

Using ISSR genomic fingerprinting to study the genetic differentiation of *Artemia* Leach, 1819 (Crustacea: Anostraca) from Iran and neighbor regions with the focus on the invasive American *Artemia franciscana*

Amin Eimanifar^{1*}, Alireza Asem^{2*}, Pei-Zheng Wang³, Weidong Li² and Michael Wink¹

¹ Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.

² College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China.

³ College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, China.

* equal contribution as the first author and corresponding author (A.E.: amineimanifar1979@gmail.com, A.A.: asem.alireza@gmail.com)

Abstract: Due to the rapid developments in aquaculture industry, *Artemia franciscana*, originally an American species, has been intentionally introduced to the Eurasia, Africa and Australia. In the present study, we used a partial sequence of the mitochondrial DNA *Cytochrome Oxidase subunit I* (mt-DNA *COI*) gene and genomic fingerprinting by Inter-Simple Sequence Repeats (ISSRs) to determine the genetic variability and population structure of *Artemia* populations (indigenous and introduced) from 14 different geographical locations in Western Asia. Based on the haplotype spanning network, *Artemia urmiana* has exhibited higher genetic variation than native parthenogenetic populations. Although *A. urmiana* represented a completely private haplotype distribution, no apparent genetic structure was recognized among the native parthenogenetic and invasive *A. franciscana* populations. Our ISSR findings have documented that despite invasive populations have lower variation than source population in Great Salt Lake (Utah, USA), they have significantly revealed higher genetic variability compare to the native populations in Western Asia. According to the ISSR results, the native populations were not fully differentiated by the PCoA analysis, but the exotic *A. franciscana* populations were geographically divided in four genetic groups. We believe that during the colonization, invasive populations have experienced substantial genetic divergences, under new ecological conditions in the non-indigenous regions.

Keywords: genetic variation; brine shrimp *Artemia*; invasive species; mt-DNA COI; Inter-Simple Sequence Repeats (ISSRs) genomic fingerprinting; Western Asia

1. Introduction

The brine shrimp *Artemia* is a unique zooplankton has the limited number of species, distributed globally, except in Antarctica [1]. This tiny crustacean has potentially adapted to live in the extreme environmental conditions such as hypersaline environments [2,3].

Artemia has been mainly used as a live food in larviculture and fishery industries, especially in Asia [46]. *Artemia* has been used to improve the quality of sodium chloride production in solar salt-fields [4,5]. It was also introduced as a model organism in many bioscience studies, including cellular and molecular biology [6], phylogeography and asexual evolution [7], bioencapsulation [8] and toxicity assessment [9].

The genus *Artemia* consists of seven bisexual species and a large number of parthenogenetic populations with different ploidy levels [3,10]. It has been assumed that Asia is the origin of *Artemia urmiana* Günther, 1899 (Lake Urmia, Iran), *Artemia sinica* Cai, 1989 (China), *Artemia tibetiana* Abatzopoulos, Zhang and Sorgeloos, 1998 (Qinghai–Tibetan Plateau, China), and corresponding parthenogenetic populations [3,11]. Recently, two new species, *Artemia frameshifta* and *Artemia murae* have been described from Mongolia [12]. These species have been described using a single mitochondrial DNA protein-coding *Cytochrome Oxidase subunit I (COI)* gene sequence without confirmation by any morphometric and population genetic analyses [see 11]. A main problem in the submitted *COI* sequence of *A. frameshifta* (LC195588) was detected in the protein sequence with several stop codon(s). In a protein coding gene, this is an indication for a nuclear copy of this mtDNA gene. Sometimes, the *COI* marker provides a sharp PCR amplified band on the agarose gel but the sequence information presents heterogeneities [44]. These kinds of results could mis-lead the interpretation of

downstream phylogenetic analyses. Therefore, population would need more biosystematic evidences to determine its taxonomical status. In *A. murae*, neither the existence of males nor the reproductive mode has been revealed [12]. Based on the current information, we assume that *A. murae* is a parthenogenetic population, which needs more investigations to confirm the biological status of the species.

Generally, the long-distance translocations of the American species *Artemia franciscana* to other non-indigenous regions has occurred as a result of commercial activities which have been fully documented, previously [2,13-16]. *Artemia franciscana* is a successful invader in saltwater ecosystems due to its faster filter-feeding rate, a high potential of reproduction [13,45], and a better physiological immune system which is associated with nutritional behavior against cestode parasites [13] than the native species. Asem et al. [15] have suggested that these biological characteristics could afford a high level of adaptive potential of *A. franciscana* in the new non-indigenous habitats, which would eventually result in the replacement with native species.

Lee [17] has documented that genetic structure of introduced populations to the non-indigenous habitats is one of the most determinative parameters in their successful establishment. Generally, genetic diversity of the species could determine the potential of an exotic species to acclimatize in the new environmental conditions [18].

Previous studies on *A. franciscana* have documented that invasive populations demonstrated genetic variations relative to the native American source populations [2,15,16,19-21]. The low genetic diversity in the non-indigenous populations has been attributed to the founder effect [19] or population bottleneck due to the decreasing of population size in introduced populations during the process of establishment [15].

Moreover, high genetic variation could be result of adaptive capacity and physiological flexibility as a special biological trait observed in invasive populations [2,5,21-23].

Eimanifar et al. [2] have reported the existence of invasive *A. franciscana* in four sites from Iran (3 sites) and Iraq (1 site) using the mitochondrial *COI* sequence marker. The aim of the present study was to further perform an analysis based on population genetic approaches to determine the intra- and inter-specific genetic variations of native and invasive *Artemia* populations from Iran and neighboring regions (14 sites) using Inter-Simple Sequence Repeats (ISSRs) genomic fingerprinting. Genomic fingerprinting by ISSR has been demonstrated to be a useful molecular tool to recognize DNA polymorphisms among *Artemia* taxa [24-27]. We hypothesize that the establishment of an exotic species in the new geographical habitats should be accompanied by intra-species genetic divergence to better adapt to the new environmental conditions. Here, we utilized high-resolution ISSR genomic fingerprinting to compare the genetic differentiation in relationship with native populations and colonized American *A. franciscana* in the indigenous environments.

2. Material and Methods

2.1. Sample collection and DNA extraction

Artemia cyst specimens were collected from 14 geographical localities across Iran and neighbor countries (Figure 1). All studied populations had been confirmed to be bisexual or parthenogenetic according by Asem et al. [3]. The sample localities with their geographical coordinates, abbreviations and IPMB voucher are summarized in Table 1. Total genomic DNA was extracted from part of the antenna of adult males and females using the Chelex® 100 Resin method (6%, Bio-Rad Laboratories, Hercules, CA, U.S.A.)

[16]. All extracted DNA was stored at -80 °C for subsequent genetic characterization.

2.2. Population identification and phylogenetic analyses

A partial sequence of the mitochondrial marker *cytochrome c oxidase subunit I (COI)* was utilized to identify the taxonomical status of the studied populations using phylogenetic analyses as implemented in MEGA X program [2, 15, 16]. To identify the taxonomical status of the studied populations, the *COI* reference sequences from the recognized bisexual species and parthenogenetic populations were downloaded from GenBank (Table 2). Sequences were aligned using MEGA X with default settings [28]. Phylogenetic trees were reconstructed based on Maximum Likelihood approach included in the MEGA X program. To reveal the genealogical and geographical relationships, a median haplotype network was established out following the median-joining algorithm in the Network program ver. 5.0.1.1 [29].

2.3. Genomic fingerprinting by ISSR-PCR

Genomic variability was examined by inter simple sequence repeat ISSR-PCR using the same DNA template used for phylogenetic analyses. Initially, 15 ISSR primers were analyzed to distinguish the intra- and inter-specific genetic variability within and among 83 randomly selected individuals, belonging to 14 geographically different localities of *Artemia*. Out of 15 tested ISSR primers, five were selected because of unambiguous banding patterns of the PCR products (Table 3).

