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Abstract. Periodic travelling waves are observed in various brain activities including visual,
motor, language, sleep, and so on. There are several neural field models describing periodic
waves assuming nonlocal interaction and, possibly, inhibition, time delay, or some other
properties. In this work we study the influence of asymmetric connectivity functions and
of time delay on the emergence of periodic waves and on their properties. Nonlinear wave
dynamics is studied, including modulated and aperiodic waves. Multiplicity of waves for
the same values of parameters is observed. FExternal stimulation in order to restore wave
propagation in a damaged tissue is discussed.
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1 Introduction

1.1 Brain activity and periodic travelling waves

The brain displays a variety of highly nonlinear complex dynamics across multiple spatial
and temporal scales [1]. About 86 - 10° neurons of the human brain entertain complex
and fluctuating interactions. Understanding the dynamics of these interactions and the
mechanisms underlying their control remains a technical and theoretical challenge. In other
words, when healthy brain processes evolve toward abnormal and pathological states as a
result of disease, degeneration or traumatic injury, how can a therapeutic intervention be used
to reposition the control parameters and guide the dynamics back toward a healthy state?
These brain processes are described today as interacting networks of nodes/hubs and edges
which for the whole brain constitute the human connectome [3]. While the connectome is
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focused on anatomical connections, the dynamics of the networks is represented by functional
connections (also called the dynome [1]). For example, brain functional connections described
as a graph explore how signals are transmitted along neuroanatomical pathways and interact
with local dynamics. Functional connections are often investigated via modeling [1]. One
possibility is to use mathematical models to identify how an outside intervention such as
brain electrical stimulation can modify local dynamics and how local dynamics will in turn
affect other brain regions.

Cortical brain dynamics are investigated via traveling waves (TW). A periodic traveling
wave (TW) is defined as an oscillatory solution moving with constant shape and speed and
which is periodic as a function of time and space. Cortical fibres project over long distances
across the cortex, they provide the substrate for TW and govern their amplitude decay
[5]. Propagating waves have been observed during almost every type of cortical processing
examined. They provide subthreshold depolarization to individual neurons and increase their
spiking probability. According to Muller et al. (2018), TW “travel over spatial scales that
range from the mesoscopic (single cortical areas and millimetres of cortex) to the macroscopic
(global patterns of activity over several centimeters) and extend over temporal scales from
tens to hundreds of milliseconds”. It has been proposed that TW mediate information
transfer in the cortex.

In a review paper, the authors in [26] examined propagating waves of activity within
and between cortical areas during action, perception or cognition. These authors suggest
that TW are a manifestation of depolarization of the neuronal membrane of about 5 to 10
mV from resting potential, but this mild depolarization increases the probability of firing
action potentials in the population and these spikes will in turn depolarize more postsynap-
tic neurons in the neighboring area to sustain the propagation of the TW [26]. But TW
appear to subserve other functions as well. These authors suggest that a sensory-evoked
wave propagating to a larger area would increase the sensitivity /network gain for incoming
stimulation. In this sense, the evoked wave generates an unintentional focus of attention
in the sensory cortex. Furthermore, propagating waves associated with an oscillation can
organize spatial phase distributions in a population of neurons. In this context time delays
play an important role in the unfolding of these TW.

In a more recent review [5] it was noted that cortical TW recorded at mesoscopic or
macroscopic scales can be “spontaneously generated by recurrent circuits or evoked by ex-
ternal stimuli and travel along brain networks at multiple scales, transiently modulating
spiking and excitability as they pass”. The phase relation between oscillations in different
cortical regions produce the TW and depending on the distance, axonal conduction delays
can reach up to tens of milliseconds. These authors suggest that TW link high precision
information with information from a broader contextual content and propagate over multi-
ple functional regions, in the direction of maximum information transfer (some kind of gain
adjustment).

Zhang et al. [4] examined direct brain recordings (ECoG) from neurosurgical patients
performing a memory task and observed contiguous clusters of cortex in individual patients
with oscillations at specific frequencies within 2 to 15 Hz. These oscillatory clusters displayed
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spatial phase gradients, indicating that they formed traveling waves that propagated at
about 0.25-0.75 m/s. These TW correlate with the subjects performance, propagate in
specific directions and synchronize distributed cortical networks that are communicating. In
other words, they guide the spatial propagation of neural activity demonstrating that large
scale spatially coordinated oscillations, such as TW, figured prominently in human cortical
processing.

