer with as many neurons as the forecasting horizon
defined for each problem (24 for electricity demand, and 48 for the electric vehicles demand). Figure 3
illustrates the process of applying the moving window over the complete time series. As can be seen,
the window slides and obtains an input-output instance at each position. While the output window
size is defined by the problem, the input window size has to be decided. The optimal value can be
different depending on the data, the designed model and the forecasting horizon. In our study, we
have experimented with three different sizes for the input window of each problem. The values have
been carefully selected considering the characteristics and seasonality of the datasets. For the electricity
demand, we evaluate using 144, 168 and 268 time-steps as input window (which corresponds to 24, 28
and 48 hours respectively). For the power demand of electric vehicles, we consider 168, 336, and 672
time-steps as input window (which corresponds to 7, 14 and 28 days respectively).

Figure 3. Moving window procedure that obtains the input-output instances. In this example the input
and output windows have length 7 and 3 respectively.
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2.2.2. Temporal Convolutional Neural Network

TCNs are a type of convolutional neural network with a specific design that makes them suitable
for handling time series. TCNs satisfy two main principles: the network’s output has the same length as
the input sequence (similarly to LSTM networks); and they prevent leakage of information from future
to the past by using causal convolutions [24]. Causal convolution differs from standard convolution in
the fact that the convolutional operation performed to obtain the output at time t does not take future
values as inputs. This implies that, using a kernel size k, the output Ot is obtained using the values
of Xt−(k−1), Xt−(k−2), . . . , Xt−1, Xt (Figure 4). Zero-padding of length k− 1 is used at every layer to
maintain the same length as the input sequence.

(a) Standard convolution block
with two layers with kernel size
3.

(b) Causal convolution block with
two layers with kernel size 3.

(c) Dilated causal convolution
block with two layers with kernel
size 2, dilation rate 2.

Figure 4. Differences between (a) standard convolutional network, (b) causal convolutional network
and (c) dilated causal convolutional network.

Furthermore, with the aim of capturing longer-term patterns, TCNs use one-dimensional dilated
convolutions. This convolution increases the receptive field of the network without using pooling
operations, hence there is no loss of resolution [35]. Dilation consist in skipping d values between
the inputs of the convolutional operation as can be seen in Figure 4c. The complete dilated causal
convolution operation over consecutive layers can be formulated as follows [36]:

xt
l = g

(
K−1

∑
k=0

wk
l x(t−(k×d))

(l−1) + bl

)
(1)

where xt
l is the output of the neuron at position (t) in the l-th layer; K is the width of the

convolutional kernel; wk
l stands for the weight of position (k); d is the dilation factor of the convolution;

and bl is the bias term. Rectified Linear Units (ReLU) layers are used as activation function (g(x) =
max(0, x)) [37]. Another common approach to further increase the network’s receptive field is to
concatenate several TCN blocks, as can be seen in Figure 5. However, this leads to deeper architectures
with many more parameters which complicates the learning procedure. For this reason, a residual
connection is added to the output of each TCN block. Residual connections were proposed by [38] in
order to improve performance in very deep architectures, and consist in adding the input of a TCN
block to its output ( o = g(x + F(x)) ).

All these characteristics make TCNs a very suitable deep learning architecture for complex
time series problems. The main advantage of TCNs is that, similarly to RNNs, they can handle
variable-length inputs by sliding the one-dimensional causal convolutional kernel. Furthermore,
TCNs are more memory efficient than recurrent networks due to the shared convolution
architecture which allows to process long sequences in parallel. In RNNs, the input sequences
are processed sequentially, which results in higher computation time. Moreover, TCNs are
trained with the standard backpropagation algorithm, hence avoiding the gradient problems of
the backpropagation-through-time algorithm (BPTT) used in RNN [39].
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Figure 5. TCN model with 3 stacked blocks. Each block has 3 convolutional layers with kernel size 2
and dilations [1, 2, 4].

2.3. Experimental study

In this subsection, we present the design of the experimental study carried out over the two
energy-related datasets. Furthermore, we also describe the details of the parameter search process for
each model architecture.

