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Abstract: Rapid Visual Screening (RVS) is a procedure that estimates structural scores for buildings
and prioritize their retrofit and upgrade requirements. Despite the speed and simplicity of RVS,
many of the collected parameters are non-commensurable and include subjectivity due to visual
observations. It might cause uncertainties in the evaluation, which emphasizes the use of a
fuzzy-based method. This study aims to propose a novel RVS methodology based on the interval
type-2 fuzzy logic system (IT2FLS) to set the priority of vulnerable building to undergo detailed
assessment while covering uncertainties and minimizing their effects during evaluation. The
proposed method estimates the vulnerability of a building, in terms of Visual Damage Index,
considering the number of stories, age of building, plan irregularity, vertical irregularity, building
quality, and peak ground velocity, as inputs with a single output variable. Applicability of the
proposed method has been investigated using a post-earthquake damage database of 28 reinforced
concrete buildings from the Bingöl earthquake in Turkey.

Keywords: Fuzzy logic system; earthquake safety assessment; seismic vulnerability assessment;
Interval Type-2 Fuzzy logic; rapid visual screening; reinforced concrete buildings

1. Introduction

Averting a subsequent natural calamity is certainly relatively impractical. However, due to the
rapid progress of simulation science and seismological studies, it is quite possible to mitigate the
catastrophic effects post-disaster. If earthquake safety (risk) assessment of buildings is viewed as
Heinrich’s domino theory of cause and effects [1], damage results from a chain of sequential events,
metaphorically like a line of dominoes falling over. Where the first piece is the seismic hazard, which
plays an important role and is inherently unavoidable, followed by the building vulnerability, then
construction characteristics, which lead to seismic risk and damage of buildings and cause loss and
injury of residents, respectively. When one of the dominoes falls, it triggers the next one, and the
next, but improving or removing a key factor (such as retrofitting buildings) prevent or minimize
the impact of the chain reaction of dominoes. As it is not possible to modify the seismic hazard to
reduce the risk, emphasis should be placed on the study of vulnerability assessment and reduction as
a measure of damage/loss mitigation. In urban areas midst, the construction of new building stock
is a substantial number of structures still in service, which were constructed either when national
seismic codes were not evolved due to lack of research or they were not strictly enforced by the law.
For instance, in Istanbul, Turkey, as a high seismic area, around 90% of buildings are substandard,
which can be generalized into other earthquake-prone regions in Turkey [2]. The reliability of this
building stock resulting from earthquake-induced collapse currently is uncertain. Nonetheless, it is
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also not feasible to perform a detailed seismic vulnerability analysis on each building as a solution
to the scenario, as it will be too complicated and expensive. This indicates the necessity of a reliable,
rapid, and computationally easy method for seismic vulnerability assessment, commonly known
as Rapid Visual Screening (RVS). In RVS methodology, a observational survey of buildings will be
performed, and according to the data collected during the visual inspection, a structural score will
be calculated without performing any structural calculations to determine the expected damage of
a building and whether the building needs detailed assessment [3]. Although this method might
save time and resources due to the subjective/qualitative judgments of experts who performed the
inspection, the evaluation process is dominated by vagueness and uncertainties, which vagueness
can be handled adequately through the fuzzy set theory [4] but do not cover all sort of uncertainties
due to its crisp membership functions [5]. In this study, a novel method of rapid visual hazard safety
assessment of buildings against earthquake is introduced in which an interval type-2 fuzzy logic
system (IT2FLS) would be used to cover uncertainties.

2. Review of Rapid Visual Screening Procedures

Federal Emergency Management Agency (FEMA), U.S.A in 1988 has proposed the initial Rapid
Visual Screening (RVS) methodology as “Rapid Visual Screening of Buildings for Potential Seismic
Hazards: A Handbook” [6]. Furthermore, in 2002, because of earthquake disasters in the 1990s, the
methodology was modified to integrate the latest technological advancements [7]. RVS has been
widely used in seismic countries as a practical and simple tool for evaluating the vulnerability of
buildings; therefore, this challenge is in the interest of many researchers and still is under development
and improvement. In this manner, some efforts have been made to develop national RVS for India
(IITK-GSDMA) [8], Turkey (EMPI) [9], Italy [10], and the Philippines [11]. Some practical comparisons
carried out by [12–14] between different national RVS methods and their robustness have been
discovered. Although RVS is an acceptable estimation method that gives a general overview to
do proper earthquake mitigation planning, the variables considered contain a level of uncertainty [15].