Examining slow wave cortical activity during sleep-awake states using simultaneous scalp
EEG and intracranial recordings in human subjects Botella-Soler et al. [28] identified for each
subject the set of intracranial contacts that showed a larger percentage of detected events.
They called these contacts “hubs” because the slow wave events in their travel through the
cortical networks seemed to have a great probability of passing through the region close to
the contact. Using probabilities they were able to reconstruct a preferential propagation
network for each subject. Slow waves have been reported to propagate across cortical areas
at about 1m/s with multiple propagation paths and several points of origin. It seems that
the slow waves have a preference to start in the prefrontal cortex and to end in posterior
and temporal regions of the cortex. These waves appear to shape and strengthen neuronal
networks.

Let us also note that time delays are intrinsic to the dynamics of brain networks, nodes
and edges. Propagation speed along axons depends on axonal length and diameter. Conduc-
tion times along neural circuits also depend on degree of fiber myelination. The introduction
of time delays in models can lead to significant changes in brain dynamics. They can be
averaged or treated as distributed delays. In this paper we address the question the effect
of these delays in the dynamics of periodic cortical waves.

Thus, according to the biological observations, TW propagate in the cortex activating and
coordinating different parts of the brain. In this work we will study some of their properties.
In the next section, we will introduce the model. Then we present stability analysis which
determines the conditions of wave appearance. Their nonlinear dynamics will be discussed
in Section 3.

1.2 Neural field model

Neural field models were first introduced in [25]. Periodic travelling waves are described by
several models (see [15, 18, 19, 20, 22] and Appendix 1). In this work we will consider one
equation model with delay, and we will discuss two mechanisms of the emergence of such
waves, which were not sufficiently investigated previously. The first mechanism is related to
the asymmetric connectivity functions [14], and the second one is determined by the delay
in the response function. It is known, that the loss of stability of the homogeneous in space
solution in this model does not lead to the bifurcation of periodic waves [15]. We show that
they still appear for some larger values of time delay. We consider the neural field equation
for the electric potential in the brain cortex written in the form

ou 9%u

Ou _ J0%u 1.1
ot 8x2+Wa Wi —ou, (1.1)
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where W, and W; are the activating and inhibiting signals, respectively:

Wale.t)= [~ oua =), (u (y,t -l )) ay. (12)

Wiz, ) = /_Z bi(z — 1)S: (u <y,t _lemyl T)> dy. (13)

4i
These expressions describe the intensity of signal coming from all points y to the point
x. Here S,(u) and S;(u) are the excitation and inhibition response functions produced by
activating (inhibitory) neurons, ¢, are ¢; is the excitation speeds, |z —y|/q,,; is the time delay
due to the excitation propagation from the point y to the point x, ¢,(x,y) and ¢;(z,y) are
the connectivity functions,

—bir —bar
DOE SRS BITORS R (14
where a;, b; are some positive constants. Response functions S, (u) and S;(u) are non-negative
non-decreasing functions usually considered as sigmoid functions. The last term in the right-
hand side of equation (1.1) describes signal decay.

Neural field models are often considered without the diffusion term [13, 14, 11, 12]. From
the mathematical point of view, introduction of the diffusion term is a generalization where
the particular case D = 0 reduces it to the previous model. In [7] we showed that diffusion
term influences the speed of wave propagation. In fact, there are two different regimes
determined, respectively, by diffusion and by nonlocal interaction (connectivity function).
The integral term in equation (1.1) describes signal transmission between neurons along the
axons. There are other possible mechanisms which can influence neuron activation. The
first one is ion diffusion through the extracellular matrix which changes the distribution of
electric potential and influences neuron activity. Assuming that the latter is proportional to
the ionic concentrations, we naturally describe it by the diffusion term. Similar action can be
produced by gap junction communication where neurons (and possibly glia cells) exchange
ions directly and not through the extracellular matrix. Finally, another mechanism is related
to the ephaptic effect [10] where neurons feel electric gradients from large groups of activated
neurons through the extracellular matrix and respond to them. Diffusion term suggests a
phenomenological description of this effect taking into account space transmission of neuron
activation “from large to small” values.

The speeds q,, ¢; of electric impulse propagation along axons is of the order 2-4 m/s while
the speed of wave propagation is one-two orders of magnitude less [16] (p. 213). So, we will
consider a large speed limit ¢, = ¢; = oo:

% = D%—l—/_(: (Pa(x —y)Sa (u(y,t —74)) dy — ¢i(x — y)S; (u(y,t — 7)) dy—ou. (1.5)
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Up to the diffusion term, which is not very essential for small diffusion coefficients, this
model is a particular case of the two equation model considered in [15]. If the kernels in the
two equations are the same, then the system can be reduced to the single equation.

