

1 **Title:** 2019 Novel Coronavirus (COVID-19) Pandemic: Built Environment Considerations To
2 Reduce Transmission

3 **Authors:** Leslie Dietz^{1, +}, Patrick F. Horve^{1,*, +}, David A. Coil², Mark Fretz^{1, 3}, Jonathan A.
4 Eisen⁴, Kevin Van Den Wymelenberg^{1, 3}

5 **Affiliations:**

6 ¹ Biology and the Built Environment Center, University of Oregon, Eugene, OR, 97403

7 ² Genome Center, University of California - Davis, Davis, California 95616

8 ³ Institute for Health and the Built Environment, University of Oregon, Portland, OR, 97209

9 ⁴ Department of Evolution and Ecology; Department of Medical Microbiology and Immunology;
10 Genome Center, University of California - Davis Davis, California 95616

11 ⁺ These authors contributed equally to this work. Their order in the byline was determined
12 alphabetically by their last name.

13 **Corresponding author:** *Patrick F. Horve, pfh@uoregon.edu, (541) 346-5647, Biology and the
14 Built Environment Center, University of Oregon, 5231 University of Oregon, Eugene, OR,
15 97403-523

16 **Author Contributions:** PFH, LD, and KVDW conceived of the scope of the article. LD and
17 PFH wrote the article, with significant writing contributions from DC and MF. PFH developed
18 and created figure 1. PFH, with outside help, created figures 2 and 3. KVDW and JE provided
19 significant edits. All authors reviewed the final manuscript.

20 **Acknowledgements:** The authors would like to thank Jason Stenson and Cassandra Moseley for
21 comments on the manuscript. The authors would like to thank Paul Ward for his graphical
22 contributions.

23 **Abstract**

24 With the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that
25 results in coronavirus disease 2019 (COVID-19), corporate entities, federal, state, county and
26 city governments, universities, school districts, places of worship, prisons, health care facilities,
27 assisted living organizations, daycares, homeowners, and other building owners and occupants
28 have an opportunity to reduce the potential for transmission through built environment (BE)
29 mediated pathways. Over the last decade, substantial research into the presence, abundance,
30 diversity, function, and transmission of microbes in the BE has taken place and revealed
31 common pathogen exchange pathways and mechanisms. In this paper, we synthesize this
32 microbiology of the BE research and the known information about SARS-CoV-2 to provide
33 actionable and achievable guidance to BE decision makers, building operators, and all indoor
34 occupants attempting to minimize infectious disease transmission through environmentally
35 mediated pathways. We believe this information is useful to corporate and public administrators
36 and individuals responsible for building operations and environmental services in their decision-
37 making process about the degree and duration of social-distancing measures during viral
38 epidemics and pandemics.

39

40

41

42

43

44

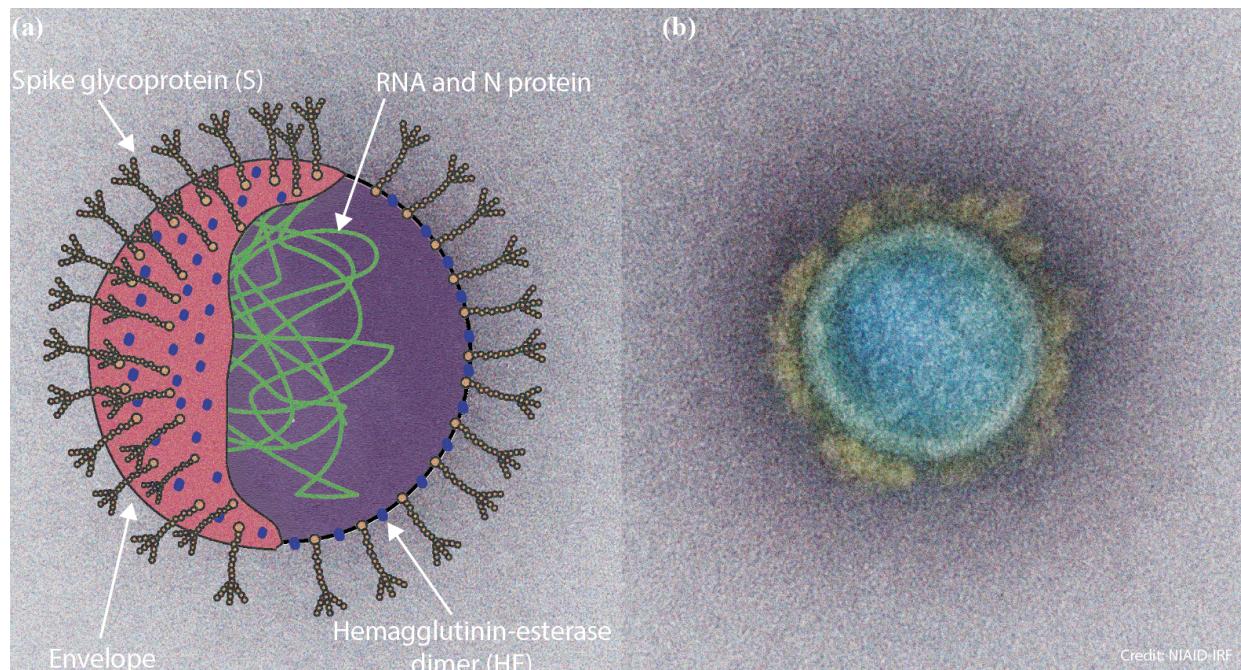
45

46 **Introduction**

47 Increased spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
48 causing coronavirus disease 2019 (COVID-19) infections worldwide has brought
49 increased attention and fears surrounding the prevention and control of SAR-CoV-2
50 from both the scientific community and the general public. While many of the precautions
51 typical for halting the spread of respiratory viruses are being implemented, other
52 less understood transmission pathways should also be considered and addressed to
53 reduce further spread. Environmentally mediated pathways for infection by other
54 pathogens have been a concern in buildings for decades, most notably in hospitals.
55 Substantial research into the presence, abundance, diversity, function, and transmission
56 of microorganisms in the built environment (BE) has taken place in recent years. This
57 work has revealed common pathogen exchange pathways and mechanisms that could
58 lend insights into potential methods to mediate the spread of SARS-CoV-2 through
59 BE-mediated pathways.

60

61 Coronaviruses (CoVs) most commonly cause mild illness, but they have occasionally,
62 in recent years, led to major outbreaks of human disease. Typically, mutations that
63 cause structural changes in the coronavirus spike (S) glycoprotein enable binding to
64 new receptor types and permit the jump from an animal host to a human host (1)
65 (zoonotic transmission) and can increase the risk of large-scale outbreaks or epidemics
66 (2). In 2002, a novel CoV, severe acute respiratory virus (SARS), was discovered in the
67 Guangdong Province of China (3). SARS is a zoonotic CoV that originated in bats and
68 resulted in symptoms of persistent fever, chills/rigor, myalgia, malaise, dry cough,


69 headache, and dyspnea in humans (4). SARS had a mortality rate of 10% and was
70 transmitted to 8,000 people during an 8-month outbreak in 2002 to 2003 (5). Approximately
71 10 years after SARS, another novel, highly pathogenic CoV, known as Middle
72 East respiratory syndrome coronavirus (MERS-CoV), emerged and is also believed to
73 have originated from bats, with camels as the reservoir host (6). MERS-CoV was first
74 characterized in the Arabian Peninsula and spread to 27 countries, having a 35.6%
75 mortality rate in 2,220 cases (7).

76

77 **Coronavirus Disease 2019 (COVID-19)**

78 In December 2019, SARS-CoV-2, a novel CoV, was identified in the city of Wuhan, Hubei
79 Province, a major transport hub of central China. The earliest COVID-19 cases were linked to a
80 large seafood market in Wuhan, initially suggesting a direct food source transmission pathway
81 (8). Since that time, we have learned that person-to-person transmission is one of the main
82 mechanisms of COVID-19 spread (9). In the months since the identification of the initial cases,
83 COVID-19 has spread to 171 countries and territories, and there are approximately
84 215,546 confirmed cases (as of 18 March 2020). The modes of transmission have been
85 identified as host-to-human and human-to-human. There is preliminary evidence that

86 environmentally mediated transmission may be possible, specifically, that COVID-19 patients
87 could be acquiring the virus through contact with abiotic BE surfaces (10, 11).

