Preprint
Article

Dunkl Generalization of Phillips Operators and Approximation in Weighted Spaces

Altmetrics

Downloads

240

Views

150

Comments

0

Submitted:

11 March 2020

Posted:

12 March 2020

You are already at the latest version

Alerts
Abstract
Purpose of this article is to introduce a modification of Phillips operators on the interval $\left[ \frac{1}{2},\infty \right) $ via Dunkl generalization. This type of modification enables a better error estimation on the interval $\left[ \frac{1}{2},\infty \right) $ rather than the classical Dunkl Phillips operators on $\left[ 0,\infty \right) $. We discuss the convergence results and obtain the degrees of approximations. Furthermore, we calculate the rate of convergence by means of modulus of continuity, Lipschitz type maximal functions, Peetre's $K$-functional and second order modulus of continuity.
Keywords: 
Subject: Computer Science and Mathematics  -   Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated