COVID-19 pandemic is a serious problem in the world today. The SARS-CoV-2 virus that causes COVID-19 has important proteins used for its infection and development, namely the protease and spike glycoprotein. The RBD (Receptor Binding Domain) of spike glycoprotein (RBD-S) can bind to the ACE2 (Angiotensin Converting Enzyme-2) receptor at the protease domain (PD) (PD-ACE2) of the host cell, thereby leading to a viral infection. This study aims to reveal the potential of compounds contained in Curcuma sp., Citrus sp., Alpinia galanga, and Caesalpinia sappan as anti SARS-CoV-2 through its binding to 3 protein receptors. The study was conducted by molecular docking using the MOE 2010 program (licensed from Faculty of Pharmacy UGM, Indonesia). The selected protein targets are RBD-S (PDB ID:6LXT), PD-ACE2 (PDB ID: 6VW1), and SARS-CoV-2 protease (PDB ID:6LU7). The affinities of bonds formed is represented as a docking score. The results show that hesperidin, one of the compounds in Citrus sp., has the lowest docking score for all three protein receptors representing the highest affinity to bind the receptors. Moreover, all of the citrus flavonoids possess good affinity to the respected receptors as well as curcumin, brazilin, and galangin, indicating that those compounds perform inhibitory potential for the viral infection and replication. In general, the results of this study indicate that Citrus sp. exhibit the best potential as an inhibitor to the development of the SARS-CoV-2, followed by galangal, sappan wood, and Curcuma sp. that can be consumed in daily life as prophylaxis of COVID-19.
Keywords:
Subject:
Medicine and Pharmacology - Pharmacology and Toxicology
Preprints on COVID-19 and SARS-CoV-2
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.