88 **Figure 1. Structure of SARS-CoV-2 virus.** (a) Artistic rendering of the structure and cross
89 section of the SARS-CoV-2 virus (12, 13) (b) Transmission electron micrograph of a SARS-
90 CoV-2 virus particle isolated from a patient and imaged at the NIH: National Institute of Allergy
91 and Infectious Disease (NIAID) Integrated Research Facility (IRF) in Fort Detrick, Maryland
92 (14).
93
94

95 **Epidemiology of SARS-CoV-2**

96 The *Betacoronavirus* SARS-CoV-2 is a single-stranded positive-sense enveloped RNA virus (97 with a genome that is approximately 30 kb in length (12, 13). Spike glycoproteins, the club-like
98 extensions projecting from the cell surface, facilitate the transfer of viral genetic material into a
99 host cell by adhesion (14, 15) (Fig. 1). The viral genetic material is then replicated by the host
100 cell. The infection history of SARS-CoV-2 is believed to have begun in bats with a possible

101 intermediate host of pangolin (16). There are several other *betacoronaviruses* that occur in bats
102 as a primary reservoir, such as SARS-CoV and MERS-CoV (17). The manifestation of
103 SARSCoV-2 in a human population occurred late in December 2019, among persons known to
104 frequent a seafood market (18). The first symptoms observed clinically were fever,
105 fatigue, and dry cough, with symptoms ranging from mild to severe (19). Currently, the
106 protocol developed by the Centers for Disease Control and Prevention (CDC) for
107 diagnosis (20) is a combination of clinical observation of symptoms and a positive result
108 for the presence of the virus using real-time PCR (rt-PCR) (21).

109

110 **COVID-19 and the Impact of the BE in Transmission**

111 The built environment (BE) is the collection of environments that humans have constructed,
112 including buildings, cars, roads, public transport, and other human-built spaces (22). Since most
113 humans spend >90% of their daily lives inside the BE, it is essential to understand the potential
114 transmission dynamics of COVID-19 within the BE ecosystem and the human behavior,
115 spatial dynamics, and building operational factors that potentially promote and mitigate
116 the spread and transmission of COVID-19. BEs serve as potential transmission
117 vectors for the spread of COVID-19 by inducing close interactions between individuals,
118 by containing fomites (objects or materials that are likely to carry infectious diseases),
119 and through viral exchange and transfer through the air (23, 24). The occupant density
120 in buildings, influenced by building type and program, occupancy schedule, and indoor
121 activity, facilitates the accrual of human-associated microorganisms (22). Higher occupant
122 density and increased indoor activity level typically increase social interaction and
123 connectivity through direct contact between individuals (25) as well as environmentally

124 mediated contact with abiotic surfaces (i.e., fomites). The original cluster of patients
125 were hospitalized in Wuhan, China, with respiratory distress (December 2019), and
126 approximately 10 days later, the same hospital facility was diagnosing patients outside
127 the original cohort with COVID-19. It is presumed that the number of infected patients
128 increased because of transmissions that potentially occurred within the hospital BE (10).
129 The increased exposure risk associated with high occupant density and consistent
130 contact was demonstrated with the COVID-19 outbreak that occurred on the Diamond
131 Princess cruise ship in January 2020 (26). Current estimates of the contagiousness
132 (known as the R₀) of SARS-CoV-2, have been estimated from 1.5 to 3 (27, 28). R₀ is
133 defined as the average number of people who will contract a disease from one
134 contagious person (29). For reference, measles has a famously high R₀ of approximately
135 12 to 18 (30), and influenza (flu) has an R₀ of ~2 (31). However, within the confined
136 spaces of the BE, the R₀ of SARS-CoV-2 has been estimated to be significantly higher
137 (estimates ranging from 5 to 14), with ~700 of the 3,711 passengers on board the
138 Diamond Princess (~19%) contracting COVID-19 during their 2-week quarantine on the
139 ship (26, 32). These incidents demonstrate the high transmissibility of COVID-19 as a
140 result of confined spaces found within the BE (33). With consideration to the spatial
141 layout of the cruise ship, the proximity of infected passengers to others likely had a
142 major role in the spread of COVID-19 (33).
143
144 As individuals move through the BE, there is direct and indirect contact with the
145 surfaces around them. Viral particles can be directly deposited and resuspended due to
146 natural airflow patterns, mechanical airflow patterns, or other sources of turbulence in

147 the indoor environment such as foot fall, walking, and thermal plumes from warm
148 human bodies (22, 34). These resuspended viral particles can then resettle back onto
149 fomites. When an individual makes contact with a surface, there is an exchange of
150 microbial life (35), including a transfer of viruses from the individual to the surface and
151 vice versa (36). Once infected, individuals with COVID-19 shed viral particles before,
152 during, and after developing symptoms (37, 38). These viral particles can then settle
153 onto abiotic objects in the BE and potentially serve as reservoirs for viral transmission
154 (18, 34, 39). Evidence suggests that fomites can potentially be contaminated with
155 SARS-CoV-2 particles from infected individuals through bodily secretions such as saliva
156 and nasal fluid, contact with soiled hands, and the settling of aerosolized viral particles
157 and large droplets spread via talking, sneezing, coughing, and vomiting (34, 40). A
158 study on environmental contamination from MERS-CoV demonstrated that nearly every
159 touchable surface in a hospital housing MERS-CoV patients had been contaminated
160 with the virus (41), and a survey of a hospital room with a quarantined COVID-19 patient
161 demonstrated extensive environmental contamination (18, 34). Knowledge of
162 the transmission dynamics of COVID-19 is currently developing, but based upon studies
163 of SARS and MERS-CoV, preliminary data on SARS-CoV-2, and CDC recommendations,
164 it seems likely that SARS-CoV-2 can potentially persist on fomites ranging from a couple
165 of hours to 5 days (39, 42, 43) depending on the material (43). Based upon preliminary
166 studies of SARS-CoV-2 survival, the virus survives longest at a relative humidity of 40%
167 on plastic surfaces (half-life median=15.9 h) and shortest in aerosol form (half-life
168 median=2.74 h) (43); however, survival in aerosol was determined at a relative humidity
169 of 65%. Based on data related to SARS and MERS, we predict that the viability

170 of SARS-CoV-2 in aerosol is likely longer at lower relative humidity levels. Survival of
171 SARS-CoV-2 at 40% relative humidity on copper (half-life median=3.4 h), cardboard
172 (half-life median=8.45 h), and steel (half-life median=13.1 h) collectively fall between
173 survival in the air and on plastic (43). However, it should be noted that there are no
174 documented cases thus far of a COVID-19 infection originating from a fomite. There is
175 preliminary data demonstrating the presence of SARS-CoV-2 in stool, indicating that
176 transmission can potentially occur through the fecal-oral pathway (18, 29, 34, 44). While
177 transmission of COVID-19 has been documented only through respiratory droplet
178 spread and not through deposition on fomites, steps should still be taken to clean and
179 disinfect all potential sources of SARS-CoV-2 under the assumption that active virus
180 may be transmitted by contact with these abiotic surfaces (34, 39). With an abundance
181 of caution, it is important to consider the possibility that the virus is transmitted
182 through aerosols and surfaces (45). For a conceptualization of SARS-CoV-2 deposition,
183 see Fig. 2.

184

185 **Figure 2: Conceptualization of SARS-CoV-2 deposition.** (a) Once infected with SARS-CoV-
186 2, viral particles accumulate in the lungs and upper respiratory tract (b) droplets and aerosolized
187 viral particles are expelled from the body through daily activities such as coughing, sneezing,
188 talking, and non-routine events such as vomiting, and can spread to nearby surroundings and
189 individuals (35, 41) (c) Viral particles, excreted from the mouth and nose, are often found on the
190 hands and (d) can be spread to commonly touched items such as computers, glasses, faucets, and
191 countertops. There are currently no confirmed cases of fomite-to-human transmission, but viral
192 particles have been found on abiotic BE surfaces (35, 40, 43).