PCR was carried out in a 25 µl volume consisting of 40 ng template DNA, 2.5 µl 10× PCR buffer [160 mM (NH₄)₂SO₄, 670 mM Tris-HCl pH 8.8, 0.1 % Tween-20, 25 mM

MgCl_2), 10 pmol primer, 2 $\mu\text{g}/\mu\text{l}$ bovine serum albumin (BSA), 0.5 units *Taq* DNA polymerase (Bioron), 0.1 mM dGTP, dCTP, and dTTP, 0.045 mM dATP, 1 μCi [α -33P]-dATP (Perkin Elmer, LAS, Rodgau, Germany). PCR amplifications were executed in a thermal cycler based on the following conditions: 94 °C denaturation for 1 min., 35 cycles of 46-54 °C annealing for 50 s and 72 °C extension for 2 min. The final cycle was continued for 7-min at 72 °C. Final PCR products were mixed with 8 μl bromophenol blue and run on a high-resolution denaturing polyacrylamide gels 6 % (0.2 mm) for 3 h at 65 W (size 45×30 cm) including 1× TBE buffer. The gels were dried and exposed for 2 days to X-ray hyperfilm (Kodak, Taufkirchen, Germany) and subsequently developed. Finally, the autoradiograms were scanned to identify the polymorphic bands [25].

2.4. ISSR statistics

The quality and quantity of ISSR bands were inspected, visually. Ambiguous and smeared bands were excluded from the analysis and only unequivocally reproducible bands were scored for each individual as present (1) or absent (0). The binary data matrix (presence = 1; absence = 0) was formulated in MS Excel v.2016 and used for subsequent genetic analyses.

ISSR data were analyzed via Bayesian model-based clustering algorithm as implemented in STRUCTURE v. 2.3 program [30,31]. We analyzed genetic structure among populations by assigning individuals into potential numbers of clusters ($K = 1-10$). ISSR genotypes were processed with a period of burn-in 50,000 and 100,000 MCMC repetitions [32]. CLUMPAK online program was employed to identify the pattern of clustering modes and packaging population structure [33]. The online programs, STRUCTURE HARVESTER [34] and CLUMPAK [33] were implemented to assess and

visualize the most appropriate number of K by calculating the likelihood of the posterior probability [35].

The binary data matrix was employed to calculate the genetic diversity parameters of each population using GenAlex ver. 6.5 [36]. The population genetic parameters were as follows: Na (number of different alleles), Ne (number of effective alleles), I (Shannon's information index), He (expected heterozygosity), uHe (unbiased expected heterozygosity), PPL (percentage of polymorphic loci), NB (number of bands) and NPB (number of private bands) and pairwise population matrix of *Nei* genetic distance [25,26].

Intra- and inter-specific molecular variations and genetic relationships among populations were implemented by Principal Coordinate Analysis (PCoA) and Analysis of Molecular Variance (AMOVA) as utilized by GenAlex ver. 6.5, respectively [36].

To better understand the population genetic variations, ISSR analyses were performed on three platforms separately, as follows: whole populations, native populations and invasive American *A. franciscana*.

3. Results

3.1. Phylogenetic analyses and haplotype distribution

Our phylogenetic analyses provides evidence that the studied bisexual specimens from three localities of Iran, Nough Catchment (NOG), MSH (Mahshar port) and Maharlu Lake (MAHR), and a locality from Iraq ,Garmat Ali (GAA), clustered in the clade of *A. franciscana* (Figure 2). In addition, all parthenogenetic populations clustered in two separated clades, which they shared with a common ancestor with *A. urmiana*. Given that all parthenogenetic populations were located in a single clade (P1), the majority of CAM

specimens (eight out of nine) were grouped in a distinct clade (P2) close to *A. urmiana*.

The clade P1 contained two sub-clades, consisting of diploids and triploid populations.

Figure 3 represents the haplotype spanning network of *COI* among native *A. urmiana* and parthenogenetic populations. Results demonstrated that *A. urmiana* has wider genetic variation compared to parthenogenetic ones. Genetic differentiation and a close relationship of Camaltı Lake (CAM) population (Turkey) with *A. urmiana* was clearly revealed in the tree. While *COI* sequences of nine parthenogenetic populations were distributed in five Haplotypes (H2-6), *A. urmiana* showed private haplotypes without a shared haplotype in other populations. The *COI* sequences of invasive *A. franciscana* were grouped in six distinct haplotypes. No population with private haplotypes was observed (Figure 4). The numbers of individuals and population composition were calculated for each haplotype (Tables S1 and S2).

3.2. ISSR profiling

We could show previously, that ISSR can detect substantial genetic variation in the genus *Artemia* [25,26]. ISSR fingerprints can differ within and among populations. Altogether, 152 observed and unambiguously identified ISSR bands were analyzed. The total number of polymorphic loci showed a mean value of $25.42\% \pm 2.28$; the lowest number was seen in Camaltı Lake (CAM) (7.24 %) and the highest in Nough Catchment (NOG) (38.82 %). Generally, the lowest values of genetic indices belonged to the parthenogenetic CAM, while the highest values were shared between native parthenogenetic population from Eastern lagoon around Urmia Lake (LAGE) ($Ne = 1.256 \pm 0.031$, $I = 0.208 \pm 0.024$, $He = 0.143 \pm 0.017$, $uHe = 0.171 \pm 0.020$) and invasive *A. franciscana* from NOG ($Na = 1.013$

± 0.071 , $I = 0.208 \pm 0.023$) (Table 4). In summary, 134 and 126 distinguished ISSR bands were examined for ten native and four American *A. franciscana* populations, respectively (Tables 5 and 6). According to the results of *Nei* genetic matrix, parthenogenetic CAM from Turkey and invasive GAA from Iraq showed the high genetic distance with parthenogenetic and invasive populations, respectively (Tables 7 and 8).

Based on total results of ISSR, the AMOVA analysis documented that most of the genetic variations were attributed among native and invasive populations (69 % vs 31 %). There was no indicative genetic variability observed in the midst of among- and within variation (55 % vs 45 %) in native populations. In contrast, the high differentiation was represented within populations (71 % vs 29 %) of non-indigenous *A. franciscana* in Asia (Table 9a-c, Figure 5a-c).

Bayesian clustering analysis using STRUCTURE was performed to investigate the genetic patterns of the studied populations. The optimum K was obtained at $K= 2$ for the whole 14 populations and ten native populations, and $K= 9$ for four invasive *A. franciscana*, respectively. Figure 6 showed the clustering of genetic structures, where the first highest posterior probability (K) was represented by different colors for each population. With regard to the genetic patterns of ISSR, native and exotic populations could be completely divided in two groups (Figure 6a). The results of analysis for native populations documented that parthenogenetic CAM is a distinct population with a differing clustering pattern. The STRUCTURE analysis could not fully distinguish *A. urmiana* and parthenogenetic populations (Figure 6b). The high value of optimum K ($K= 9$) was prominent in clustering analysis for *A. franciscana* populations, which generally revealed a complex pattern (Figure 6c). Proportions of genetic clusters (percentage) for

each locality were summarized in Figure 7 (see also Tables S3-5).

The first and second PCoA coordinates consisted of 64.66 % and 7.00 % of the variance, respectively (overall 71.66 % of total variation). The results showed all populations clustered into three groups, where invasive *A. franciscana* has been significantly separated from the native populations based on the first coordinate. Ten native populations (including *A. urmiana* and parthenogenetics) were divided in two distinct groups, G2 and G3. G2 included all CAM population and single individual of Eastern lagoon around Urmia Lake (LAGE). Bisexual *A. urmiana* and other parthenogenetics were placed in G3 (Figure 8). The results of the separate analyses of PCoA for native and invasive populations are shown in Figures 9 and 10, which include overall 42.55 % and 41.55 % of total variation, respectively. Although native populations produced almost the same result with the "whole populations" analysis (Figure 9), the separated analyses of PCoA for invasive *A. franciscana* could separate all four populations in isolated groups (Figure 10).