2.3.1. Models

The aim of this work is to build a TCN-based deep learning model that can achieve high
accuracy in energy demand forecasting tasks. In order to compare the effectiveness of TCNs for
this problem, we also evaluate the performance of recurrent LSTM networks, that have so far been
considered the state-of-the-art in forecasting. However, given the high complexity of deep learning
models, finding optimal values for the hyper-parameters of these networks is a very challenging
task. Therefore, we have conducted an extensive experimental study that involves more than
1900 combinations of parameters that build different convolutional and recurrent architectures. An
important hyper-parameter that is common to both types of architectures is the size of the input
window. The possible values for past history were defined in Section 2.1 depending on the data
characteristics and seasonality. Additionally, we have searched for the best values of several parameters
that are specific for TCN or LSTM architectures. In the case of TCNs, we have experimented with a
different number of filters and stacked residual blocks, kernel sizes, and dilations factors. In the case
of LSTMs, we have experimented with a different number of stacked layers and units. Furthermore,
we have also studied the effect of training parameters in the performance of all models, such as the
batch size and the number of epochs. The Adam optimizer has been selected for training the models,
which has an adaptive learning rate that can improve the convergence speed of deep networks [40].
The mean absolute error (MAE) has been used as the loss function for all experiments.

Table 1 displays all TCN architecture configurations that have been tested over both datasets.
The parameter search process has been designed considering the receptive field of neurons inside
the network, that can be calculated as follows: (receptive f ield = no. stacked blocks× kernel size×
last dilation f actor). Depending on the length of the past history window, we carefully select possible
values for kernel size, stacked blocks, and dilations so that the receptive field covers the whole input
sequence. For instance, if the number of stacked block increases, less dilated convolutional layers are
needed as can be seen in Tables 1a and 1b. All these architectures are then tested with all combinations
of parameters displayed in Table 1c that are common for both datasets (number of convolutional filters,
epochs, and batch size). Overall, 756 (28 models from table 7a × 3 numbers of filters × 3 batch size ×
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3 number of ephocs from table 1c) experiments with different configurations using TCNs have been
conducted for the electric demand dataset, and 513 (12 from table 7b × 3×3×3 from table 1c) for the
EV power consumption data.

Table 2 presents the parameters that have been studied for LSTM networks. Given the sequential
processing nature of these networks, they can effectively cover the complete input sequence and
capture long-term dependencies. Therefore, the parameter search, in this case, is based on trying
different combinations of LSTM units that can process sequences and feed the output to subsequent
stacked layers. We also consider the same possible values as above for the input window length. A
total of 243 (3 past history × 3×3×3 from table 2) experiments with different LSTM models have been
carried out for each dataset.

Table 1. Architecture configuration of all TCN models for each dataset and common parameter search.

(a) TCN architectures depending on the past history for
electric demand data.

Past history
TCN Model Architecture

Kernel size No. blocks Dilations

144

2 3 [1, 3, 6, 12, 24]

3

1 [1, 3, 6, 12, 24, 48]

2 [1, 3, 6, 12, 24]

3 [1, 2, 4, 8, 16]

4 [1, 3, 6, 12]

4
3 [1, 3, 6, 12]

4 [1, 3, 9]

6

1 [1, 3, 6, 12, 24]

2 [1, 3, 6, 12]

3 [1, 2, 4, 8]

4 [1, 3, 6]

168

2 3 [1, 5, 7, 14, 28]

3
1 [1, 5, 7, 14, 28, 56]

2 [1, 5, 7, 14, 28]

4 [1, 5, 7, 14]

4 3 [1, 5, 7, 14]

6
1 [1, 5, 7, 14, 28]

2 [1, 5, 7, 14]

4 [1, 5, 7]

288

2 3 [1, 3, 6, 12, 24, 48]

3
2 [1, 3, 6, 12, 24, 48]

3 [1, 2, 4, 8, 16, 32]

4 [1, 3, 6, 12, 24]

4 3 [1, 3, 6, 12, 24]

6

1 [1, 3, 6, 12, 24, 48]

2 [1, 3, 6, 12, 24]

3 [1, 2, 4, 8, 16]

4 [1, 3, 6, 12]

(b) TCN architectures depending on the past history for
EV power consumption data.