193

194 Previously, it has been confirmed that SARS can be, and is most often, transmitted
195 through droplets (46). Considering that SARS-CoV-2 is from a sister clade to the 2002

196 SARS virus (47) that is known to transmit from person-to-person, the high incidence of
197 observed person-to-person transmission and the rapid spread of COVID-19 throughout
198 the world and communities, it is accepted at this time that SARS-CoV-2 can also be
199 spread through droplets (13, 48). Based upon previous investigation into SARS (49),
200 spread through aerosolization remains a potential secondary transmission method,
201 especially within the BE. Mitigation of viral transmission through BE air delivery systems
202 is most often reliant on inline filtration media. Residential and commercial systems
203 typically require a minimum efficiency reporting value (MERV) of 8, which is rated to
204 capture 70 to 85% of particles ranging from 3.0 to 10.0 μm , a strategy employed to
205 minimize debris and loss of efficiency impacts to cooling coils and other heating,
206 ventilation, and air conditioning (HVAC) components. Higher MERV ratings are required
207 to filter incoming outside air based on local outdoor particulate levels. Protective
208 environment (PE) rooms in hospitals require the most stringent minimum filtration
209 efficiency (50). A MERV of 7 (MERV-7) or greater is required as a first filter before heating
210 and cooling equipment, and a second high-efficiency particulate air (HEPA) filter is
211 placed downstream of cooling coils and fans. HEPA filters are rated to remove at least
212 99.97% of particles down to 0.3 μm (51). Most residential and commercial buildings
213 utilize MERV-5 to MERV-11, and in critical health care settings, MERV-12 or higher and
214 HEPA filters are used. MERV-13 filters have the potential to remove microbes and other
215 particles ranging from 0.3 to 10.0 μm . Most viruses, including CoVs, range from 0.004
216 to 1.0 μm , limiting the effectiveness of these filtration techniques against pathogens
217 such as SARS-CoV-2 (52). Furthermore, no filter system is perfect. Recently, it has been
218 found that gaps in the edges of filters in hospitals has been a contributing factor of the

219 failure of filtering systems to eliminate pathogens from the shared air environment (53).
220 In recent years, the sharing economy has created environments and added new
221 components to how multiple people share the same spaces. It is possible that infectious
222 disease transmission may be impacted by this shift to the sharing economy.
223 Shared workspaces such as cowork environments, rooms in homes, cars, bikes, and
224 other elements of the BE may increase the potential for environmentally mediated
225 pathways of exposure and add complexity to enacting social-distancing measures. For
226 example, in cases where alternate modes of transportation were previously single occupancy
227 vehicles, these trips are now often replaced with rideshare programs or
228 transportation network companies, the potential for exposure may increase.

229

230 **Control and Mitigation Efforts in the BE**

231 The spread of COVID-19 is a rapidly
232 developing situation, but there are steps that can be taken, inside and outside the BE,
233 to help prevent the spread of disease. On an individual level, proper handwashing is a
234 critical component of controlling the spread of SARS-CoV-2, other coronaviruses, and
235 many respiratory infections (54–56). Individuals should avoid contact and spatial proximity
236 with infected persons and wash hands frequently for at least 20 s with soap and
237 hot water (39). Furthermore, since it is difficult to know who is infected and who is not,
238 the best way to avoid spread in some situations is by avoiding large gatherings of
239 individuals, also known as “social distancing.” At this time, the Food and Drug Administration
240 (FDA) does not recommend that asymptomatic individuals wear masks during
241 their everyday lives to preserve masks and materials for individuals who have been

242 infected with COVID-19 and for health care workers and family that will be in consistent
243 contact with individuals infected with COVID-19 (57). Additionally, wearing a mask can
244 give a false sense of security when moving throughout potentially contaminated areas,
245 and the incorrect handling and use of masks can increase transmission (58). However,
246 as masks become available, and while prioritizing access to masks for health care
247 workers that are in a higher risk environment daily, wearing a mask would be prudent.
248 There is sufficient evidence to suggest that airborne transmission is possible (49)
249 through aerosolized particles beyond six feet and that a mask would aid in preventing
250 infection through this route.

251
252 Since the end of January 2020, many countries have issued travel bans to prevent
253 person-to-person contact and particle-based transmission. These mobility restrictions
254 have been confirmed to help contain the spread of COVID-19 (59). Within local
255 communities, a variety of measures can also be taken to prevent further spread (60). As
256 a whole, these measures are known as non-health-care-setting social-distancing measures.
257 These measures include closing high-occupancy areas such as schools and
258 workplaces. These community-level measures act to prevent disease transmission
259 through the same mechanisms as the worldwide travel restrictions by reducing typical
260 person-to-person contact, decreasing the possibility of fomite contamination by those
261 that are shedding viral particles, and decreasing the possibility of airborne, particle
262 transmission between individuals in the same room or close proximity. These decisions
263 are made by individuals with administrative authority over large jurisdictions, communities,
264 or building stock and are weighed in balance with numerous factors, including

265 health risks and social and economic impacts. Furthermore, despite substantial social distancing
266 and quarantine practices in place, specific building types and space uses are
267 considered critical infrastructure and essential to maintaining communities, such as
268 health care facilities, housing, and groceries. Better understanding of BE mediating
269 variables can be helpful in decision-making about whether to implement social distancing
270 measures and for what duration, and to individuals responsible for building
271 operations and environmental services related to essential and critical infrastructure
272 during periods of social distancing, and all building types before and after social distancing
273 measures are enacted.

274

275 Within the BE, environmental precautions that can be taken to potentially prevent
276 the spread of SARS-CoV-2 include chemical deactivation of viral particles on surfaces
277 (39). It has been demonstrated that 62 to 71% ethanol is effective at eliminating MERS,
278 SARS (42), and SARS-CoV-2 (34). This ethanol concentration is typical of most alcohol based
279 hand sanitizers, making properly applied hand sanitizer a valuable tool against
280 the spread of SARS-CoV-2 in the BE. Items should be removed from sink areas to ensure
281 aerosolized water droplets do not carry viral particles onto commonly used items, and
282 countertops around sinks should be cleaned using a 10% bleach solution or an
283 alcohol-based cleaner on a regular basis. Again, it is important to remember that the
284 main and much more common spread mechanism of previous CoVs has been identified
285 as droplets from talking, sneezing, coughing, and vomiting than by the fecal-oral
286 pathway (34, 38, 39). Administrators and building operators should post signage about
287 the effectiveness of handwashing for at least 20 s with soap and hot water, ensure soap

288 dispensers are full, provide access to alcohol-based hand sanitizer, and implement
289 routine surface cleaning protocols to high-touch surfaces where contamination risks
290 are high, such as around sinks and toilets (39). Most importantly, to prevent the
291 transmission of microbes and thus, undesirable pathogens, it is important to exercise
292 proper handwashing hygiene (39, 61).

293

294 Enacting enhanced building HVAC operational practices can also reduce the potential
295 for spread of SARS-CoV-2. Even though viral particles are too small to be contained
296 by even the best HEPA and MERV filters, ventilation precautions can be taken to ensure
297 the minimization of SARS-CoV-2 spread. Proper filter installation and maintenance can
298 help reduce the risk of airborne transmission, but it is important to understand that
299 filters should not be assumed to eliminate airborne transmission risk. Higher outside air
300 fractions and higher air exchange rates in buildings may help to dilute the indoor
301 contaminants, including viral particles, from air that is breathed within the BE. Higher
302 outside air fractions may be achieved by further opening outside air damper positions
303 on air-handling units, thus exhausting a higher ratio of indoor air and any airborne viral
304 particles present (62). There are some cautions to consider relative to these building
305 operations parameters. First, increasing outside air fractions may come with increased
306 energy consumption. In the short term, this is a worthwhile mitigation technique to
307 support human health, but building operators are urged to revert to normal ratios after
308 the period of risk has passed. Second, not all air-handling systems have the capacity to
309 substantially increase outside air ratios, and those that do may require a more frequent filter
310 maintenance protocol. Third, increasing airflow rates that simply increase the

311 delivery of recirculated indoor air, without increased outside air fraction, could potentially
312 increase the transmission potential. Higher airflow rates could increase resuspension
313 from fomites and increase the potential for contamination throughout the building
314 by distributing indoor air more quickly, at higher velocities and volumes, potentially
315 resuspending more ultrafine particles (62). Additionally, increasing the indoor air
316 circulation rate could increase the human exposure to viable airborne viral particles
317 shed from other building occupants. Administrators and building operators should
318 collaborate to determine whether increased outside air fractions are possible, what
319 limitations or secondary implications must be considered, and determine a plan around
320 managing the outside air fraction and air change rates.