4. Discussion

The present study was performed to compare the population structure and genetic differentiation of native and invasive *Artemia* populations. Mitochondrial *COI* gene has been established as a useful molecular marker to determine the intra- and inter-specific evolutionary associations [2,3,15,16]. Asem et al. [2] have documented that di- and triploid parthenogenetic brine shrimps are maternally related to *A. urmiana*, while tetra- and pentaploid lineages shared a common maternal ancestor with *A. sinica*. Based on the mitochondrial *COI* dataset, all examined parthenogenetic individuals have grouped in a

close evolutionary relationship with *A. urmiana* (Fig. 2). Our results have demonstrated that they should include di- and/or triploids, which these have been also confirmed by phylogenetic tree. Although individuals of eight *Artemia* populations have been exactly located in sub-clades of di- and/or triploid, eight out of nine specimens of CAM from Turkey have been placed in a particular clade (P2), in a close connection with *A. urmiana* (Figure 2). This finding has also been confirmed by haplotype distribution (Figure 3). Previously, Sayg [37] has confirmed that triploid and pentaploid parthenogenetic populations coexisted in Camaltı Lake (CAM). Our observation has confirmed that Camaltı Lake (CAM) populations had a parthenogenetic reproductive mode and those examined specimens should be considered as a diploid and/or triploid population [see 3]. Despite, *A. urmiana* shared a common ancestor with di- and triploids, *A. urmiana* has represented an unexpectedly high level of haplotype diversity of *COI* marker. These results have also documented by Eimanifar and Wink [25]. The high level of haplotype variation might be attributed to the evolutionary life history of *A. urmiana* [27] and/or its large population size [25]. Urmia Lake has undergone considerable changes in environmental conditions such as salinity and temperature [38,39], which could have influenced genetic variation and population size during evolution.

Although *COI* sequences should reveal a phylogeographic structure in the closely related species [40], our results could not determine a level of geographical differentiation among native as well among invasive populations. Contrary to the results of mitochondrial marker, genomic fingerprinting ISSR could not reveal a significant high level of genetic variation in *A. urmiana*. This result might be due to differences in the rate of variation of mitochondrial and nuclear genes and potential hybridization events in the

past.

Similar to the phylogeny based on *COI* sequences, clustering analysis of ISSR sequences by STRUCTURE has revealed a distinguished structure for non-indigenous *A. franciscana* populations. In this analysis all native populations (bisexual *A. urmiana* and parthenogenetic ones) have displayed almost similar patterns, but a separated analysis for native populations has revealed a non-identical structure for CAM population. Additionally, an inconsistent pattern of Eastern lagoon around Urmia Lake (LAGE) was also observed. A separated analysis for invasive populations could not reveal different patterns among examined populations by STRUCTURE (Figure 6a-c). On the other hand, PCoA has divided *A. franciscana* from native populations. Although PCoAs could not branch off natives by localities, the separated PCoA has divided invasive populations based on localities in the four groups. Contrary to *COI* haplotype distribution, ISSR marker was unable to reveal a private pattern for bisexual *A. urmiana*, in comparison to native parthenogenetic populations.

In general, it was reported that the invasive populations have lower genetic variation in the new environments as compared with their origin populations [41]. The colonized population of *A. franciscana* in Vietnam has a lower genetic diversity than its native source population from San Francisco Bay (SFB) [19]. In contrast, Eimanifar et al. [2] have documented that Asian invasive *A. franciscana* populations had higher genetic variation than American Great Salt Lake (GSL) population and native Asian species. Similar results have been reported for some invasive populations from Mediterranean regions [20,21]. A recent study assumed that invasive populations of *A. franciscana* show a wide degree of genetic differentiation in Australia [15].

The ISSR method had been utilized to study of ten diploid parthenogenetic *Artemia* populations from China by Hou et al. [24]. Their genetic variation was significantly higher than our parthenogenetic populations. For example, percentage of polymorphic loci ranged from 54.12 %-87.06 % vs 8.21 %-39.55 %. Western Asia is the origin of di- and triploid parthenogenetic populations [3], so high genetic diversity of Chinese populations could be the result of their adaptation during colonization through biologically dispersal to the new environments in East Asia under historical evolutionary progress.

Overall, our ISSR results have documented that invasive *A. franciscana* populations had distinctly higher genetic variation than Western Asian native parthenogenetic populations. On the other hand, native *A. franciscana* from Grate Salt Lake (GSL) have represented higher variation than examined invasive populations in this study, as percentage of polymorphic loci differed from 67 %-81 % vs. 30.95 %-46.83 % [see 26]. Additionally, all four invasive *A. franciscana* populations clearly revealed different genetic structure. Observation of low genetic diversity in native populations might be attributed to the effect of asexual reproduction in parthenogenetic populations and/or critical climatic conditions in West Asia, especially Urmia Lake in the last two decades [see 3,27] We believe that interactions between different ecological conditions in the new environments and high potential of physiological plasticity and genetic adaptation of *A. franciscana* could exert different evolutionary pathways during introduction of exotic populations, which had ultimately caused intra-specific variations and genetic divergence in the examined invasive populations.

In conclusion, it is expected that the non-indigenous species should have a lower

genetic variation than their source populations [22,41,42]. However, non-indigenous *A. franciscana* populations gave opposite results in comparison with native populations from GSL and SFB. Since there is neither a taxonomical identification key nor morphological identifications to distinguish bisexual species and parthenogenetic populations [10,43], it would not be possible to identify the exotic population at the earliest time of invasion. Therefore, there is a lack of information to regularly determine the colonization progress and evolutionary development of *A. franciscana* in the new habitats. We assume that differences in the genetic variation of non-indigenous populations could be due to the study on different invasion periods consisting of i) introduced, ii) establishing/colonizing, iii) established/colonized populations.

Author Contributions: Designed the research, Material preparation, data collection were performed by AA. Data analysis carried out by AA. The first draft of the manuscript was written by AA and AE. P-Zh.W., W.L. and M.W. reviewed draft. All authors read and approved the final manuscript.

Funding: This study was carried out at IPMB, Department of Biology, University Heidelberg and A/10/97179. Amin Eimanifar was supported by a Ph.D. fellowship from the Deutscher Akademischer Austauschdienst (DAAD, German Academic Exchange Service).

Conflicts of Interest: The authors declare no conflict of interest. M.W. is Editor-in-Chief of *Diversity*.

References

- 1) Van Stappen, G. Zoogeography. In *Artemia: Basic and Applied Biology*, Abatzopoulos, T.J., Beardmore, J.A., Clegg, J.S., Sorgeloos, P., Eds.; Kluwer Academic Publishers, Dordrecht, the Netherlands, 2002, pp. 171–224.
- 2) Eimanifar, A.; Van Stappen, G.; Marden, B.; Wink, M. *Artemia* biodiversity in Asia with the focus on the phylogeography of the introduced American species *Artemia franciscana* Kellogg, 1906. *Molecular Phylogenetics and Evolution* **2014**, *79*, 392–403.
- 3) Asem, A.; Eimanifar, A.; Sun, S.C. Genetic variation and evolutionary origins of parthenogenetic *Artemia* (Crustacea: Anostraca) with different ploidies. *Zoologica Scripta* **2016**, *45*, 421–436.
- 4) Jones, A.G.; Ewing, C.M.; Melvin, M.V. Biotechnology of solar saltfields. *Hydrobiologia* **1981**, *81–82*, 391–406.
- 5) Ruebhart, D.R.; Cock, I.E.; Shaw, G.R. Invasive character of the brine shrimp *Artemia franciscana* Kellogg 1906 (Branchiopoda: Anostraca) and its potential impact on Australian inland hypersaline waters. *Marine and Freshwater Research* **2008**, *59*, 587–595.
- 6) Li, D.R.; Ye, H.L.; Yang, J.S.; Yang, F.; Wang, M.R.; De Vos, S.; Vuylsteke, M.; Sorgeloos, P.; Van Stappen, G.; Bossier, P.; Yang, W.J. Identification and characterization of a *Masculinizer* (*Masc*) gene involved in sex differentiation in *Artemia*. *Gene* **2017**, *614*, 56–64.
- 7) Kappas, I.; Baxevanis, D.; Abatzopoulos, T.J. Phylogeographic patterns in *Artemia*: a model organism for hypersaline crustaceans. In *phylogeography and population genetics in Crustacea*. Koenemann, S., Schubart, C., Held, C. Eds.; CRC Press, Boca Raton, USA,

2011, pp. 233–55.

8) Vazquez-Silva, G.; Aguirre-Garrido, J.F.; Ramirez-Saad, H.C.; Mayorga-Reyes, L.; Azaola-Espinosa, A.; Morales-Jiménez, J. Effect of bacterial probiotics bioencapsulated in *Artemia franciscana* on weight and length of the short fin silverside (*Chirostoma humboldtianum*) and the characterization of its intestinal bacterial community by DGGE. *Latin American Journal of Aquatic Research* **2018**, *45*, 1031–1043.