Different neural field models describe propagation of periodic travelling waves (see Ap-
pendix 1). In this work we will consider two other mechanisms of their emergence. One of
them is related to asymmetric kernels ¢, and ¢; whose existence is confirmed by the exper-
imental observations [14]. Another one is determined by the secondary bifurcation. Similar
to [15], we observe that the loss of stability of the homogeneous in space stationary solution
leads to the appearance of periodic time oscillations independent of the space variable or
of stationary periodic in space solutions. Periodic travelling waves bifurcate in the instabil-
ity region, and they are unstable close to the bifurcation point. We will see that they can
become stable under further change of parameters.

We will study dynamics of the periodic waves including their non-uniqueness for the same
values of parameters. This property seems to us important since different waves (a, 3,7, 6)
are observed in the same brain.

2 Stability

2.1 Linearization and eigenvalues

In this section we will consider the equation

Gt 82 / Pa(r=Yy)Sa (u(y, ) dy— / ¢i(x—y)S; (u(y,t — 7)) dy—ou, (2.1)

on the interval 0 < x < L with periodic boundary conditions. We extend the function u(z,t)
by periodicity on the whole axis, —oo < & < 00, so that the integrals in equation (2.1) are
well defined. Let ug be a solution of the equation

¢rSa(u) + ¢;S;(u) — ou =0,

where ¢} = [7 ¢(x)dz, ¢} = [°°_ ¢i(x)dz. Then ug is a stationary solution of equation
(2.1). Llnearlzlng thls equation about g, we obtain the eigenvalue problem:

Dv" + 5! (ug)e / ba(x —y)v(y)dy — Si(ug)e / di(x —y)v(y)dy — ov = . (2.2)
Applying the Fourier transform, we get

St(u)e ™ da(€) — Si(ug)e ™ i(€) — DE* — 0 = A, (2.3)

where
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Set A = iv. Separating the real and imaginary parts in equation (2.3), we obtain:

, a1b; asbs ’ . a1 as
g . S A — — 24
" (ug) cos(vT,) (b% e + w2 —I—{z) + Se(uo)& sin(v7,) (b% e n +€2> (2.4)
a2b2 (I4b4 a2 Gy

S!(up) cos(vr;) )-sxu@gsnmun)( >——LE2::@

_|_ —
b5 +&2 0 b+ &2 b5 +&2 b3+ &2

. aiby asbs a1 as
=5/ (up) sin(v7,) Pre pie + 5! (ug)€ cos(vT,) (bf i 52) + (2.5)
a9 ay

Si(up) sin(v;) b%aib; + b;ib; — SH(up)€ cos(vr;)

B+ b+

2.2 Symmetric connectivity functions with time delay

If the symmetry condition

a1 = az,as = ag, by = b3, by = by (2.6)

is satisfied, then equations (2.4), (2.5) write as follows:

’ a by ’ asby 2
S W) — 5 i — D& /2 =0/2, 2.7
o) cos() 5= = Silue) cos(vm) = = DE2 =0 (27)
b asb
_g in(vr,)—2L 4 g in(vr;)—22 /9, 28
a(u0> SIH(VT )b% + 52 1(“’0) Sln(VT ) b% + 52 V/ ( )

We can express £? through v from the last equation and substitute into equation (2.7). The
resulting equation with respect to v should be solved numerically or asymptotically. Since
the calculations are sufficiently complex, we will consider here a simplified case where 7, = 0.
Numerical simulations show that periodic waves can exist in this case (Section 3). Our aim
here is to analyze their bifurcations from the homogeneous in space solution. Assuming that
v > 0, we also get the conjugate solution —v.

If 7, = 0, then equations (2.7), (2.8) write as follows:

' aiby , aobs
Sa(UO)W — SZ(U()) COS(VTi)W — D€2/2 = 0'/2, (29)
, . asby
S; (uo) sin(v; =v/2. 2.10

6
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By stability boundary we will understand here the value 0 = oy such that system (2.9),
(2.10) does not have solutions for o > 0y, and it has at least one solution for o < 0. This
stability boundary g is uniquely defined and it can be negative.

Proposition 1. At the stability boundary, £ =0 or v = 0.

Proof. Consider equation (2.10) as equation with respect to v for a fixed £. It has a solution
v # 0 if and only if

2o
b3 + &2
Suppose that this condition is satisfied for some &y, and denote by v(§) solution of equation
(2.10) in the vicinity of £ = &, > 0, and vy = v(§y). Assume that the corresponding value oy

belongs to the stability boundary.
Taking into account equation (2.10), we can write equation (2.9) as follows:

a1b1
b} + &2
Let & be sufficiently close to & such that condition (2.11) remains satisfied, and & < &y. If
v(&o) < 2m/7;, then v(&) > v(&). Therefore,

25! (ug) —veot(vr) — DE = o, (2.12)

V(&) cot(v(&1)7) < v(&) cot(v(&o)T).
Set

b
e VO etvem) - DE.