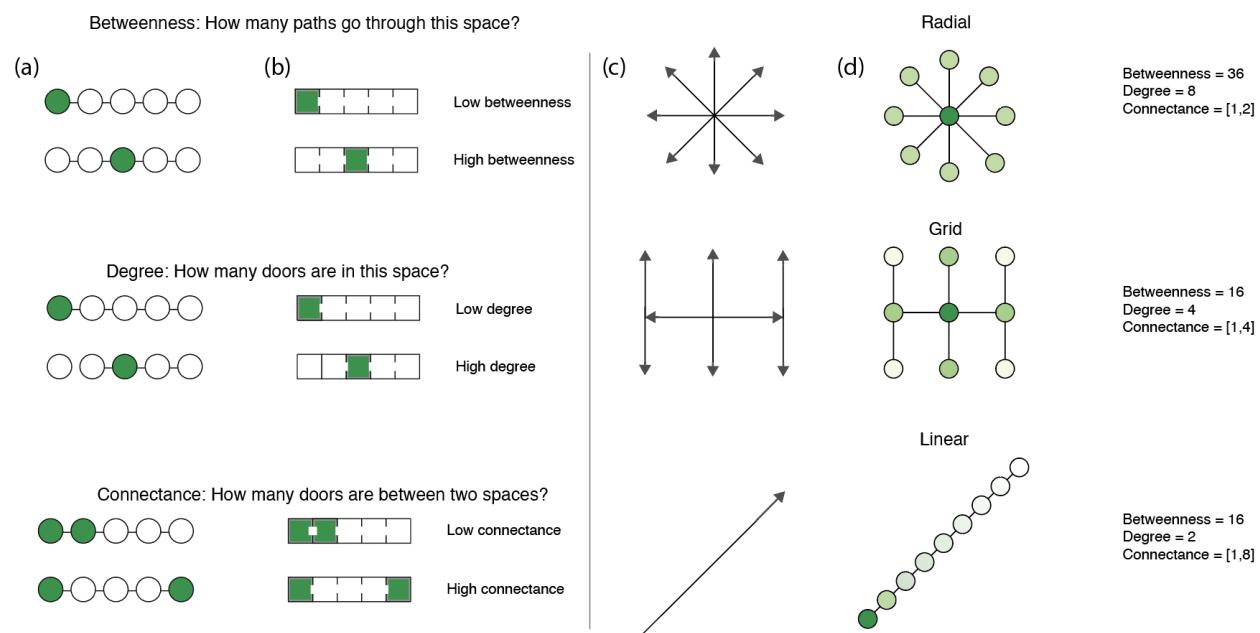
321
322 Increasing evidence indicates that humidity can play a role in the survival of
323 membrane-bound viruses, such as SARS-CoV-2 (63–65). Previous research has found
324 that, at typical indoor temperatures, relative humidity (RH) above 40% is detrimental to
325 the survival of many viruses, including CoVs in general (63, 66, 67), and higher indoor
326 RH has been shown to reduce infectious influenza virus in simulated coughs (67). Based
327 upon studies of other viruses, including CoVs, higher RH also decreases airborne
328 dispersal by maintaining larger droplets that contain viral particles, thus causing them
329 to deposit onto room surfaces more quickly (63, 68, 69). Higher humidity likely
330 negatively impacts lipid-enveloped viruses, like CoVs, through interactions with the
331 polar membrane heads that lead to conformational changes of the membrane, causing
332 disruption and inactivation of the virus (70, 71). Furthermore, changes in humidity can
333 impact how susceptible an individual is to infection by viral particles (72) and how far

334 into the respiratory tract viral particles are likely to deposit (68). Decreased RH has been
335 demonstrated to decrease mucociliary clearance of invading pathogens and weakened
336 innate immune response (72–74). However, RH above 80% may begin to promote mold
337 growth, inducing potentially detrimental health effects (75). Although the current
338 ventilation standard adopted by health care and residential care facilities, ASHRAE
339 170-2017, permits a wider range of RH from 20% to 60%, maintaining a RH between
340 40% and 60% indoors may help to limit the spread and survival of SARS-CoV-2 within
341 the BE, while minimizing the risk of mold growth and maintaining hydrated and intact
342 mucosal barriers of human occupants (50, 67). Indoor humidification is not common in
343 most HVAC system designs, largely due to equipment cost and maintenance concerns
344 related to the risk of overhumidification increasing the potential of mold growth. While
345 administrators and building operators should consider the costs, merits, and risks of
346 implementing central humidification, especially during new construction or as a retrofit,
347 it may be too time intensive to implement in response to a specific viral outbreak
348 or episode. In addition, increased RH may lead to increased buildup on filters, decreasing
349 airflow. However, in pandemic situations, this practice likely increases the effectiveness
350 of capturing viral particles, and this benefit outweighs the increased filter
351 maintenance required. Therefore, targeted in-room humidification is another option to
352 consider, and this may reduce the likelihood of a maintenance oversight causing
353 overhumidification.

354

355 Building ventilation source and distribution path length can affect the composition
356 of indoor microbial communities. Ventilating a building by introducing air directly

357 through the perimeter of buildings into adjacent spaces is a strategy that does not rely
358 on the efficacy of whole-building filtration to prevent network distribution of microorganisms.
359 Delivering outside air directly through the envelope into an adjacent spatial
360 volume has been shown to increase the phylogenetic diversity of indoor bacterial and
361 fungal communities and create communities that are more similar to outdoor associated
362 microbes than air delivered through a centralized HVAC system (76). In some
363 buildings, a similar approach can be accomplished through distributed HVAC units,
364 such as packaged terminal air-conditioners (PTAC) frequently found in hotels, motels,
365 senior housing facilities, condominium units, and apartments or through perimeter
366 passive ventilation strategies such as perimeter dampered vents (77, 78). However, for
367 most buildings, the easiest way to deliver outside air directly across the building envelope is to
368 open a window. Window ventilation not only bypasses ductwork but
369 increases outside air fraction and increases total air change rate as well (79). Administrators
370 and building operators should discuss a plan for increasing perimeter, and
371 specifically window, ventilation when outdoor temperatures are adequate for this
372 practice. Care should be taken to avoid exposing occupants to extreme temperature
373 profiles, and caution should be taken where close proximity would promote potential
374 viral transfer from one residence to another (94, 95).
375
376 Light is another mitigation strategy for controlling the viability of some infectious
377 agents indoors. Daylight, a ubiquitous and defining element in architecture, has been
378 shown in microcosm studies to shape indoor bacterial communities in household dust
379 to be less human associated than in dark spaces (80). Moreover, daylight in both the UV


380 and visible spectral ranges reduced the viability of bacteria compared to dark controls
381 in these microcosm spaces (80). In a study simulating sunlight on influenza virus
382 aerosols, virus half-life was significantly reduced from 31.6 min in the dark control
383 group to approximately 2.4 min in simulated sunlight (81). In buildings, much of the
384 sunlight spectrum is filtered through architectural window glass, and the resulting
385 transmitted UV is largely absorbed by finishes and not reflected deeper into the space.
386 Therefore, further research is needed to understand the impact of natural light on
387 SARS-CoV-2 indoors; however, in the interim, daylight exists as a free, widely available
388 resource to building occupants with little downside to its use and many documented
389 positive human health benefits (80–83). Administrators and building operators should
390 encourage blinds and shades to be opened when they are not needed to actively
391 manage glare, privacy, or other occupant comfort factors to admit abundant daylight
392 and sunlight.
393 While daylight's effect on indoor viruses and SARS-CoV-2 is still unexplored, spectrally
394 tuned electric lighting is already implemented as engineering controls for disinfection
395 indoors. UV light in the region of shorter wavelengths (254-nm UV C [UVC]) is
396 particularly germicidal, and fixtures tuned to this part of the light spectrum are
397 effectively employed in clinical settings to inactivate infectious aerosols and can reduce
398 the ability of some viruses to survive (84). It is important to note that most UVC light
399 is eliminated in the atmosphere, while much of the UVA and UVB spectrum is eliminated
400 through building glass layers. Airborne viruses that contain single-stranded RNA
401 (ssRNA) are reduced by 90% with a low dose of UV light, and the UV dose requirement
402 increases for ssRNA viruses found on surfaces (85, 86). A previous study demonstrated

403 that 10 min of UVC light inactivated 99.999% of CoVs tested, SARS-CoV, and MERS-CoV
404 (87). However, UV germicidal irradiation (UVGI) has potential safety concerns if the
405 room occupants are exposed to high-energy light. For this reason, UVGI is safely
406 installed in mechanical ventilation paths or in upper-room applications to indirectly
407 treat air through convective air movement (88, 89). More recently, far-UVC light in the
408 207- to 222-nm range has been demonstrated to effectively inactivate airborne aerosolized
409 viruses. While preliminary findings from in vivo rodent models and in vitro
410 three-dimensional (3-D) human skin models appear favorable to not cause damage to
411 human skin and eyes (90, 91), further research must be conducted to verify the margin
412 of safety before implementation. If implemented safely, UVC and UVGI light offers a
413 range of potential disinfectant strategies for buildings and is a common strategy for
414 deep clean practices in health care settings. Implementing targeted UVC and UVGI
415 treatment may be prudent in other space types where individuals that tested positive
416 for COVID-19 were known occupants, but routine treatment may have unintended consequences
417 and should be implemented with appropriate precaution.

418

419 Spatial configuration of buildings can encourage or discourage social interactions. In
420 recent years, Western society has valued design that emphasizes visual transparency
421 and a feeling of “spaciousness” indoors, whether at home through the use of open plan
422 concepts or at workplaces that harness open office concepts with spatial layouts that
423 intentionally direct occupants to nodes of “chance encounters,” thought to enhance
424 collaboration and innovation among employees. While these spatial configurations are

425 culturally important, they may inadvertently enhance opportunities for transmission of viruses
 426 through designed human interaction. For example, large, densely populated
 427 open office spaces may increase connectivity while private offices may decrease
 428 connectivity. Space syntax analysis demonstrates a relationship between spatial disposition
 429 and degrees of connectivity (Fig. 3) and has been shown to correlate with the
 430 abundance and diversity of microbes within a given space (92). Understanding these
 431 spatial concepts could be part of the decision-making process of whether to implement
 432 social-distancing measures, to what extent to limit occupant density, and for how long
 433 to implement the measures.