9) Rajabi, S., Ramazani, A., Hamidi, M., and Naji, T. *Artemia salina* as a model organism in toxicity assessment of nanoparticles. *Journal of Pharmaceutical Sciences* **2015**, *23*, 1-20.

10) Asem, A.; Rastegar-Pouyani, N.; De los Rios, P. The genus *Artemia* Leach, 1819 (Crustacea: Branchiopoda): true and false taxonomical descriptions, *Latin American Journal of Aquatic Research* **2010**, *38*, 501–506.

11) Asem, A.; Eimanifar, A.; Rastegar-Pouyani, N.; Hontoria, F.; De Vos, S.; Van Stappen, G. Sun, S.C. An overview on the nomenclatural and phylogenetic problems of native Asian brine shrimps of the genus *Artemia* Leach, 1819 (Crustacea: Anostraca). *Zookeys* **2020**, *902*, 1–15. DOI 10.3897/zookeys.902.34593

12) Naganawa, H.; Mura, G. Two new cryptic species of *Artemia* (Branchiopoda, Anostraca) from Mongolia and the possibility of invasion and disturbance by the aquaculture industry in East Asia. *Crustaceana* **2017**, *90*, 1679–1698.

13) Sanchez, M.I.; Paredes, I.; Lebouvier, M.; Green, A.J. Functional role of native and invasive filter-feeders, and the effect of parasites: learning from hypersaline ecosystems. *PLoS ONE* **2016**, *11*, e0161478. doi:10.1371/journal.pone.0161478

14) Horvath, Z.; Lejeusne, C.; Amat, F.; Sanchez-Fontenla, J.; Vad, C.F.; Green, A.J.

Eastern spread of the invasive *Artemia franciscana* in the Mediterranean Basin, with the first record from the Balkan Peninsula. *Hydrobiologia* **2018**, *822*, 229–235.

- 15) Asem, A.; Eimanifar, A.; Li W.; Wang, P.; Brooks, S.A.; Wink, M. Phylogeography and population genetic structure of an exotic invasive brine shrimp *Artemia* Leach, 1819 (Crustacea: Anostraca) in Australia. *Australian Journal of Zoology* **2018**, *66*, 307–316.
- 16) Saji, A.; Eimanifar, A.; Soorae, P. S.; Al Dhaheri, Sh.; Asem, A. Phylogenetic Analysis of exotic invasive species of Brine Shrimp *Artemia* Leach, 1819 (Branchiopoda, Anostraca) in Al Wathba Wetland Reserve (UAE; Abu Dhabi). *Crustacean* **2019**, *92*, 495–503.
- 17) Lee, C.E. Evolutionary genetics of invasive species. *Trends Ecol. Evol.* **2002**, *17*, 386–391.
- 18) Lavergne, S.; Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. *PNAS* **2007**, *104*, 3883–3888.
- 19) Kappas, I.; Abatzopoulos, T.J.; Van Hoa, N.; Sorgeloos, P.; Beardmore, J.A. Genetic and reproductive differentiation of *Artemia franciscana* in a new environment. *Mar. Biol.* **2004**, *146*, 103–117.
- 20) Hontoria, F.; Redón, S.; Maccari, M.; Varó, I.; Vavarro, C.J.; Ballell, L.; Amat, F. A revision of *Artemia* biodiversity in Macaronesia. *Aquat Biosystems* **2012**, *8*, 25. DOI 10.1186/2046-9063-8-25
- 21) Muñoz, J.; Gómez, A.; Figuerola, J.; Amat, F.; Rico, C.; Green, A.J. Colonization and dispersal patterns of the invasive American brine shrimp *Artemia franciscana* (Branchiopoda: Anostraca) in the Mediterranean region. *Hydrobiologia* **2014**, *726*, 25–41.
- 22) Dlugosch, M.K.; Parker, M.I. Founding events in species invasions: genetic variation,

adaptive evolution, and the role of multiple introductions. *Mol Ecol* **2008**, *17*, 431–449.

23) Vikas, P.A.; Sajeshkumar N.K.; Thomas P.C.; Chakraborty K.; Vijayan K.K. Aquaculture related invasion of the exotic *Artemia franciscana* and displacement of the autochthonous *Artemia* populations from the hypersaline habitats of India. *Hydrobiologia* **2012**, *684*:129–142.

24) Hou, L.; Li, H.; Zou, X.; Yao, F.; Bi, X.; He, C. Population genetic structure and genetic differentiation of *Artemia parthenogenetica* in China. *Journal of Shellfish Research* **2006**, *25*, 999–1005.

25) Eimanifar, A.; Wink. M. Fine-scale population genetic structure in *Artemia urmiana* (Günther, 1890) based on mtDNA sequences and ISSR genomic fingerprinting. *Org Divers Evol* **2013**, *13*, 531–543.

26) Eimanifar, A.; Marden, B.; Braun, M.S.; Wink, M. Analysis of the genetic variability of *Artemia franciscana* Kellogg, 1906 from the Great Salt Lake (USA) based on mtDNA sequences, ISSR genomic fingerprinting and biometry. *Marine Biodiversity* **2015**, *45*: 311–319.

27) Asem, A.; Eimanifar, A.; Van Stappen, G.; Sun S.C. The impact of one-decade ecological disturbance on genetic changes: a study on the brine shrimp *Artemia urmiana* from Urmia Lake, Iran. *PeerJ* **2019**, *7*:e7190 DOI 10.7717/peerj.7190

28) Kumar, S.; Stecher, G.; Li M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. *Mol. Biol. Evol.* **2018**, *35*, 1547–1549.

29) Bandelt, H.J.; Forster, P.; Rohl, A. Median-joining networks for inferring intraspecific phylogenies. *Mol Biol Evol* **1999**, *16*, 37–48. DOI

10.1093/oxfordjournals.molbev.a026036

- 30) Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. *Genetics*, **2000**, *155*, 945–959.
- 31) Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: dominant markers and null alleles. *Molecular Ecology Notes*, **2007**, *7*: 574–578.
- 32) Jonathan, K.P.; Matthew, S.; Peter, D. Inference of population structure using multilocus genotype data. *Genetics*, **2000**, *155*, 945–959.
- 33) Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. *Molecular Ecology Resources* **2015**, *15*, 1179–1191.
- 34) Earl, D.A.; vonHoldt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genet. Resour.* **2012**, *4*, 359–361.
- 35) Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Mol Ecol* **2005**, *14*, 2611–2620.
- 36) Peakall, R.; Smouse, P.E. GenAIEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. *Bioinformatics*, **2012**, *28*, 2537-2539.
- 37) Sayg, Y. Characterization of parthenogenetic *Artemia* populations from Camaltı (Izmir, Turkey) and Kalloni (Lesbos, Greece): survival, growth, maturation, biometrics, fatty acid profiles and hatching characteristics. *Hydrobiologia* **2004**, *527*, 227–239,
- 38) Kelts, K.; Shahrabi, M. Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran. *Paleogeography, Paleoceanography and Paleoecology*, **1986**, *54*, 105–

130.

39) Djamali, M.; Kürschner, H.; Akhani, H.; De Beaulieu, J.L.; Amini, A.; Andrieu-Ponel, V., Ponel, P.; Stevens, L. Palaeoecological significance of the spores of the liverwort *Riella* (Riellaceae) in a late Pleistocene long pollen record from the hypersaline Lake Urmia, NW Iran. *Review of Palaeobotany and Palynology* **2008**, *152*, 66–73.

40) Hebert, P.D.N.; Ratnasingham, S.; Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. *Proceedings of the Royal Society of London, Series B: Biological Sciences* **2003**, *270*, 96–99.

41) Golani, D.G.; Azzurro, E.; Corsini-Foka M.; Falautana, M.; Andaloro, F.; Bernardi, G. Genetic bottlenecks and successful biological invasions: the case of a recent Lessepsian migrant. *Biol Lett* **2007**, *3*, 541–545.

42) Rattanawanee, A.; Duangphakdee, O.; Chanchao, C.; Teerapakpinyo, C.; Warrit, N.; Wongsiri, S.; Oldroyd, B.P. Genetic Characterization of Exotic Commercial Honey Bee (Hymenoptera: Apidae) Populations in Thailand Reveals High Genetic Diversity and Low Population Substructure. *Journal of Economic Entomology* **2020**, *113*, 34–42.