Thus, F(&) > F(&). Hence, 0p = F(&) cannot belong to the stability boundary since
op = F(&) > op, and system (2.9), (2.10) has a solution for ¢ = ;. This contradiction
shows that the inequality v(&y) < 27 /7; cannot hold.

Let 27 /7; < v(&) < 57/(27;). Then there is another solution v4(&y) of equation (2.10)
such that 7/(27;) < v1(&) < /7. Therefore, cos(v1(&)7) < 0, cos(v(&)m;) > 0, and

F(§) = 25,(uo)

a1b1
bt + &
Hence, oy cannot belong to the stability boundary.
Finally, in all other cases with v(§) > 57/(27;) we obtain a contradiction similarly to

the two cases considered before. This contradiction shows that at the stability boundary,
either ¢ =0 or v = 0.

o9 = F(&) < 25, (uo) v1(&) cot(11(éo)7) — DEG.

O

Let us now determine the stability boundary with respect to time delay for a fixed o. If
v = 0, then from equation (2.9) we get

do0i:10.20944/preprints202003.0135.v1
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- aq _ (6]
b+ b+
where a; = 25/ (ug)arby, ag = 25!(ug)aghy. Assuming that v # 0, we set 5; = /(b7 +
€%), i=1,2. Then sin(vr;) = v/[s,

51—\/55—7/2:0; V2:5§—(51—0)2-

Example. Consider the values of parameters: S!(ug) = Si(up) = 20,a; = ay = 4,b; =
40, by = 20, iy = 6400, vy = 3200, o = 0.01, Then we find

g

— Dé&?, (2.13)

2

1
=08 =40 =812 ~48, v~ 693, 7, = - arcsinﬁi —0.151,
14
and

1
§ =, By = 3975, B = T.805,1” ~ 45.123,v ~ 6.717, 7 = — arcsinﬁi — 0.154
2

Hence, the homogeneous in space oscillations appear for a lesser value of time delay than
periodic travelling waves. Therefore, these waves are unstable in the vicinity of the bifurca-
tion point. We will see in the next section that they become stable for larger values of time
delay.

2.3 Asymmetric connectivity function without time delay

Suppose now that conditions (2.6) are not satisfied. In this case, the eigenvalue (2.3) has a
nonzero imaginary part. Set A(§) = «(§) +if(€), where

Sqa1b1 5403b3 5209 Si4by

= - - - D ? -
O=pie gre Bre Bre 077
a as a2 G4
— _ — s — , 2.14
B(&) = sa€ (b?—i—ﬁz b%—l—fQ) 85(53—1-62 534’52) 240
Sq = S (ug), s; = Si(ug). As before, the stability boundary is given by the condition «(§) = 0:
o Sqa1b; N Seazby  sjagby  siasby DE? = By(€). (2.15)

SR B+ B H+E
The instability occurs if o < ®5(§) for some values of £. Since there are two complex

conjugate eigenvalues A\(§) = a(&) £i5(§), then at the stability boundary o = 0 the bounded
solution of the linearized equation writes

u(w,t) = ePe® 7Pl = cos(Bt + £x).

do0i:10.20944/preprints202003.0135.v1
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Here ¢ is found from the equation «(§) = 0 and § is given by equality (2.14). This solution
represents a periodic wave with frequency ¢ and speed ¢ = —3/¢. We get from (2.14):

a as Q2 Gy
C= —38, — + s; — 2.16
(b%+£2 b§+£2) <b%+£2 bi+£2> (219
If there are two (or more) different frequencies &; and &, satisfying the condition o < ®(¢;),
j = 1,2, then there are two waves with different speeds and frequencies. According to (2.16),

the value of the speed can increase with frequency or decrease depending on the values of
parameters.

3 Numerical simulations

In this section we present the results of numerical simulations of equation (2.1) on a bounded
interval with periodic boundary conditions. We begin with the case without time delay and
continue with the case of time delay in the response functions. We will finish this section
with modelling of the stimulation of the damaged tissue in order to restore wave propagation.

3.1 Wave propagation without time delay

In the case without time delay (7, = 7, = 0) and with symmetric connectivity functions ¢,
and ¢;, where a; = a3, as = aq, by = b3, by = by, the homogeneous in space stationary solution
can lose its stability resulting in appearance of periodic in space stationary solutions. Linear
stability analysis shows that travelling waves with nonzero speed do not bifurcate in this
case.