434
 435
 436 **Figure 3. Spatial connectivity, highlighting betweenness and connectance of common room**
 437 **and door configurations.** (a) Circles and lines follow the classic network representation. (b) The
 438 rectangles follow the architectural translation of networks. Shaded areas correspond to a measure
 439 of betweenness (the number of shortest paths between all pairs of spaces that pass through a

440 given space over the sum of all shortest paths between all pairs of spaces in the building), degree
441 (the number of connections a space has to other spaces between any two spaces), and
442 connectance (the number of doors between any two spaces). (c) The arrows represent possible
443 directions of microbial spread as determined by the layout of the BE. (d) The circles represent
444 the current knowledge of microbial spread based on microbial abundance through BEs as
445 determined by layout. Darker colors represent higher microbial abundance and lighter colors
446 represent lower microbial abundance.

447

448 **Special considerations for healthcare settings for current and future epidemics**

449 Hospitals present unique challenges during the process of mitigating and protecting
450 all inhabitants from an infectious disease outbreak. Not only do health care and
451 hospital facilities have limited options for social-distancing measures to prevent infectious
452 spread, but health care facilities also often cohause patients with vastly different
453 requirements from the BE around them. For example, high-risk immunocompromised
454 patients are often kept within protective environment (PE) rooms, designed to limit
455 outside airborne infectious agents from entering into the room. To do this, these rooms
456 are positively pressurized, relative to the corridor space, with a minimum of HEPA
457 supply air (ASHRAE 170-2017 [50]). However, this pressurization differential also increases
458 the likelihood that aerosols in the patient room will migrate outside of the PE
459 room and into the higher traffic corridor space when the door is open. While PE rooms
460 typically function as intended for the occupant, if an immunocompromised patient is
461 also under treatment for an airborne infectious disease, the process of limiting pathogen
462 ingress into the room could potentially create involuntary exposure to health care

463 workers, other patients, and visitors via the corridor space. In comparison, airborne
464 infection isolation (AII) rooms utilize a negative pressure differential relative to the
465 corridor space and adjacent rooms, directly exhausting room air to the exterior of the
466 building to contain aerosolized pathogens from spreading into circulation and shared
467 spaces. The same negative pressure that aids in preventing spread of aerosolized
468 pathogens from inside the room can involuntarily expose the room occupants to
469 airborne pathogens that are sourced from occupants of the corridor space. Both PE and
470 AII rooms may be designed with an anteroom that is used as an additional buffer
471 between common areas and protected spaces to prevent pathogen spread and provide a location
472 for hospital staff to apply and remove personal protection equipment (PPE).
473 However, anterooms are not required for PE or AII rooms and have drawbacks during
474 routine operation; therefore, they exist in only some facilities. They use significant
475 additional floor area, create more travel distance, and increase the visual barrier
476 between patient and rounding care team, therefore, increase costs. These trade-offs
477 might be reconsidered in future design and operational protocols given the high costs
478 of pandemics and the critical role of health care environments during these times.
479
480 A discussion of PE and AII rooms does not adequately address the majority of
481 patient rooms within a hospital or health care facility that are not inherently designed
482 with airborne respiratory viruses in mind. Renewed consideration should be given to
483 general facility design to fulfill various requirements for different patient conditions and
484 operational requirements during both routine conditions and disease outbreaks. One
485 such consideration includes separating the means of thermal space conditioning from

486 ventilation provisions. Decoupling these functions permits decentralized mechanical or
487 passive ventilation systems integrated into multifunctional facades with heat recovery
488 and 100% outside air delivery. Mechanically delivering air through the facade would
489 permit all patient rooms to be operated in isolation and individually adjusted to be
490 positively or negatively pressurized, depending on patient requirements, with a higher
491 degree of operational resilience. Furthermore, future designs should reconsider the
492 best way to triage and complete initial assessment of patients that present symptoms
493 related to airborne viruses to minimize exposure to areas with other patient types if
494 possible. In planning for the future, architects, designers, building operators, and health
495 care administrators should aspire for hospital designs that can accommodate periods of
496 enhanced social distancing and minimize connectance and flow between common
497 areas, while also affording flexibility for efficient use of space during normal operating
498 conditions.

499

500 **Conclusion**

501 The number of individuals who have contracted COVID-19 or have
502 been exposed to SARS-CoV-2 has been increasing dramatically. Over a decade of
503 microbiology of the BE research has been reviewed to provide the most up-to-date
504 knowledge into the control and mediation of common pathogen exchange pathways
505 and mechanisms in the BE with as much specificity to SARS-CoV-2 as possible. We hope
506 this information can help to inform the decisions and infection control mechanisms
507 that are implemented by corporate entities, federal, state, county, and city governments,
508 universities, school districts, places of worship, prisons, health care facilities,

509 assisted living organizations, daycares, homeowners, and other building owners and
510 occupants to reduce the potential for transmission through BE mediated pathways. This
511 information is useful to corporate and public administrators and individuals responsible
512 for building design and operation in their decision-making process about the degree
513 and duration of social-distancing measures during viral epidemics and pandemics.

514 References

515 1. Parrish CR, Holmes EC, Morens DM, Park E-C, Burke DS, Calisher CH,
516 Laughlin CA, Saif LJ, Daszak P. 2008. Cross-species virus transmission and
517 the emergence of new epidemic diseases. *Microbiol Mol Biol Rev* 72:
518 457–470. <https://doi.org/10.1128/MMBR.00004-08>.

519 2. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L,
520 Fouchier RAM, Galiano M, Gorbatenya AE, Memish ZA, Perlman S, Poon
521 LLM, Snijder EJ, Stephens GM, Woo PCY, Zaki AM, Zambon M, Ziebuhr J.
522 2013. Commentary: Middle East respiratory syndrome coronavirus
523 (MERS-CoV): announcement of the Coronavirus Study Group. *J Virol*
524 87:7790 –7792. <https://doi.org/10.1128/JVI.01244-13>.

525 3. Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, Nicholls J, Yee
526 WKS, Yan WW, Cheung MT, Cheng VCC, Chan KH, Tsang DNC, Yung
527 RWH, Ng TK, Yuen KY, SARS Study Group. 2003. Coronavirus as a possible
528 cause of severe acute respiratory syndrome. *Lancet* 361:1319 –1325.
529 [https://doi.org/10.1016/S0140-6736\(03\)13077-2](https://doi.org/10.1016/S0140-6736(03)13077-2).

530 4. Hui DSC, Chan MCH, Wu AK, Ng PC. 2004. Severe acute respiratory syndrome (SARS):
531 epidemiology and clinical features. *Postgrad Med J*
532 80:373–381. <https://doi.org/10.1136/pgmj.2004.020263>.

533 5. World Health Organization. 5 January 2020. Pneumonia of unknown
534 cause – China. World Health Organization, Geneva, Switzerland.

535 6. Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, Baghbanzadeh
536 M, Aghamohammadi N, Zhang W, Haque U. 22 February 2020. The SARS,

537 MERS and novel coronavirus (COVID-19) epidemics, the newest and
538 biggest global health threats: what lessons have we learned? *Int J*
539 *Epidemiol* <https://doi.org/10.1093/ije/dyaa033>.

540 7. Ramadan N, Shaib H. 2019. Middle East respiratory syndrome coronavirus
541 (MERS-CoV): a review. *Germs* 9:35– 42. <https://doi.org/10.18683/germs.2019.1155>.

543 8. Wu P, Hao X, Lau EHY, Wong JY, Leung KSM, Wu JT, Cowling BJ, Leung
544 GM. 2020. Real-time tentative assessment of the epidemiological characteristics
545 of novel coronavirus infections in Wuhan, China, as at 22
546 January 2020. *Euro Surveill* 25:2000044. <https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.3.2000044>.

548 9. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY,
549 Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Li M, Tu
550 W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao
551 G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JTK,
552 Gao GF, Cowling BJ, Yang G, Leung GM, Feng Z. 29 January 2020. Early
553 transmission dynamics in Wuhan, China, of novel coronavirus–infected
554 pneumonia. *N Engl J Med* <https://doi.org/10.1056/NEJMoa2001316>.

555 10. Rothan HA, Byrareddy SN. 26 February 2020. The epidemiology and
556 pathogenesis of coronavirus disease (COVID-19) outbreak. *J Autoimmun*
557 <https://doi.org/10.1016/j.jaut.2020.102433>.