43) Asem, A.; Sun, S.C. Morphological differentiation of seven parthenogenetic *Artemia* (Crustacea: Branchiopoda) populations from China, with special emphasis on ploidy degrees. *Microscopy Research and Technique* **2016**, *79*, 258–266.

44) Wang, W.; Luo, Q.; Guo, H.; Bossier, P.; Van Stappen, G.; Sorgeloos, P.; Xin, N.; Sun, Q.; Hu, S.; Yu, J. Phylogenetic analysis of brine shrimp (*Artemia*) in China using DNA barcoding. *Genomics, Proteomics and Bioinformatics* **2008**, *6*, 155–162.

45) Amat, F.; Hontoria, F.; Navarro, J.C.; Vieira, N.; Mura, G. Biodiversity loss in the genus *Artemia* in the Western Mediterranean region. *Limnetica* **2007**, *26*, 387–404.

46) Van Stappen, G. *Artemia* biodiversity in Central and Eastern Asia. Ph.D. Thesis, Ghent University, Belgium, 2008.

Table 1. Origin of *Artemia* samples from Iran and neighbor regions. (IPMB = Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Abb. = Abbreviation)

No.	Voucher Number (IPMB)	Abb.	Species/population	Locality	Country	Geographic Coordinates	COI accession numbers ¹
1	57211	URM	<i>A. urmiana</i>	Urmia Lake	Iran	37°20' E–45°40' N	JX512748-808
2	57223	LAGW	Parthenogenetic	Western Lagoon around Urmia Lake	Iran	37°15' E–45°85' N	KF691338-342
3	57224	LAGE	Parthenogenetic	Eastern Lagoon around Urmia Lake	Iran	37°50' E–46°40' N	KF691343-345
4	57225	QOM	Parthenogenetic	Qom Salt Lake	Iran	34°40' E–51°80' N	KF691367-372
5	57226	MIG	Parthenogenetic	Mighan Salt Lake	Iran	34°20' E–49°80' N	KF691357-361
6	57230	MSH	<i>A. franciscana</i>	Mahshar port	Iran	49°11' E–30°33' N	KF691351-356
7	57228	MAHR	<i>A. franciscana</i>	Maharlu Lake	Iran	29°57' E–52°14' N	KF691347, 349-350
8	57229	NOG	<i>A. franciscana</i>	Nough Catchment	Iran	30°60' E–56°50' N	KF691362-366
9	57227	INC	Parthenogenetic	Incheh Lake	Iran	37°24' E–54°36' N	KF691333-337
10	57292	CAM	Parthenogenetic	Camaltı Lake	Turkey	27°08' E–38°25' N	KF691520-525; 527-529
11	57255	ABG	Parthenogenetic	Abu-Ghraib	Iraq	44°30' E–33°20' N	KF691373-375
12	57256	GAA	<i>A. franciscana</i>	Garmat Ali	Iraq	47°49' E–30°30' N	KF691376-383
13	57258	KBG	Parthenogenetic	Kara Bogaz Gol	Turkmenistan	53°33' E–41°17' N	KF691530-532,534
14	57257	KOC	Parthenogenetic	Korangi Creek (Karachi coast)	Pakistan	67°10' E–24°48' N	KF691442-445; 447-448

1) Eimanifar and Wink (2013); Eimanifar et al (2014)

Table 2. Species information and GenBank accession numbers for *COI* references sequences.

Species/ population	Abbreviation	Individual	Accession numbers	Ref.
<i>A. urmiana</i>	URM	4	JX512748-751	1
<i>A. sinica</i>	SIN	4	KF691298-301	2
<i>A. tibetiana</i>	TIB	4	KF691215-218	2
<i>A. salina</i>	SAL	4	KF691512-515	2
<i>A. persimilis</i>	PER	4	DQ119647 HM998992 EF615594 EF615593	3 4 5 5
<i>A. franciscana</i>	FRA	4	KJ863440-443	2
Diploid Pop.	DI	4	KU183949-952	6
Triploid Pop.	TRE	3	HM998997-999	4
Tetraploid Pop.	TETR	4	KU183954-957	6
Pentaploid Pop.	PEN	4	KU183968-971	6

Ref: 1: Eimanifar and Wink 2013; 2: Eimanifar et al. 2014; 3: Hou et al. 2006; 4: Maniatsi et al. 2011; 5: Wang et al. 2008; 6: Asem et al. 2016

Table 3. List of primers screened for ISSR analysis.

Primer	Sequence	GC (%)	Annealing temperature (°C)	Amplification pattern
ISSR1	(AC)8T	47.1	48–54	Smear
ISSR2	(CAC)5	66.7	48–54	Smear
ISSR3	(GACA)4	50	48–54	Smear
ISSR4	(AG)12	50	48–54	Poor
ISSR5	(TC)9	50	48–54	Poor
ISSR6	(GT)10	50	48–54	Smear
ISSR7	(CA)10A	47.6	48–54	Poor
ISSR8	(GAA)5	33.3	48–54	No amplification
ISSR9	(CAG)6	66.7	48–54	No amplification
ISSR10	(GCCG)4	100	48–54	No amplification
ISSR11	(AG)8C	52.9	48	Good and sharp
ISSR12	(AG)8YT _a	50	48	Good and sharp
ISSR13	(GA)9T	47.4	50	Good and sharp
ISSR14	(TG)8G	52.9	50	Good and sharp
ISSR15	(AC)8C	52.9	49	Good and sharp

Table 4. Genetic indices among examined populations according to ISSR markers.

Pop.	N	Na	Ne	I	He	uHe	PPL	NB	NPB
KOC	7.000	0.645 (0.062)	1.102 (0.021)	0.090 (0.017)	0.059 (0.012)	0.064 (0.012)	17.76	71	0
ABG	7.000	0.743 (0.066)	1.149 (0.024)	0.131 (0.020)	0.088 (0.013)	0.095 (0.014)	23.68	77	0
LAGE	3.000	0.914 (0.072)	1.256 (0.031)	0.208 (0.024)	0.143 (0.017)	0.171 (0.020)	34.87	86	0
LAGW	7.000	0.829 (0.066)	1.157 (0.024)	0.140 (0.020)	0.093 (0.014)	0.100 (0.015)	25.66	87	0
KBG	7.000	0.743 (0.068)	1.161 (0.025)	0.139 (0.020)	0.094 (0.014)	0.101 (0.015)	25.00	75	0
QOM	7.000	0.638 (0.062)	1.097 (0.020)	0.087 (0.016)	0.058 (0.011)	0.062 (0.012)	17.11	71	0
MIG	5.000	0.678 (0.067)	1.150 (0.025)	0.128 (0.020)	0.087 (0.014)	0.096 (0.015)	23.03	68	0
CAM	7.000	0.559 (0.051)	1.041 (0.014)	0.036 (0.011)	0.024 (0.008)	0.026 (0.008)	7.24	74	0
INC	7.000	0.658 (0.064)	1.125 (0.022)	0.110 (0.018)	0.074 (0.013)	0.080 (0.014)	19.74	70	0
URM	5.000	0.783 (0.072)	1.200 (0.027)	0.173 (0.022)	0.117 (0.015)	0.130 (0.017)	30.26	73	0
MAH	2.000	0.822 (0.066)	1.181 (0.025)	0.155 (0.021)	0.106 (0.015)	0.142 (0.020)	25.66	86	1
NOG	7.000	1.013 (0.071)	1.244 (0.030)	0.208 (0.023)	0.140 (0.016)	0.151 (0.017)	38.82	95	0
MSH	7.000	1.066 (0.066)	1.223 (0.028)	0.193 (0.022)	0.129 (0.015)	0.139 (0.016)	36.84	106	0
GAA	5.000	0.921 (0.067)	1.206 (0.028)	0.172 (0.022)	0.117 (0.015)	0.130 (0.017)	30.26	94	0
Mean	5.929 (0.035)	0.787 (0.018)	1.164 (0.007)	0.141 (0.005)	0.095 (0.004)	0.106 (0.004)	25.42 (2.28%)	-	-

Pop. = Population, N = number of individuals, Na = number of Different Alleles, Ne = number of Effective Alleles, I = Shannon's Information Index, He = Expected Heterozygosity, uHe = Unbiased Expected Heterozygosity, PPL = Percentage of Polymorphic Loci, NB = number of bands, NPB = number of private bands

Table 5. Genetic indices among native populations according to ISSR markers.