If the connectivity functions are not symmetric, then travelling waves with nonzero speed
are observed. Two types of solutions are observed in numerical simulations: periodic waves
with a constant speed and aperiodic waves with oscillating speed. In the first case, the
wave has conventional form w(x — ct), where w(z) is a periodic in space function and c is a
constant (Figure 1, left). In the second case, the amplitude of spatial peaks and the wave
speed oscillate (Figure 1, right).

Different periodic regimes can co-exist for the same values of parameters. Figure 2 shows
the dependence of the wave speed on the values a;(= ay) for all other parameters fixed.
There are three branches of solutions corresponding to different spatial frequencies. Thus,
there are three different periodic waves for the same values of parameters with the speeds
depending on their frequency.

For a; sufficiently small, transition to modulated waves can occur (curve 1) with the
amplitude and speed depending on time. These solutions can qualitatively approximated as
u(z,t) = (a + esin(byz + c1t)) sin(bex + cot), where a, by, b, ¢, co are some constants. For
even lesser values of a; transition to aperiodic oscillations is observed for all three branches
of solutions. These oscillations can coexist with periodic or modulated periodic waves for
the same values of parameters.
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Figure 1: Wave propagation described by equation (2.1) for 7, = 7; = 0. Periodic (left)
and aperiodic (right) waves can exist for the same values of parameters. Convergence of
solutions to one of them is determined by the initial conditions. The values of parameters
are as follows: a; = ay = 0.6,a3 = ag = 4, by = b3 = 40,by = by = 20, D = 107*, 0 = 0.01,
Sa(u) = S;(u) = arctan(hu), h = 20, L = 2.

3.2 Time delay and symmetric connectivity functions

Initial conditions. As it was discussed in the previous section, the loss of stability of
the homogeneous in space stationary solution leads either to the homogeneous in space
time oscillations or to the stationary periodic in space solutions. Consider time delay as a
bifurcation parameters. If it exceed a critical value, then time oscillations emerge. Periodic
travelling waves bifurcate for a larger value of time delay, and they are unstable in the
vicinity of the bifurcation point. Numerical simulations show that they can become stable
under further increase of 7. Nevertheless, periodic time oscillations homogeneous in space
remain stable. Therefore, we need to choose some particular initial conditions in order to
get periodic travelling waves.

The simulations presented in this section are carried out with two types of initial condi-
tions. In the first case, we consider the equation

2

% = D% + I(x,t) (3.1)
on the time interval 0 < ¢t < Ty. Here I(x,t) = Iycos(pr + qt), and the initial condition
u(z,0) = 0. The result of this simulation is considered as initial condition for equation (1.5).
We set Iy = 0.5,q = 0.015, Ty = 20, the value of p is taken 3, 6,9 depending on the required

space periodicity.

10
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0.008
0.006
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Figure 2: The speed of periodic waves for different values of the parameters a; = ay. Three
curves correspond to different values of the spatial frequency: 1. 12 periods of solution,
2. 13 periods, 3. 14 periods. Branching in curve 1 shows the transition to modulated
oscillations with the maximal and minimal values of the oscillating speed. The values of
parameters are as follows: ag = a4 = 4, by = b3 = 40,by = by = 20, D = 107%, o = 0.01,
Sa(u) = Si(u) = arctan(hu), h = 20, L = 2.

The second type of initial conditions is used in the continuation method. The results of
the simulations of equation (1.5) for some values of parameters are used as initial conditions
for some other values of parameters.

Multiplicity of waves and parameter dependence. An example of periodic travelling
waves with different initial conditions and the same values of parameters are shown in Figure
3. We observe one-, two-, and three-period waves observed for p = 3,6, and 9 in the function
I(x,t). These waves have different speeds and amplitude (Figure 4). The waves with larger
wavelength have larger speed and amplitude. Increase of time delay leads to the increase of
the wave amplitude and to the decrease of its speed. If time delay is sufficiently small, then
the waves become unstable, and the transition to the periodic time oscillations independent
of the space variable is observed. If the value I; is small enough, then the solution converges
to the homogeneous time oscillations.

Figure 5 shows the dependence of periodic waves on the value by (equal to by). The wave
amplitude and speed decrease with the increase of by. There is a critical value by ~ 40 for
which the speed becomes zero, and a transition to another branch of solutions is observed.
These are stationary periodic in space solutions with growing amplitude as by increases. It

11
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Umax=9.09 Umax=7.78 Umax=6.67

X=2 X=2 X=2

Figure 3: Three types of periodic waves observed for the same values of parameters and
having different spatial frequency and speed: one-period wave with speed —0.027 (left); two-
period wave with speed —0.012 (middle); three-period wave with speed —0.0094. The values
of parameters are as follows: 7, =0, 73, =12, a1 =as = a3 =a4 =4, by = b3 =40,by = by =
20, D =107, 0 = 0.01, S,(u) = S;(u) = arctan(hu), h = 20, L = 2.

is interesting to note the existence of weakly oscillating time periodic solutions in a narrow
interval between travelling waves and stationary solutions.