558 11. Sizun J, Yu MW, Talbot PJ. 2000. Survival of human coronaviruses 229E
559 and OC43 in suspension and after drying on surfaces: a possible source

560 of hospital-acquired infections. *J Hosp Infect* 46:55–60. <https://doi.org/10.1053/jhin.2000.0795>.

561

562 12. Chen Y, Liu Q, Guo D. 2020. Emerging coronaviruses: genome structure,
563 replication, and pathogenesis. *J Med Virol* 92:418–423. <https://doi.org/10.1002/jmv.25681>.

564

565 13. Chan J-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, Xing F, Liu J, Yip
566 CC-Y, Poon R-S, Tsui H-W, Lo S-F, Chan K-H, Poon V-M, Chan W-M, Ip JD,
567 Cai J-P, Cheng V-C, Chen H, Hui C-M, Yuen K-Y. 2020. A familial cluster of
568 pneumonia associated with the 2019 novel coronavirus indicating
569 person-to-person transmission: a study of a family cluster. *Lancet* 395:
570 514–523. [https://doi.org/10.1016/S0140-6736\(20\)30154-9](https://doi.org/10.1016/S0140-6736(20)30154-9).

571

572 14. Fehr AR, Perlman S. 2015. Coronaviruses: an overview of their replication
573 and pathogenesis. *Methods Mol Biol* 1282:1–23. https://doi.org/10.1007/978-1-4939-2438-7_1.

574

575 15. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. 2020.
576 Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein.
577 *Cell* 180:1–12.

578

579 16. South China Agricultural University. 2020. Pangolin is found as a potential
580 intermediate host of new coronavirus in South China Agricultural
581 University. <https://scau.edu.cn/2020/0207/c1300a219015/page.htm>.

582

17. Cui J, Li F, Shi Z-L. 2019. Origin and evolution of pathogenic coronaviruses.
583 *Nat Rev Microbiol* 17:181–192. <https://doi.org/10.1038/s41579-018-0118-9>.

583 18. Perlman S. 2020. Another decade, another coronavirus. *N Engl J Med*
584 382:760–762. <https://doi.org/10.1056/NEJMe2001126>.

585 19. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W,
586 Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China
587 Novel Coronavirus Investigating and Research Team. 2020. A novel
588 coronavirus from patients with pneumonia in China, 2019. *N Engl J Med*
589 382:727–733. <https://doi.org/10.1056/NEJMoa2001017>.

590 20. CDC. 2020. 2019-nCoV real-time RT-PCR diagnostic panel (CDC) - fact
591 sheet for healthcare providers. Centers for Disease Control and Prevention,
592 Atlanta, GA.

593 21. Millán-Oñate J, Rodriguez-Morales AJ, Camacho-Moreno G, Mendoza-
594 Ramírez H, Rodríguez-Sabogal IA, Álvarez-Moreno C. A new emerging
595 zoonotic virus of concern: the 2019 novel coronavirus (COVID-19). *Infectio*,
596 in press.

597 22. Horve PF, Lloyd S, Mhuireach GA, Dietz L, Fretz M, MacCrone G, Van
598 Den Wymelenberg K, Ishaq SL. 2020. Building upon current knowledge
599 and techniques of indoor microbiology to construct the next
600 era of theory into microorganisms, health, and the built environment.
601 *J Expo Sci Environ Epidemiol* 30:219–217. <https://doi.org/10.1038/s41370-019-0157-y>.

603 23. Adams RI, Bhangar S, Dannemiller KC, Eisen JA, Fierer N, Gilbert JA,
604 Green JL, Marr LC, Miller SL, Siegel JA, Stephens B, Waring MS, Bibby K.
605 2016. Ten questions concerning the microbiomes of buildings. *Build*

606 Environ 109:224–234. <https://doi.org/10.1016/j.buildenv.2016.09.001>.

607 24. Tellier R, Li Y, Cowling BJ, Tang JW. 2019. Recognition of aerosol transmission
608 of infectious agents: a commentary. *BMC Infect Dis* 19:101.
609 <https://doi.org/10.1186/s12879-019-3707-y>.

610 25. Andrews JR, Morrow C, Walensky RP, Wood R. 2014. Integrating social
611 contact and environmental data in evaluating tuberculosis transmission
612 in a South African township. *J Infect Dis* 210:597–603. <https://doi.org/10.1093/infdis/jiu138>.

613 26. Mizumoto K, Chowell G. 2020. Transmission potential of the novel
614 coronavirus (COVID-19) onboard the Diamond Princess Cruises Ship,
615 2020. *Infect Dis Model* 5:264–270. <https://doi.org/10.1016/j.idm.2020.02.003>.

616 27. Wu JT, Leung K, Leung GM. 2020. Nowcasting and forecasting the
617 potential domestic and international spread of the 2019-nCoV outbreak
618 originating in Wuhan, China: a modelling study. *Lancet* 395:689–697.
619 [https://doi.org/10.1016/S0140-6736\(20\)30260-9](https://doi.org/10.1016/S0140-6736(20)30260-9).

620 28. Zhang S, Diao M, Yu W, Pei L, Lin Z, Chen D. 2020. Estimation of the
621 reproductive number of novel coronavirus (COVID-19) and the probable
622 outbreak size on the Diamond Princess cruise ship: a data-driven analysis.
623 *Int J Infect Dis* 93:201–204. <https://doi.org/10.1016/j.ijid.2020.02.033>.

624 29. Poon LLM, Peiris M. 2020. Emergence of a novel human coronavirus
625 threatening human health. *Nat Med* 26:317–319. <https://doi.org/10.1038/s41591-020-0537-1>.

629 .1038/s41591-020-0796-5.

630 30. Guerra FM, Bolotin S, Lim G, Heffernan J, Deeks SL, Li Y, Crowcroft NS.

631 2017. The basic reproduction number (R_0) of measles: a systematic

632 review. *Lancet Infect Dis* 17:e420–e428. [https://doi.org/10.1016/S1473-3099\(17\)30307-9](https://doi.org/10.1016/S1473-3099(17)30307-9).

633 31. Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. 2014. Estimates

634 of the reproduction number for seasonal, pandemic, and zoonotic

635 influenza: a systematic review of the literature. *BMC Infect Dis* 14:480.

636 <https://doi.org/10.1186/1471-2334-14-480>.

637 32. Zhao S, Cao P, Gao D, Zhuang Z, Chong MKC, Cai Y, Ran J, Wang K, Yang

638 L, He D, Wang MH. 20 February 2020. Epidemic growth and reproduction

639 number for the novel coronavirus disease (COVID-19) outbreak on the

640 Diamond Princess Cruise Ship from January 20 to February 19, 2020:

641 a preliminary data-driven analysis. SSRN <https://doi.org/10.2139/ssrn.3543150>.

642 33. Mizumoto K, Kagaya K, Zarebski A, Chowell G. 2020. Estimating the

643 asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases

644 on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. *Euro*

645 *Surveill* 25(10):pii_2000180. <https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.10.2000180>.

646 34. Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, Marimuthu K.

647 2020. Air, surface environmental, and personal protective equipment

648 contamination by severe acute respiratory syndrome coronavirus 2

652 (SARS-CoV-2) from a symptomatic patient. *JAMA* [https://doi.org/10](https://doi.org/10.1001/jama.2020.3227)

653 .1001/jama.2020.3227.

654 35. Stephens B, Azimi P, Thoemmes MS, Heidarinejad M, Allen JG, Gilbert JA.

655 2019. Microbial exchange via fomites and implications for human health.

656 *Curr Pollution Rep* 5:214. <https://doi.org/10.1007/s40726-019-00126-3>.

657 36. Vandegrift R, Fahimipour AK, Muscarella M, Bateman AC, Van Den

658 Wymelenberg K, Bohannan B. 26 March 2019. Moving microbes: the dynamics

659 of transient microbial residence on human skin. *bioRxiv* [https://doi](https://doi.org/10.1101/586008)

660 .org/10.1101/586008.

661 37. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, Zimmer

662 T, Thiel V, Janke C, Guggemos W, Seilmairer M, Drosten C, Vollmar P,

663 Zwirglmaier K, Zange S, Wölfel R, Hoelscher M. 2020. Transmission of

664 2019-nCoV infection from an asymptomatic contact in Germany. *N Engl J*

665 *Med* 382:970–971. <https://doi.org/10.1056/NEJMc2001468>.

666 38. Yaqian M, Lin W, Wen J, Chen G. 2020. Epidemiological and clinical

667 characteristics of SARS-CoV-2 and SARS-CoV: a system review. *Infectious*

668 *Diseases (except HIV/AIDS)*. *medRxiv* [https://doi.org/10.1101/2020.02.20](https://doi.org/10.1101/2020.02.20.20025601)

669 .20025601.