Past history
TCN Model Architecture

Kernel size No. blocks Dilations

168

2 3 [1, 5, 7, 14, 28]

3
1 [1, 5, 7, 14, 28, 56]

2 [1, 5, 7, 14, 28]

3 [1, 5, 7, 14]

4 3 [1, 5, 7, 14]

6
1 [1, 5, 7, 14, 28]

2 [1, 5, 7, 14]

4 [1, 5, 7]

336

2 3 [1, 5, 7, 14, 28, 56]

3
2 [1, 5, 7, 14, 28, 56]

4 [1, 5, 7, 14, 28]

4 3 [1, 5, 7, 14, 28]

6
1 [1, 5, 7, 14, 28, 56]

2 [1, 5, 7, 14, 28]

4 [1, 5, 7, 14]

672

3 4 [1, 5, 7, 14, 28, 56]

4 3 [1, 5, 7, 14, 28, 56]

6
2 [1, 5, 7, 14, 28, 56]

4 [1, 5, 7, 14, 28]

(c) Parameter search for TCN models.

TCN Parameters

No. of filters {32, 64, 128}

Batch size {64, 128, 255}

No. of epochs {25, 50, 100}

Table 2. Parameter search for LSTM models for both datasets.

LSTM Parameters

No. stacked layers {1, 2, 3}

LSTM Units {32, 64, 128}

Training parameters Batch size {64, 128, 256}

No. of epochs {25, 50, 100}
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2.3.2. Evaluation metric

For evaluating the predictive performance of all models we use the weighted absolute percentage
error (WAPE). This metric has been suggested by recent studies dealing with energy demand data
[31]. Electric industries are interested in knowing the deviation in watts for a better load generation
planning. Therefore, WAPE is very suitable for this context since it provides absolute error values.
WAPE can be defined as follows:

WAPE(y, o) =
MAE(y, o)
mean(y)

=
mean(|y− o|)

mean(y)
(2)

where y and o are two vectors with the real and predicted values respectively, that have a length equal
to the forecasting horizon.

3. Results and Discussion

This section reports and discusses the results obtained from the experiments carried out with the
different model architectures presented in the previous section. For all tests, we have used a computer
with an Intel Core i7-770K CPU and a NVIDIA GeForce GTX 1080 8GB GPU. The source code and the
complete experimental results report can be found at [41].

3.1. Forecasting accuracy
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(a) Results for the electric demand data.
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(b) Results for the EV power consumption data.

Figure 6. Distribution of WAPE results for all architectures depending on the past history window.

Figure 6 shows a comparison between the overall performance of TCN and LSTM models. It
presents the distribution of the results obtained for each dataset with all architectures depending on
the past history window length. In general, it can be seen that TCN models achieve a better predictive
accuracy compared to LSTM networks. In almost all cases, groups of different TCN architectures with
the same input window have a smaller deviation. This implies that TCN models are less sensitive to
the hyper-parameter selection as long as the past history remains fixed. The most robust performance
is given by TCN architectures using input windows of 288 for the electric demand data, and 168 for the
EV power demand data. Only in the case of the EV power consumption using a very long past history
(672 hours), TCN models struggle to get a stable performance. Using longer input windows implies
more trainable parameters and can complicate the learning procedure of very deep convolutional
networks. With respect to the LSTM models, the worst results are obtained when using the largest
history size. This suggests that the proposed recurrent networks are not able to process efficiently
long input sequences, and can better capture temporal dependencies using smaller windows. The
difference in performance between TCN and LSTM is higher in the electric demand dataset, which is
also the longest time series. This indicates that the acquisition of high volumes of data is a fundamental
step in order to obtain robust TCN-based deep learning models.
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Table 3 presents the TCN and LSTM architecture that obtained the best WAPE result for each
past history value. The highest accuracy for both datasets has been obtained with very similar TCN
architectures. In the case of the electric demand data, the best result (0.0093 WAPE) has been obtained
using 48 hours (288 time-steps) as past history. This TCN architecture, which is represented in Figure
7a has two residual blocks with five convolutional layers of kernel size 6, 128 filters and dilations of
1, 3, 6, 12 and 24. This model has been trained over 50 epochs with a batch size of 128 instances. In
contrast, the best LSTM model (0.0105 WAPE) for this dataset uses the smallest possible input window,
which is 24 hours. This LSTM model consists of 2 stacked layers with 128 units, and was trained over
50 epochs using 64 as batch size. In general, for this dataset, it can be seen that the best results have
been provided by stacking two or three layers that use the greatest amount of filters or units (128).
For TCNs, the highest kernel size (6) has proved to be the most effective for capturing local trend
patterns in this long time series with daily and weekly seasonality. Furthermore, TCN blocks needed
at least four convolutional layers with increasing dilation factors to achieve the highest accuracy. Both
types of networks achieve better results when training for 50 epochs, which suggest that an excessive
number of iterations may cause overfitting issues. Concerning the batch size, the optimal value is 128
for almost all cases. Deep networks lose generalisation capacity when trained using large batches since
they often converge to sharp minimizers [42], hence choosing smaller values can be beneficial.