The results presented above are obtained for a single delay 7; in the inhibition term while
7o = 0. If we fix 7, = 1 and increase 7, beginning from 7, = 0, then the amplitude and the
speed of travelling waves are not monotone. The former first decreases, passes through the
minimum and then increases, while the latter increases in the beginning and decreases for
larger values of the delay (not shown).

3.3 Stimulation

Exact solution of the stimulation problem. Signal propagation can be different in the
normal and in the damaged tissues since their properties differ from each other. Let us write
equation (2.1) for the normal tissue

ou 0*u

where

J(u) = / " bl — 4)Ss (u (7)) dy — / " bi(a =), (u (st — 7)) dy,

and a similar equation for the damaged tissue

v Pv
EZD@_’_J (’U)—O'U, (33)
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Figure 4: The speed (la, 2a) and the amplitude (1b, 2b) for the one-period wave (la,
1b) and two-period wave (2a, 2b) depending on 7;. Connected points correspond to sta-
ble solutions, separate points to unstable solutions. The latter lead to the appearance of
stationary solutions periodic in space. The values of parameters are as follows: 7, = 0,
a1:a2:a3:a4:4,b1:b3:40,b2:b4:20,D:10_4,0:0.01,
Sa(u) = Si(u) = arctan(hu), h = 20.

where
7@ = [ G- S et -y - [ o - S (0t =) dy
m.i» Oa; denote the connectivity and response functions for the damaged tissue. The solutions
u(z,t) and v(x,t) can be different even if the initial conditions are the same, u(z,0) = v(z,0)

for z € R.
Consider, next, equation for the damaged tissue with an external stimulation I(x,t):

0z 02z
E_D@+J (2) —oz+ I(z,t). (3.4)

We are interested whether it is possible to choose stimulation I(z,t) in such a way that
solution z(z,t) of equation (3.4) becomes the same as solution u(x,t) of equation (3.2). If
this is possible, then external stimulation can completely reconstruct wave propagation. In
spite of the importance of this problem for the application, the solution of this seemingly
difficult question is simple. Assuming that z(x,t) = u(z,t), substitute the function u(z,t)
in equation (3.4). Then we get

) 0
I(z,t) = 8—3 - Da—;; — T (u) + ou = J(u) — J*(u).
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Thus, the stimulation function

I(z,t) = J(u) — J*(u)

gives solution of the complete reconstruction problem.

6

1
.\1‘\\‘. 2
0
0 10 20 30 40 50 60
Figure 5: Dependence on by(= by). Periodic travelling waves on branch 1 for b, = 10

(a) and by = 40 (b); stationary solution on branch 3 for by = 50 (c¢). A short branch 2
contains weakly oscillating solutions. The values of parameters are as follows: 7, =0,7; = 1,
ar =ay =a3 =as =4, by = b3 =40, D = 107%, 0 = 0.01, S,(u) = S;(u) = arctan(hu),
h=20,L=2.

Approximate solution of the stimulation problem. Stimulation function suggested
above uses the solution u(z,t) which may not be known for the patient with the damaged
brain tissue. In this case, some approximate solutions of the stimulation problem can be
used. Consider the integral J*(v) in the following form:

JH(v) = /oo W (@)W (y) (¢a(x = y)Sa (v (y, t = 7a)) — dix — y)Si (v (y, t — 7)) dy,

where W(z) = wy < 1 for x; < x < @9, 21,29 € (0,L), and W(z) = 1 outside the interval
(1, x5]. Hence, the connectivity function decreases if x or y belongs to the damaged area
(21, x9]. If we set wy = 0, then the connectivity function vanish if one of the two points z or
y (neurons) belongs to the damaged area.

Without damage, periodic travelling wave solution of equation (3.2) and the integral J(u)
can be approximated by cosine function (Figure 6). Hence, we will look for the stimulation
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function in the form approximating the periodic wave: I(x,t) = Iy(x) cos(pzr+qt). We p = 6,
q = 1 to approximate the frequency and the speed of the wave in the normal tissue. We
set Io(z) = ig for z; < x < x9, and Iy(x) = i; outside the interval [z1,x5]. The results of
numerical simulations are presented in Figure 6 with the comparison of the normal tissue,
damaged tissue without stimulation and damaged tissue with stimulation. We observe a pe-
riodic wave in the normal tissue. Behavior of solution is completely different in the damaged
tissue. The solution is close to 0 at the damaged interval (green in the middle figure), and it
oscillates periodically in time from both sides of this interval. Stimulation restores the wave
propagation with the same frequency and speed. The choice of the stimulation amplitude
ip = 0.6 and i¢; = 0.1 (for the example in the figure) is important. If we set i = 0.6,7; =0,
the stimulation is not successful, there is no wave propagation. Thus, stimulation should be
done not only inside the damaged interval but also around it.