670 39. CDC. 2020. Coronavirus disease 2019 (COVID-19). Centers for Disease

671 Control and Prevention, Atlanta, GA.

672 40. Doultree JC, Druce JD, Birch CJ, Bowden DS, Marshall JA. 1999. Inactivation

673 of feline calicivirus, a Norwalk virus surrogate. *J Hosp Infect*

674 41:51–57. [https://doi.org/10.1016/S0195-6701\(99\)90037-3](https://doi.org/10.1016/S0195-6701(99)90037-3).

675 41. Bin SY, Heo JY, Song M-S, Lee J, Kim E-H, Park S-J, Kwon H-I, Kim SM, Kim
676 Y-I, Si Y-J, Lee I-W, Baek YH, Choi W-S, Min J, Jeong HW, Choi YK. 2016.
677 Environmental contamination and viral shedding in MERS patients during MERS-CoV outbreak
678 in South Korea. *Clin Infect Dis* 62:755–760.
679 <https://doi.org/10.1093/cid/civ1020>.

680 42. Kampf G, Todt D, Pfaender S, Steinmann E. 2020. Persistence of coronaviruses
681 on inanimate surfaces and its inactivation with biocidal agents. *J
682 Hosp Infect* 104:246 –251. <https://doi.org/10.1016/j.jhin.2020.01.022>.

683 43. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A,
684 Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-
685 Smith JO, de Wit E, Munster VJ. 2020. Aerosol and surface stability of
686 SARS-CoV-2 as compared with SARS-CoV-1. *N Engl J Med* [https://doi
687 .org/10.1056/NEJMc2004973](https://doi.org/10.1056/NEJMc2004973).

688 44. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. 2020. Evidence for
689 gastrointestinal infection of SARS-CoV-2. *Gastroenterology* [https://doi
690 .org/10.1053/j.gastro.2020.02.055](https://doi.org/10.1053/j.gastro.2020.02.055).

691 45. Lipsitch M, Allen J. 16 March 2020. Coronavirus reality check: 7 myths
692 about social distancing, busted. *USA Today*, McLean, VA. [https://www
693 .usatoday.com/story/opinion/2020/03/16/coronavirus-social-distancing
694 -myths-realities-column/5053696002/](https://www.usatoday.com/story/opinion/2020/03/16/coronavirus-social-distancing-myths-realities-column/5053696002/).

695 46. Bell DM, World Health Organization Working Group on International and
696 Community Transmission of SARS. 2004. Public health interventions and
697 SARS spread, 2003. *Emerg Infect Dis* 10:1900 –1906. <https://doi.org/10>

698 .3201/eid1011.040729.

699 47. Coronaviridae Study Group of the International Committee on Taxonomy
700 of Viruses. 2020. The species Severe acute respiratory syndromerelated
701 coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2.
702 *Nat Microbiol* <https://doi.org/10.1038/s41564-020-0695-z>.

703 48. Chang D, Xu H, Rebaza A, Sharma L, Dela Cruz CS. 2020. Protecting
704 health-care workers from subclinical coronavirus infection. *Lancet Respir
705 Med* 8:e13. [https://doi.org/10.1016/S2213-2600\(20\)30066-7](https://doi.org/10.1016/S2213-2600(20)30066-7).

706 49. Booth TF, Kournikakis B, Bastien N, Ho J, Kobasa D, Stadnyk L, Li Y,
707 Spence M, Paton S, Henry B, Mederski B, White D, Low DE, McGeer A,
708 Simor A, Vearncombe M, Downey J, Jamieson FB, Tang P, Plummer F.
709 2005. Detection of airborne severe acute respiratory syndrome (SARS)
710 coronavirus and environmental contamination in SARS outbreak units. *J
711 Infect Dis* 191:1472–1477. <https://doi.org/10.1086/429634>.

712 50. American Society of Heating, Refrigerating and Air Condition Engineers,
713 Inc. (ASHRAE). 2017. Ventilation of health care facilities (ANSI/ASHRAE/
714 ASHE standard 170-2017). American Society of Heating, Refrigerating
715 and Air Condition Engineers, Inc., Atlanta, GA.

716 51. Institute of Environmental Sciences and Technology. 2016. HEPA and
717 ULPA Filters (IEST-RP-CC001.6). Institute of Environmental Sciences and
718 Technology, Schaumburg, IL.

719 52. Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, Rota
720 PA, Bankamp B, Bellini WJ, Zaki SR. 2004. Ultrastructural characterization

721 of SARS coronavirus. *Emerg Infect Dis* 10:320–326. <https://doi.org/10>
722 .3201/eid1002.030913.

723 53. Knowles H. 3 July 2019. Mold infections leave one dead and force
724 closure of operating rooms at children's hospital. *Washington Post*,
725 Washington, DC.

726 54. So RCH, Ko J, Yuan YWY, Lam JJ, Louie L. 2004. Severe acute respiratory
727 syndrome and sport: facts and fallacies. *Sports Med* 34:1023–1033.
728 <https://doi.org/10.2165/00007256-200434150-00002>.

729 55. Goldberg JL. 2017. Guideline implementation: hand hygiene. *AORN J*
730 105:203–212. <https://doi.org/10.1016/j.aorn.2016.12.010>.

731 56. Chaovavanich A, Wongsawat J, Dowell SF, Inthong Y, Sangsajja C, Sanguanwongse
732 N, Martin MT, Limpakarnjanarat K, Sirirat L, Waicharoen S,
733 Chittaganpitch M, Thawatsupha P, Auwanit W, Sawanpanyalert P, Melgaard
734 B. 2004. Early containment of severe acute respiratory syndrome
735 (SARS); experience from Bamrasnaradura Institute, Thailand. *J Med Assoc
736 Thai* 87:1182–1187.

737 57. Center for Devices, Radiological Health. 2020. N95 respirators and surgical
738 masks (face masks). US Food and Drug Administration, Silver
739 Spring, MD.

740 58. Centers for Disease Control and Prevention. 2020. Interim guidance for
741 the use of masks to control seasonal influenza virus transmission. Centers
742 for Disease Control and Prevention, Atlanta, GA.

743 59. Ryu S, Gao H, Wong JY, Shiu EYC, Xiao J, Fong MW, Cowling BJ. 2020.

744 Nonpharmaceutical measures for pandemic influenza in nonhealthcare
745 settings-international travel-related measures. *Emerg Infect Dis* <https://doi.org/10.3201/eid2605.190993>.

746

747 60. Fong MW, Gao H, Wong JY, Xiao J, Shiu EYC, Ryu S, Cowling BJ. 2020.

748 Nonpharmaceutical measures for pandemic influenza in nonhealthcare
749 settings-social distancing measures. *Emerg Infect Dis* <https://doi.org/10.3201/eid2605.190995>.

750

751 61. Vandegrift R, Bateman AC, Siemens KN, Nguyen M, Wilson HE, Green JL,
752 Van Den Wymelenberg KG, Hickey RJ. 2017. Cleanliness in context:
753 reconciling hygiene with a modern microbial perspective. *Microbiome*
754 5:76. <https://doi.org/10.1186/s40168-017-0294-2>.

755

756 62. Qian H, Zheng X. 2018. Ventilation control for airborne transmission of
757 human exhaled bio-aerosols in buildings. *J Thorac Dis* 10:S2295–S2304.
<https://doi.org/10.21037/jtd.2018.01.24>.

758

759 63. Kim SW, Ramakrishnan MA, Raynor PC, Goyal SM. 2007. Effects of humidity
760 and other factors on the generation and sampling of a coronavirus aerosol.
Aerobiologia 23:239–248. <https://doi.org/10.1007/s10453-007-9068-9>.

761

762 64. Casanova LM, Jeon S, Rutala WA, Weber DJ, Sobsey MD. 2010. Effects of
763 air temperature and relative humidity on coronavirus survival on surfaces.
Appl Environ Microbiol 76:2712–2717. <https://doi.org/10.1128/AEM.02291-09>.

764

765 65. Chan KH, Malik Peiris JS, Lam SY, Poon LLM, Yuen KY, Seto WH. 2011.

766 The effects of temperature and relative humidity on the viability of the

767 SARS coronavirus. *Adv Virol* 2011:734690. <https://doi.org/10.1155/2011/734690>.

769 66. BioSpace. 11 February 2020. Condair study shows indoor humidification
770 can reduce the transmission and risk of infection from coronavirus.

771 BioSpace, Urbandale, IA.

772 67. Noti JD, Blachere FM, McMillen CM, Lindsley WG, Kashon ML, Slaughter
773 DR, Beezhold DH. 2013. High humidity leads to loss of infectious influenza
774 virus from simulated coughs. *PLoS One* 8:e57485. <https://doi.org/10.1371/journal.pone.0057485>.