For the electric vehicle power consumption data, the best result (0.4228 WAPE) has been obtained
with a past history of 14 days (336 time-steps). This TCN architecture, which is represented in Figure
7b, has two residual blocks with six convolutional layers of kernel size 3, 128 filters and dilations of
1, 5, 7, 14, 28, and 56. This model has been trained over 100 epochs with a batch size of 64 instances.
Similarly to the previous dataset, the best LSTM model (0.04317 WAPE) uses the smallest possible
input window, which is 7 days. This LSTM model consists of 2 stacked layers with 128 units, and
was trained over 50 epochs using 128 as batch size. Given the different nature of this dataset, the best
configurations of architectures present several differences. For TCNs, a smaller kernel was able to
extract the underlying patterns more accurately. Furthermore, a smaller batch size was better in almost
all cases since the EV time series has fewer instances to train with.

Table 3. WAPE results of the best TCN and LSTM models for each possible value of input window.

(a) Best results for electric demand data.

Past history Model description
WAPE

Time-steps Hours # Type Blocks Filters Kernel Dilations Batch size Epochs

144 24
1 LSTM 3 128 128 50 0.0105

2 TCN 2 128 6 [1, 3, 6, 12] 256 50 0.0104

168 28
3 LSTM 3 128 128 50 0.0109

7 TCN 2 128 6 [1, 5, 7, 14] 128 50 0.0096

288 48
5 LSTM 3 128 128 50 0.0151

6 TCN 2 128 6 [1, 3, 6, 12, 24] 128 50 0.0093

(b) Best results for the EV power consumption data.

Past history Model description
WAPE

Time-steps Days # Type Blocks Filters Kernel Dilations Batch size Epochs

168 7
7 LSTM 2 128 128 50 0.4317

8 TCN 1 128 3 [1, 5, 7, 14, 28, 56] 128 50 0.4272

336 14
9 LSTM 3 64 64 50 0.4429

10 TCN 2 128 3 [1, 5, 7, 14, 28, 56] 64 100 0.4228

672 28
11 LSTM 2 64 64 50 0.4336

12 TCN 2 64 6 [1, 5, 7, 14, 28, 56] 64 50 0.4319
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(a) Best TCN architecture for the electric demand data. (b) Best TCN architecture for the EV data.

Figure 7. Architecture of the best TCN model for each dataset.

In addition, Figure 8 shows the evolution of the training and validation loss for the best TCN
and LSTM models. These plots can help to compare the learning process of the different architectures
presented in 3. It can be seen that TCNs have a more stable loss optimisation procedure compared
to the LSTM models, which can be associated with the use of the standard backpropagation method.
The training curves of convolutional networks suffer fewer oscillations than the recurrent approach.
For the electric demand dataset, TCN models converge faster to a lower validation loss. However, for
the EV power demand data, LSTMs have an inferior validation loss at the initialisation point, hence
converge more rapidly.

In general, the obtained results demonstrate that TCN models can outperform the forecasting
accuracy of LSTM models. TCNs have shown a more reliable performance regardless of the selected
architecture and parametrisation. The dilated casual convolutions employed by TCNs were better at
capturing long-term dependencies than recurrent units. Other important conclusions can be drawn
from the experimental results of this study. As can be seen, the best LSTM models for both datasets
use the smallest possible input window. This indicates that the sequential processing of recurrent
networks is not optimal for dealing with very long input sequences. In contrast, the use of residual
connections in TCNs allows to increase the depth of the network and effectively encode longer
sequences. Furthermore, another aspect to consider is that the best performance was obtained when
stacked layers used as many filters or units as possible.
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Figure 8. Evolution of the training and validation loss function of the best TCN and LSTM models for
each possible value of past history. First row corresponds to the electric demand data (a, b, c), while
the second row corresponds to the EV power consumption data (d, e, f).

3.2. Computation time

Table 4. Computation time of the best TCN and LSTM models for each dataset. Prediction time
corresponds to the time that a model takes to compute a prediction for one instance. Training time
corresponds to the time that a model takes to run one training epoch.