A A A

M

* o X=2 — - X=2 X=2

Figure 6: Periodic travelling wave in the normal tissue and the integral J(u) (left). Snapshots
of solutions in the damaged tissue for two different moments of time (a) and (b) (middle). So-
lution with stimulation becomes close to the periodic wave (right). The values of parameters
are as follows: 7, = 0,7, =1, a1 = ay = a3 = a4 = 4, by = by = 40,by = by =20, D = 1074,
o = 0.01, Sy(u) = S;(u) = arctan(hu), h =20, L =2, p = 6,9 = 1,ip = 0.6,i; = 0.1. The
damaged interval (green line) is [0.5,1.07], wy = 0.

4 Discussion

Brain functioning is determined by large scale networks of epicenters (hubs) located in the
cortex and connected by white matter fiber tracks. The structure of these networks depends
on the particular type of the brain activity (motor, language, and so on) and on the inter-
individual variation. The epicenters exchange information by means of signaling along the
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cortex or along the white matter fibers. Apparently, this signaling occurs in the form of trav-
elling waves. Periodic travelling waves are observed in thalamus, visual cortex, hippocampus,
and in other parts of the brain. There is more and more evidence that they play the key
roles in brain functioning. However, their exact role and organization are not known. Their
characteristics, such as speed, frequency, and amplitude can vary in wide limits (Appendix
2), and it is not clear how they are initiated and stop, and how they are related to some
particular type of activities. For example, periodic waves are observed in the beginning of
speaking, and they inverse their direction at the end [27]. The corresponding mechanisms
governing these activities are not yet understood. These investigations are at the stage of
accumulation of biological data and of elaboration of different models whose role and utility
will become clearer with time.

Neural field models are widely used to study brain patterns, including stationary struc-
tures, pulses, wave fronts, and periodic waves. There is a number of models which describe
periodic waves (Appendix 1) since it is relatively easy to find these waves on the basis of
linear stability analysis of the homogeneous in space stationary solution. The mechanisms
of this instability can be related to a combination of inhibition, time delay, refractoriness
(also a variant of time delay), nonlocal interaction. In this work we study the influence of
asymmetry of connectivity functions and of time delay in neuron response.

Neuron connectivity is provided by numerous axons whose density decrease approxi-
mately exponentially as a function of distance [23, 24]. In modelling, the connectivity func-
tions are usually considered to be symmetric, that is, axon connections between points z
and y have the same density as between y and x. There is some evidence that connectivity
can be asymmetric [14].

Travelling waves in speech. Travelling waves in the cortex can have several functions
including activation of some of its parts. This activation facilitates firing of individual
neurons [26]. We conjecture that this can be a preparatory step for receiving the information
from other brain areas along the white matter fibers.

TW have also been examined during speech. Rapela (2018) [27] examined direct brain
recordings (ECoG) in neurosurgical patients producing consonant-vowel syllables (CVSs).
The author showed that TWs do not occur continuously, but tend to appear before the
initiation of CVSs and tend to disappear before their termination. During moments of
silence, between productions of CVSs, TWs tend to reverse direction. Rapela observed a
concentration of phase across trials at the specific frequency of speech production as well
as amplitude modulation and phase-amplitude coupling (PAC). This study shows that TW
induces an organization of PAC so that spiking occurs at behaviorally relevant times (i.e.,
TW across the left speech processing brain areas synchronized to the rhythm of speech
production).

Summarizing results by Gross et al. [29] examining how brain waves help us make sense
of speech in healthy subjects, Weaver [30] writes that speech consists of a hierarchy of
components that each takes place on a different timescale. Speech cues such as intonation
occur on a relatively long timescale, unfolding over hundreds of milliseconds. At the other
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end of the spectrum is the phoneme the smallest unit of speech which lasts only tens
of milliseconds. To understand speech efficiently necessitates simultaneous processing of
different speech components occurring on various timescales. It was observed that neural
oscillations were arranged in a hierarchy: “delta oscillations influenced the magnitude of
theta oscillations, which in turn affected the amplitude of gamma oscillations”.