Population	N	Na	Ne	I	He	uHe	PPL	NB	NPB
KOC	7.000	0.731 (0.067)	1.115 (0.023)	0.102 (0.019)	0.067 (0.013)	0.073 (0.014)	20.15	71	2
ABG	7.000	0.843 (0.071)	1.169 (0.027)	0.148 (0.022)	0.100 (0.015)	0.107 (0.016)	26.87	77	4
LAGE	3.000	1.037 (0.075)	1.291 (0.034)	0.236 (0.026)	0.162 (0.018)	0.195 (0.022)	39.55	86	1
LAGW	7.000	0.940 (0.069)	1.178 (0.027)	0.158 (0.022)	0.106 (0.015)	0.114 (0.016)	29.10	87	4
KBG	7.000	0.843 (0.073)	1.183 (0.028)	0.158 (0.023)	0.107 (0.015)	0.115 (0.017)	28.36	75	0
QOM	7.000	0.724 (0.066)	1.110 (0.023)	0.099 (0.018)	0.065 (0.013)	0.070 (0.014)	19.40	71	0
MIG	5.000	0.769 (0.073)	1.170 (0.027)	0.145 (0.022)	0.098 (0.015)	0.109 (0.017)	26.12	68	3
CAM	7.000	0.634 (0.055)	1.046 (0.016)	0.041 (0.013)	0.027 (0.009)	0.029 (0.009)	8.21	74	0
INC	7.000	0.746 (0.069)	1.142 (0.025)	0.125 (0.021)	0.084 (0.014)	0.091 (0.015)	22.39	70	1
URM	5.000	0.888 (0.077)	1.227 (0.029)	0.196 (0.024)	0.133 (0.017)	0.148 (0.018)	34.33	73	3
Mean	6.200 (0.036)	0.816 (0.022)	1.163 (0.008)	0.141 (0.007)	0.095 (0.005)	0.105 (0.005)	25.45 (2.74)	-	-

Pop. = Population, N = number of individuals, Na = number of Different Alleles, Ne = number of Effective Alleles, I = Shannon's Information Index, He = Expected Heterozygosity, uHe = Unbiased Expected Heterozygosity, PPL = Percentage of Polymorphic Loci, NB = number of bands, NPB = number of private bands

Table 6. Genetic indices among invasive *A. franciscana* populations according to ISSR markers.

Population	N	Na	Ne	I	He	uHe	PPL	NB	NPB
MAH	2.000	0.992 (0.071)	1.219 (0.029)	0.187 (0.025)	0.128 (0.017)	0.171 (0.023)	30.95	86	3
NOG	7.000	1.222 (0.073)	1.295 (0.034)	0.251 (0.026)	0.169 (0.018)	0.182 (0.019)	46.83	95	6
MSH	7.000	1.286 (0.065)	1.269 (0.033)	0.233 (0.025)	0.156 (0.018)	0.168 (0.019)	44.44	106	8
GAA	5.000	1.111 (0.070)	1.249 (0.033)	0.207 (0.025)	0.141 (0.018)	0.157 (0.020)	36.51	94	5
Mean	5.250 (0.091)	1.153 (0.035)	1.258 (0.016)	0.220 (0.013)	0.149 (0.009)	0.169 (0.010)	39.68 (3.65)	-	-

Pop. = Population, N = number of individuals, *Na* = number of Different Alleles, *Ne* = number of Effective Alleles, *I* = Shannon's Information Index, *He* = Expected Heterozygosity, *uHe* = Unbiased Expected Heterozygosity, *PPL* = Percentage of Polymorphic Loci, *NB* = number of bands, *NPB* = number of private bands

Table 7. Pairwise Population Matrix of *Nei* Genetic Distance among invasive *A. franciscana* populations.

Population	KOC	ABG	LAGE	LAGW	KBG	QOM	MIG	CAM	INC
ABG	0.162								
LAGE	0.167	0.175							
LAGW	0.193	0.127	0.190						
KBG1	0.156	0.117	0.142	0.111					
QOM	0.182	0.131	0.171	0.135	0.099				
MIG	0.217	0.185	0.171	0.212	0.124	0.148			
CAM	0.362	0.346	0.249	0.358	0.279	0.354	0.331		
INC	0.233	0.165	0.184	0.223	0.149	0.176	0.091	0.351	
URM	0.219	0.194	0.165	0.190	0.141	0.174	0.194	0.351	0.211

Table 8. Pairwise Population Matrix of *Nei* Genetic Distance among native populations.

Population	MAH	NOG	MAH
NOG	0.143		
MSH	0.145	0.144	
GAA	0.198	0.170	0.152

Table 9. Molecular variation (within and among populations) for examined populations by AMOVA based on ISSR markers.

Whole populations					
Source	df	SS	MS	Est. Var.	%
Among Pops	13	1673.318	128.717	20.265	69%
Within Pops	69	639.405	9.267	9.267	31%
Total	82	2312.723	-	29.532	100%
Source	df	SS	MS	Est. Var.	%
Native populations					
Among Pops	9	627.912	69.768	10.006	55%
Within Pops	52	418.362	8.045	8.045	45%
Total	61	1046.274	-	18.052	100%
<i>A. franciscana</i>					
Source	df	SS	MS	Est. Var.	%
Among Pops	3	117.338	39.113	5.239	29%
Within Pops	17	221.043	13.003	13.003	71%
Total	20	338.381	-	18.241	100%

Table S1. Information of network haplotype composition of native populations.

Haplotype	Ind.	Pop. (Ind.)	Haplotype	Ind.	Pop. (Ind.)
H1	18	URM (18)	H24	1	URM (1)
H2	7	CAM (7)	H25	1	URM (1)
H3	16	KOC (6), LAGW (5)ABG (3), LAGE (1), KBG (1)	H26	1	URM (1)
H4	15	ING (5), MIG (4), KBG (3), LAGE (2)	H27	1	URM (1)
H5	7	QOM (6), MIG (1)	H28	1	URM (1)
H6	1	CAM (1)	H29	1	URM (1)
H7	1	URM (1)	H30	1	URM (1)
H8	1	URM (1)	H31	2	URM (2)
H9	2	URM (2)	H32	1	URM (1)
H10	1	URM (1)	H33	1	URM (1)
H11	1	URM (1)	H34	1	URM (1)
H12	3	URM (3)	H35	1	URM (1)
H13	1	URM (1)	H36	1	URM (1)
H14	1	URM (1)	H37	1	URM (1)
H15	1	URM (1)	H38	1	URM (1)
H16	1	URM (1)	H39	1	URM (1)
H17	1	URM (1)	H40	1	URM (1)
H18	1	URM (1)	H41	1	URM (1)
H19	1	URM (1)	H42	1	URM (1)
H20	1	URM (1)	H43	1	URM (1)
H21	1	URM (1)	H44	1	URM (1)
H22	1	URM (1)	H45	1	URM (1)
H23	1	URM (1)			

Ind. = individual, Pop. = Population

Table S2. Information of network haplotype composition of invasive *A. franciscana* populations.

Haplotype	Ind.	Pop. (Ind.)
H1	8	GAA (4), MAH (2), MSH (2)
H2	7	NOG (4), MSH (3)
H3	4	GAA (4)
H4	1	NOG (1)
H5	1	MAH (1)
H6	1	MSH (1)

Ind. = individual, Pop. = Population

Table S3. Proportion of genetic clusters for each locality in STRUCTURE analysis among whole examined populations.