(a) Computation time for electric demand data.

Past history Model
Trainable paramereters Prediction time (ms) Training time (s)

Time-steps Hours # Type

144 24
1 LSTM 332,824 0.859 52.24

2 TCN 1,694,448 0.566 87.29

168 28
3 LSTM 332,824 0.968 58.56

4 TCN 1,694,448 0.590 99.44

288 48
5 LSTM 201,240 0.775 62.70

6 TCN 2,121,200 0.672 109.2

(b) Computation time for EV power consumption data.

Past history Model
Trainable paramereters Prediction time (ms) Training time (s)

Time-steps Days # Type

168 7
7 LSTM 332,824 0.532 3.01

8 TCN 1,694,448 0.347 4.41

336 14
9 LSTM 332,824 1.020 6.76

10 TCN 1,694,448 0.836 10.49

672 28
11 LSTM 201,240 1.148 4.76

12 TCN 2,121,200 0.726 10.18
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The deep learning models proposed in this study have complex architectures that involve a high
computational cost. Therefore, it is also essential to evaluate the models in terms of computational
efficiency. Table 4 presents the training and prediction time for all the best TCN and LSTM that were
presented in the previous subsection. It also reports the number of trainable parameters to further
enhance the comparative study. For obtaining these computation times, the batch size has been fixed
to 128 instances for all models in order to perform fair comparisons. As can be seen, TCNs have far
more trainable parameters since their stacked blocks have many convolutional operations. This results
in higher training time compared to the LSTM models. The differences in training times are slightly
larger in the case of the electric demand data, considering that an epoch of this dataset involves many
more instances than the EV data. However, with respect to prediction time, TCN models are always
faster than recurrent networks. Regardless of the considerably higher number of parameters, TCNs are
able to provide very quick forecastings once they are trained. As it was expected, parallel convolutions
of TCNs can process long input sequences faster than the sequential processing of recurrent networks.
This seems an essential advantage for real-time applications, in which predictions need to be obtained
as soon as possible in order to make informed decisions.

4. Conclusions

In this paper, we proposed a deep learning model based on temporal convolutional networks
(TCN) to perform forecasting over two energy-related time series. The experimental study considered
two real-world time-series data from Spain: the national electric demand and the power demand at
charging stations for electric vehicles. An extensive parameter search was conducted in order to obtain
the best architecture configuration, testing more than 1200 different TCN models for both dataset.
Furthermore, the performance of these convolutional networks was compared in terms of accuracy and
efficiency with long short-term memory (LSTM) recurrent networks, that have so far been considered
the state-of-the-art for forecasting tasks.

The results of the experimental study carried out showed that TCNs outperformed the forecasting
accuracy of LSTM models for both datasets. The dilated causal convolutions used by TCNs were more
effective at capturing temporal dependencies than the recurrent LSTM units. Furthermore, TCNs
proved to be less sensitive to the parameter selection than LSTM models. Regardless of the chosen
values, the convolutional approach provided a more reliable performance. Moreover, we also aimed to
illustrate the importance of the size of the past history input window. Thanks to the use of residual
connections, TCNs provided better results when using longer input sequences. In contrast, LSTM
models were more accurate at encoding patterns when using smaller windows.

Regarding the computational efficiency, it was seen that TCN models have deeper architectures
with many more trainable parameters. This implied that the training procedure of a TCN was slightly
more costly. However, once TCNs were trained, they provided significantly faster predictions than
recurrent networks due to the use of parallel convolutions to process the input sequences. In conclusion,
our study demonstrated that TCNs are a very powerful alternative to LSTM networks. They can
provide more accurate predictions and are more suitable for real-time applications given their faster
predicting speed.

Future efforts on this path will be focused on analysing the use of ensembles of several TCN blocks
with different receptive fields, so that features at different scales could be extracted. Another interesting
future work could be the application of TCN networks in an online environment for real-time data
streaming forecasting. Moreover, further research should also study the suitability of TCN networks
for other problems like multi-variable time series forecasting or time-series classification.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network

CNN Convolutional Neural Network

DL Deep Learning

EV Electric vehicle

LSTM Long Short-Term Memory Network

MAE Mean Absolute Error

MIMO Multi-Input Multi-Output

RNN Recurrent Neural Network

SVM Support Vector Machine

TCN Temporal Convolutional Network

WAPE Weighted Absolute Percentage Error
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