Today, the language networks have been identified with precision. For example, Sarubbo
et al. [31] summarize their observations in the following way: “The medial part of dorsal
stream (arcuate fasciculus) subserves phonological processing; its lateral part [indirect an-
terior portion of the superior longitudinal fascicle (SLF)] subserves speech planning”. The
ventral stream subserves language semantics and matches with the inferior fronto-occipital
fascicle. Reading deficits match with the inferior longitudinal fascicle. Anomias match with
the indirect posterior portion of the SLF. Frontal WM underpins motor planning and exe-
cution. Right parietal WM subserves spatial cognition. Sensori-motor and visual fibers were
the most preserved bundles.

Based on these observations what could be the role of cortical TW? We hypothesize
that cortical TW reflect information originating from right and left hemispheres, traveling
short and long distances, and containing various time delays. In other words TW coordinate
multiple faster and slower speech events by preparing the arrival of signals traveling along
white matter tracts to specific hubs. These observations open the possibility to combine
information from language networks with information from the organization of cortical TW
in order to design new cortical stimulation protocols in patients with language deficits.
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5 Appendix 1. Periodic waves in different models

Two equations with time delay. In the work [15] a single neuron population model
(excitation)

w5 = | P puutt - )i u (5.5)

—00

and a two population model (excitation and inhibition)

T% = /_C: (Pri(x — y)r(u(y,t —d)) — Pia(x — y)ibe(v(y,t —d))dy —u (5.6)

ov e
r = | (Palo = puilunt - @) - Pale — )a(olyt - d)dy—v (5.7
are considered. Here P(x) and P;;(x) are symmetric positive functions. A particular example
of step-wise constant functions is studied. Periodic travelling waves cannot exist for the first

model. They are observed for the second model. Existence of pulse solutions in a similar
model without delay was studied in [17].

One equation with distributed speed and delay. Equation with a distributed prop-
agation speed and time delay is considered in [18]:

L(%):aémﬂm[:K@wm@+%t—Mﬁmmm+

5Amﬂﬂ/fFuww@+4t—ﬂmmﬂ (5.8)

where L is a second-order differential operator, the functions K(z) and F(z) include both
activatory and inhibitory kernels. Different regimes are observed: periodic in time and
independent of space, stationary periodic in space, periodic travelling waves.

The model with distributed time delay [19]

ule,t) = / (e — y)dy / n(t — 5)f (uly,s — |z — yl/v))ds.

[e.e] —00

The same regimes as above and oscillating Turing structures are observed.
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Neural field model with linear adaptation. It is a two equation model

ou
Y _y)F d .
5 u 5v+/Dw(w y)F(u(y,t))dy, (5.9)
é% =u—v, (5.10)

where the second variable represents a linear adaptation (see [20] and the references therein).
A large variety of wave and patterns are observed including stationary periodic in space
solutions, travelling waves, modulated travelling waves, stationary and oscillating bumps.

Neural field model with refractoriness. Periodic travelling waves are also found in
one-equation model without inhibition term but with neuron refractoriness (time delay after

firing) [22]:

%% - —u+ (1 — /t u(x,s)ds) flw®u).

Here ® denotes spatial convolution.

6 Appendix 2. The values of parameters

Periodic travelling waves behave as cos(5t + £x) with the time frequency £, space frequency
¢, and speed ¢ = —(3/¢&. With the interval length L = 2 cm, we get £ = 27/L ~ 3 cm™!.

Let us consider the example of the simulations in Figure 4 with 7 = 1 and wave speed
0.3. If this value of 7 corresponds to the characteristic time delay 10 ms ([18], [21] Chapter
2.3.1), that is time unit in the simulation corresponds to 0.01 s, then ¢ = 0.3 x 100 = 30
cm/s.

The time frequency 3 = c¢£ = 90 s™! belongs to the upper limit of the observed range.
The value of the wave speed and, respectively, the time frequency linearly dependent on it
can be decreased by the variation of parameters a; and b;.

Connectivity functions can be estimated from the data in [23, 24]. It exponentially
decreases with the rate of decrease in the interval 3-10 times at the at the distance 0.03 cm.
This corresponds to the exponential exp(—ux) with g in the range 30 + 40 cm™!.

Propagation speed measures vary depending of the methodology used. When macroscopic
waves are recorded from EEG or from ECoG which have low spatial and high temporal
resolutions, the propagation speeds varies between 1 and 10 meters/second. As indicated by
Muller et al., [5] these results are compatible with the range of axonal conduction speeds of
myelinated white matter fibres in the cortex. However, when measuring mesoscopic waves
propagation speed using local field potential (LFP) from multielectrode arrays (MEAs) or
from optical imaging signals recorded with voltage-sensitive dyes (VSDs) having high spatial
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and temporal resolution, the propagation speeds varies from 0.1 to 0.8 metres per second,
consistent with the axonal conduction speed of the unmyelinated long-range horizontal fibres
within the superficial layers of the cortex as indicated by Muller et al. [5].
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