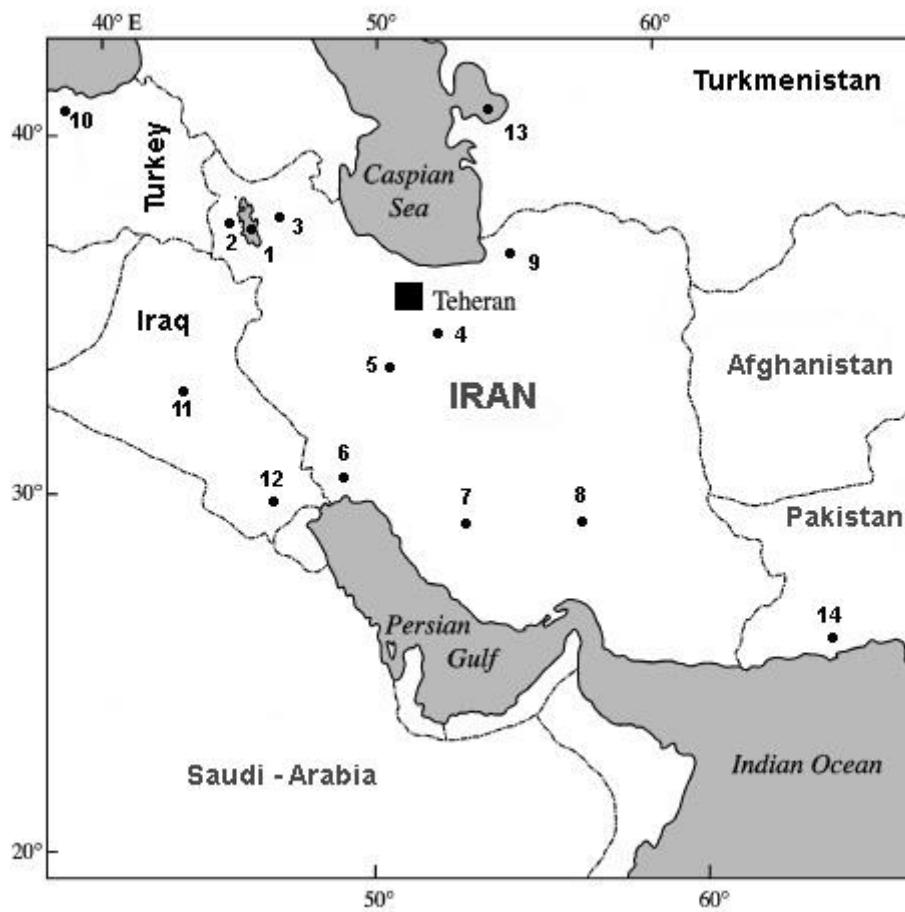
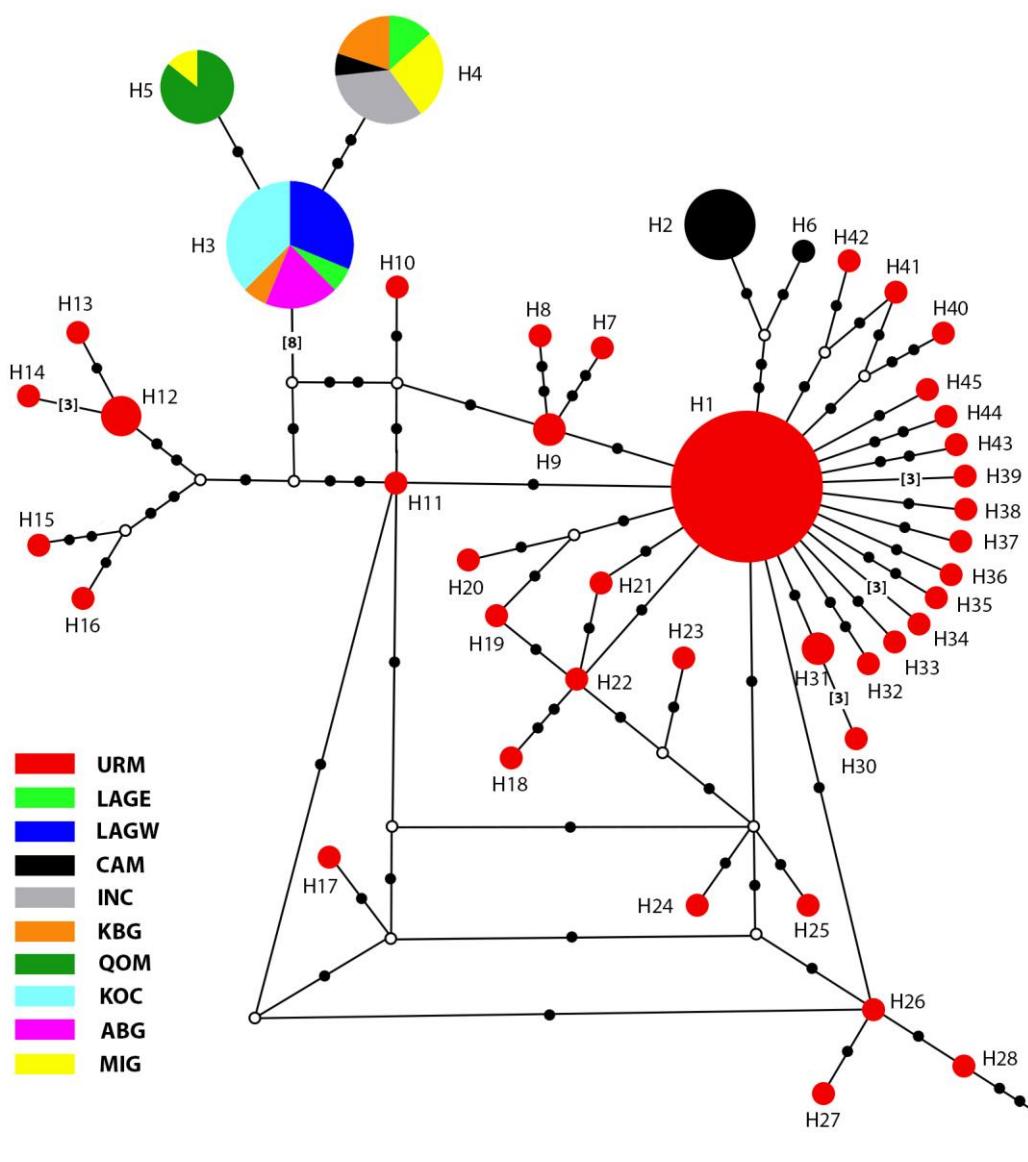
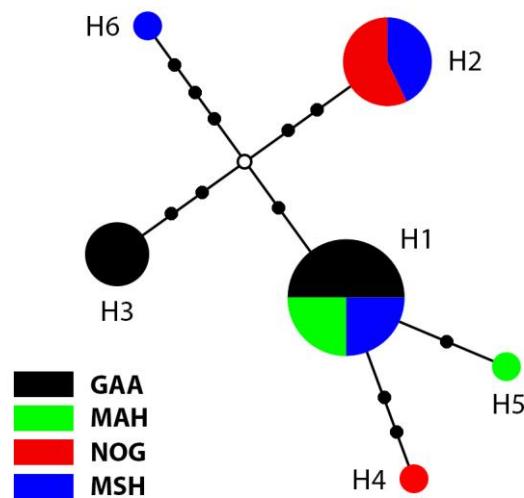

Population	K1 (%)	K2 (%)
KOC	0.1	99.9
ABG	0.2	99.8
LAGE	0.7	99.3
LAGW	0.3	99.7
KBG	0.1	99.9
QOM	0.1	99.9
MIG	1.9	98.1
CAM	0.1	99.9
INC	0.2	99.8
URM	3.6	96.4
MAH	98.7	1.3
NOG	99.9	0.1
MSH	99.9	0.1
GAA	99.9	0.1

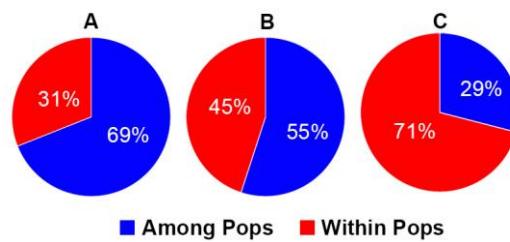
Table S4. Proportion of genetic clusters for each locality in STRUCTURE analysis among native populations.