776 68. Marr LC, Tang JW, Van Mullekom J, Lakdawala SS. 2019. Mechanistic
777 insights into the effect of humidity on airborne influenza virus survival,
778 transmission and incidence. *J R Soc Interface* 16:20180298. <https://doi.org/10.1098/rsif.2018.0298>.

780 69. Xie X, Li Y, Chwang ATY, Ho PL, Seto WH. 2007. How far droplets can
781 move in indoor environments—revisiting the Wells evaporation-falling
782 curve. *Indoor Air* 17:211–225. <https://doi.org/10.1111/j.1600-0668.2007.00469.x>.

784 70. Yang W, Marr LC. 2012. Mechanisms by which ambient humidity may
785 affect viruses in aerosols. *Appl Environ Microbiol* 78:6781–6788. <https://doi.org/10.1128/AEM.01658-12>.

787 71. Memarzadeh F, Olmsted RN, Bartley JM. 2010. Applications of ultraviolet
788 germicidal irradiation disinfection in health care facilities: effective adjunct,
789 but not stand-alone technology. *Am J Infect Control* 38:S13–S24.

790 https://doi.org/10.1016/j.ajic.2010.04.208.

791 72. Kudo E, Song E, Yockey LJ, Rakib T, Wong PW, Homer RJ, Iwasaki A. 2019.

792 Low ambient humidity impairs barrier function and innate resistance

793 against influenza infection. *Proc Natl Acad Sci U S A* 116:10905–10910.

794 https://doi.org/10.1073/pnas.1902840116.

795 73. Eccles R. 2002. An explanation for the seasonality of acute upper respiratory

796 tract viral infections. *Acta Otolaryngol* 122:183–191. https://doi

797 .org/10.1080/00016480252814207.

798 74. Salah B, Dinh Xuan AT, Fouilladieu JL, Lockhart A, Regnard J. 1988. Nasal

799 mucociliary transport in healthy subjects is slower when breathing dry

800 air. *Eur Respir J* 1:852– 855.

801 75. Block SS. 1953. Humidity requirements for mold growth. *Appl Microbiol*

802 1:287–293. https://doi.org/10.1128/AEM.1.6.287-293.1953.

803 76. Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, Womack AM,

804 Bohannan BJ, Brown GZ, Green JL. 2012. Architectural design influences

805 the diversity and structure of the built environment microbiome. *ISME J*

806 6:1469 –1479. https://doi.org/10.1038/ismej.2011.211.

807 77. Mhuireach GÁ, Brown GZ, Kline J, Manandhar D, Moriyama M, Northcutt

808 D, Rivera I, Van Den Wymelenberg K. 2020. Lessons learned from implementing

809 night ventilation of mass in a next-generation smart building.

810 *Energy Build* 207:109547. https://doi.org/10.1016/j.enbuild.2019.109547.

811 78. Meadow JF, Altrichter AE, Kembel SW, Kline J, Mhuireach G, Moriyama M,

812 Northcutt D, O'Connor TK, Womack AM, Brown GZ, Green JL, Bohannan

813 BJM. 2014. Indoor airborne bacterial communities are influenced by
814 ventilation, occupancy, and outdoor air source. *Indoor Air* 24:41–48.
815 <https://doi.org/10.1111/ina.12047>.

816 79. Howard-Reed C, Wallace LA, Ott WR. 2002. The effect of opening windows
817 on air change rates in two homes. *J Air Waste Manag Assoc*
818 52:147–159. <https://doi.org/10.1080/10473289.2002.10470775>.

819 80. Fahimipour AK, Hartmann EM, Siemens A, Kline J, Levin DA, Wilson H,
820 Betancourt-Román CM, Brown GZ, Fretz M, Northcutt D, Siemens KN,
821 Huttenhower C, Green JL, Van Den Wymelenberg K. 2018. Daylight
822 exposure modulates bacterial communities associated with household
823 dust. *Microbiome* 6:175. <https://doi.org/10.1186/s40168-018-0559-4>.

824 81. Schuit M, Gardner S, Wood S, Bower K, Williams G, Freeburger D, Dabisch
825 P. 2020. The influence of simulated sunlight on the inactivation of influenza virus in aerosols. *J*
826 *Infect Dis* 221:372–378. [https://doi.org/10](https://doi.org/10.1093/infdis/jiz582)
827 [.1093/infdis/jiz582](https://doi.org/10.1093/infdis/jiz582).

828 82. Dijk D-J, Duffy JF, Silva EJ, Shanahan TL, Boivin DB, Czeisler CA. 2012.
829 Amplitude reduction and phase shifts of melatonin, cortisol and other
830 circadian rhythms after a gradual advance of sleep and light exposure
831 in humans. *PLoS One* 7:e30037. [https://doi.org/10.1371/journal](https://doi.org/10.1371/journal.pone.0030037)
832 [.pone.0030037](https://doi.org/10.1371/journal.pone.0030037).

833 83. Issa MH, Rankin JH, Attalla M, Christian AJ. 2011. Absenteeism, performance
834 and occupant satisfaction with the indoor environment of green
835 Toronto schools. *Indoor Built Environ* 20:511–523. <https://doi.org/10>

836 .1177/1420326X11409114.

837 84. Rutala WA, Weber DJ, Healthcare Infection Control Practices Advisory

838 Committee (HIPAC). 2017. Guideline for disinfection and sterilization in

839 healthcare facilities, 2017. Centers for Disease Control and Prevention,

840 Atlanta, GA.

841 85. Tseng C-C, Li C-S. 2007. Inactivation of viruses on surfaces by ultraviolet

842 germicidal irradiation. *J Occup Environ Hyg* 4:400–405. <https://doi.org/10.1080/15459620701329012>.

843 86. Lytle CD, Sagripanti J-L. 2005. Predicted inactivation of viruses of relevance

844 to biodefense by solar radiation. *J Virol* 79:14244 –14252. <https://doi.org/10.1128/JVI.79.22.14244-14252.2005>.

845 87. Bedell K, Buchaklian AH, Perlman S. 2016. Efficacy of an automated

846 multiple emitter whole-room ultraviolet-C disinfection system against

847 coronaviruses MHV and MERS-CoV. *Infect Control Hosp Epidemiol* 37:

848 598–599. <https://doi.org/10.1017/ice.2015.348>.

849 88. Nardell EA, Bucher SJ, Brickner PW, Wang C, Vincent RL, Bican-McBride

850 K, James MA, Michael M, Wright JD. 2008. Safety of upper-room ultraviolet

851 germicidal air disinfection for room occupants: results from the

852 Tuberculosis Ultraviolet Shelter Study. *Public Health Rep* 123:52– 60.

853 <https://doi.org/10.1177/003335490812300108>.

854 89. Miller SL, Linnes J, Luongo J. 2013. Ultraviolet germicidal irradiation:

855 future directions for air disinfection and building applications. *Photochem*

856 *Photobiol* 89:777–781. <https://doi.org/10.1111/php.12080>.

859 90. Welch D, Buonanno M, Grilj V, Shuryak I, Crickmore C, Bigelow AW,

860 Randers-Pehrson G, Johnson GW, Brenner DJ. 2018. Far-UVC light: a new

861 tool to control the spread of airborne-mediated microbial diseases. *Sci*

862 *Rep* 8:2752. <https://doi.org/10.1038/s41598-018-21058-w>.

863 91. Buonanno M, Stanislauska M, Ponnaiya B, Bigelow AW, Randers-

864 Pehrson G, Xu Y, Shuryak I, Smilenov L, Owens DM, Brenner DJ. 2016.

865 207-nm UV light-a promising tool for safe low-cost reduction of surgical

866 site infections. II: In-vivo safety studies. *PLoS One* 11:e0138418. <https://doi.org/10.1371/journal.pone.0138418>.

867 92. Kembel SW, Meadow JF, O'Connor TK, Mhuireach G, Northcutt D, Kline

868 J, Moriyama M, Brown GZ, Bohannan BJM, Green JL. 2014. Architectural

869 design drives the biogeography of indoor bacterial communities. *PLoS*

870 *One* 9:e87093. <https://doi.org/10.1371/journal.pone.0087093>.

871 93. NIAID. 2020. Novel coronavirus SARS-CoV-2. Flickr.

872 94. Yu IT, Li Y, Wong TW, Tam W, Chan AT, Lee JH, Leung DY, Ho T. 2004.

873 Evidence of airborne transmission of the severe acute respiratory syndrome

874 virus. *N Engl J Med* 350:1731–1739. <https://doi.org/10.1056/NEJMoa032867>.

875 95. Li Y, Duan S, Yu ITS, Wong TW. 2004. Multi-zone modeling of probable

876 SARS virus transmission by airflow between flats in Block E, Amoy

877 Gardens. *Indoor Air* 15:96 –111. <https://doi.org/10.1111/j.1600-0668.2004.00318.x>.