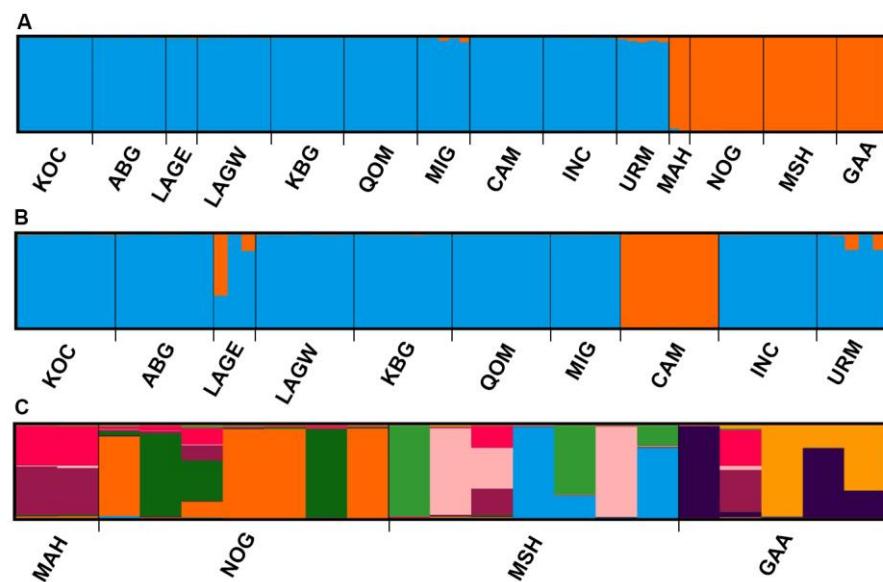

Population	K1 (%)	K2 (%)
KOC	99.7	0.3
ABG	99.8	0.2
LAGE	72.1	27.9
LAGW	99.6	0.4
KBG	99.5	0.5
QOM	99.8	0.2
MIG	99.6	0.4
CAM	0.2	99.8
INC	99.7	0.3
URM	93.1	6.9

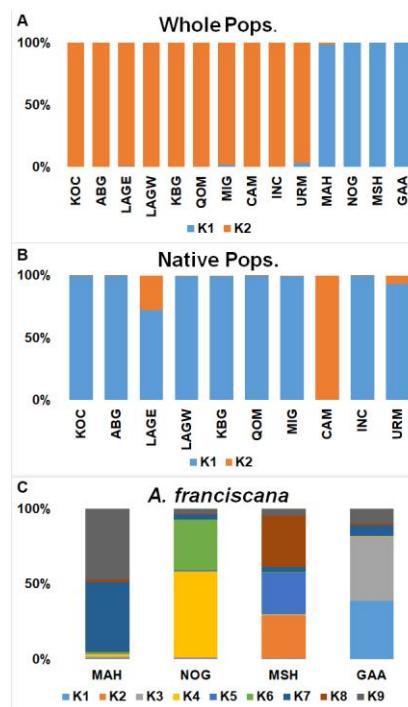
Table S5. Proportion of genetic clusters for each locality in STRUCTURE analysis among invasive *A. franciscana* populations.

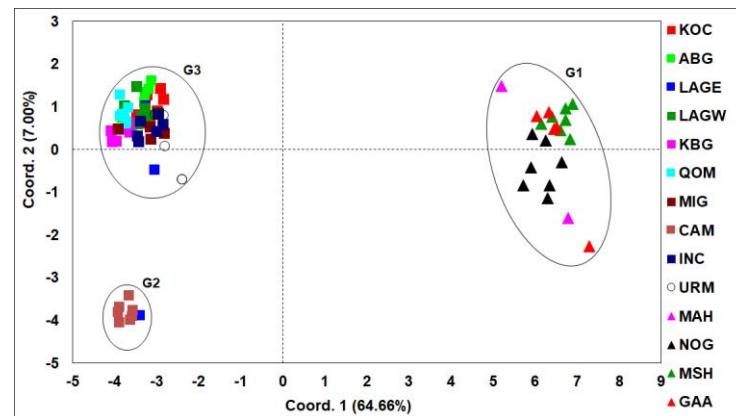

Population	K1 (%)	K2 (%)	K3 (%)	K4 (%)	K5 (%)	K6 (%)	K7 (%)	K8 (%)	K9 (%)
MAH	1.1	0.4	0.3	1.7	0.4	1.1	46	1.8	47.1
NOG	0.6	0.5	0.4	57	0.6	33.6	3.6	0.3	3.4
MSH	0.5	28.6	0.3	0.4	27.9	0.4	3.4	33.9	4.6
GAA	38.8	0.2	42.3	0.3	0.4	0.2	7	1.1	9.7

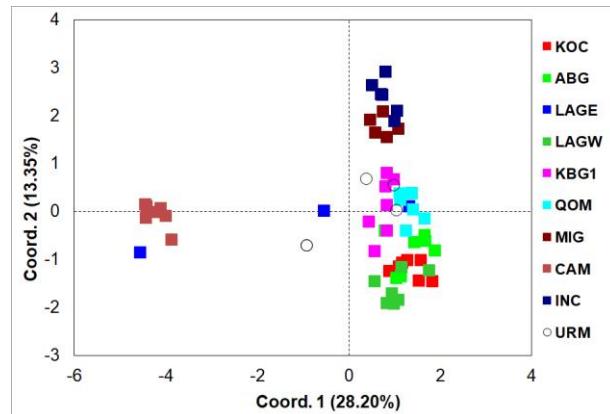

Figure 1. Map of *Artemia* sampling sites (1 = URM, 2 = LAGW, 3 = LAGE, 4 = QOM, 5 = MIG, 6 = MSH, 7 = MAH, 8 = NOG, 9 = INC, 10 = CAM, 11 = ABG, 12 = GAA, 13 = KBG, 14 = KOC; Abbreviations are list in Table 1).


Figure 2. Phylogenetic tree of *Artemia* using *COI* sequences based on ML approach. The number behind major nodes denotes bootstrap confidential values. *Daphnia tenebrosa* (HQ972028) was used as an outgroup. (URM: *Artemia urmiana*, TIB: *Artemia tibetiana*, SIN: *Artemia sinica*, FRA: *Artemia franciscana*, PER: *Artemia presimilis*, SAL: *Artemia salina*, DI: Diploid parthenogenetic population, TRI: Triploid parthenogenetic population, TETRA: Tetraploid parthenogenetic population, PENTA: Pentaploid parthenogenetic population; Abbreviations listed in Table 1).


Figure 3. The relationship of *COI* haplotypes distribution among native populations (Abbreviations listed in Table 1).


Figure 4. The relationship of *COI* haplotypes distribution among invasive *A. franciscana* populations (Abbreviations listed in Table 1).


Figure 5. Contribution of genetic variation within and among populations for the examined populations by AMOVA, based on ISSR markers (A = whole examined populations, B = native populations, C = invasive *A. franciscana*).


Figure 6. Clustering of genetic structures based on ISSR markers (A = whole examined populations, B = native populations, C = invasive *A. franciscana*; Abbreviations listed in Table 1).

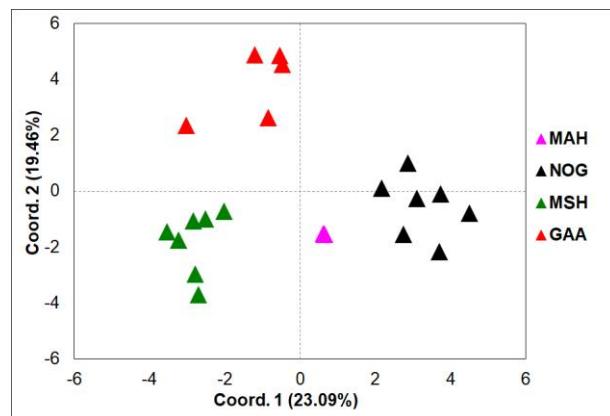

Figure 7. Proportion of genetic clusters for each locality in STRUCTURE analysis (A = whole examined populations, B = native populations, C = invasive *A. franciscana*; Abbreviations listed in Table 1).

Figure 8. Principal Coordinates Analysis (PCoA) showing differentiation patterns among whole examined populations based on ISSR markers (Abbreviations listed in Table 1).

Figure 9. Principal Coordinates Analysis (PCoA) showing differentiation patterns among native populations based on ISSR markers (Abbreviations listed in Table 1).

Figure 10. Principal Coordinates Analysis (PCoA) showing differentiation patterns among invasive *A. franciscana* populations based on ISSR markers (Abbreviations listed in Table 1).