In addition to national and local RVS methods, there are many other RVS methods developed
by using linear regression [16,17], Multi-criteria decision making [3], Artificial Neural Networks
(ANNs) [18–21], Fuzzy Logic (see Table 1), and some other methods concerning their consideration
and experiences on a region or country [22]. These methods can be categorized into two groups: a)
methods based on statistical and machine learning approaches, like linear regression and ANN, and b)
methods based on expert systems such as Fuzzy based methods.

Methods based on statistical approaches reduce the problem to a linear relationship between
inputs and the output, which is not realistic as the relation between building parameters, seismicity
parameters, and damageability is a non-linear relation. Methods based on machine learning approaches
suffer from a lack of data where there is not enough datasets consisting of building parameters before
earthquakes and type of damage after earthquakes. In addition, these approaches are local and limited
to a specific area; last approaches, based on Fuzzy systems, consider the expert’s opinion, and model
vagueness exist in words that describe the building parameters. Table1 presents a summary of the
fuzzy system type 1 applied to RVS.

Fuzzy systems contributed significant achievements in vulnerability assessment because of
making definite decisions based on imprecise or ambiguous data [23]. The main problem with all
previous studies based on conventional type-1 FLS (T1FLS) is that they only consider vagueness in
membership functions while does not including all types of uncertainties due to its crisp membership
functions. However, this issue can be solved by implementing interval type-2 Fuzzy Logic Systems
(IT2FLS) as their membership functions (MFs) are themselves fuzzy [5]. Therefore, in this paper, an
RVS method based on an interval type-2 fuzzy system is considered to overcome the weakness of RVS
methods based on the type-1 fuzzy system.
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Table 1. Summary of Fuzzy Logic application in visually earthquake hazard safety assessment of
buildings

Author(s) Year Studied data Purpose Parameters Fuzzy inference
Ketsap
et.al.[15]

2019 Chiang Rai, Thailand Earthquake risk
evaluation of

buildings by using
Fuzzy risk model

Building occupancy
(occupancy risk index),
building vulnerability

(FEMA 154 final score),
Seismic hazard (PGA)

Hierarchical
fuzzy

rule-based

Irwansyah
et.al.[24]

2017 1450 (1000 modeling,
400 tests,50 outlined)

non-engineered
buildings in Aceh,

Indonesia

A three-stage fuzzy
rule-based model to

determine the hazard
rate of building on the
impact of earthquake
for non-engineered

houses

Structural (ring balk,
floor block, column,

foundation),
non-structural (wall

crack, wall cover, floor
cover, tombak layer),

ground condition (PGA,
slope, fault distance)

Three-Stage
Fuzzy

Rule-Based

Shahriar
et.al.[25]

2012 43 Steel buildings in
Northridge, USA

A risk-based seismic
vulnerability

assessment method
using fuzzy-TOPSIS

for damageability
evaluation of steel

buildings.

Structural system,
vertical irregularity, plan

irregularity, year of
construction,

construction quality,
spectral acceleration

Fuzzy-TOPSIS,
Mamdani

Şen[26] 2011 747 RC buildings in
Istanbul, Turkey

Proposed a fuzzy logic
model as supervised

hazard center
classification inference
methodology for rapid

and rational hazard
classification.

Building height, soft
height ratio, cantilever

extension ratio, moment
of inertia, frame number,
column ratio, shear wall

ratio, and PGV

Supervised
fuzzy rule-

based,
Mamdani

Şen[27] 2010 1249 RC buildings in
Istanbul, Turkey

Proposed a fuzzy logic
model and software

for rapid visual
earthquake hazard

evaluation of existing
buildings.

Story number, cantilever
extension, soft story,
weak story, building

quality, pounding effect,
hill-slope effect, and

PGV

Fuzzy
rule-based,
Mamdani

Tesfamariam
and
Saatcioglu[4]

2010 28 RC buildings in
Bingöl, Turkey

Proposed a risk-based
seismic vulnerability
assessment based on

fuzzy logic for
prioritizing buildings
for retrofit and repair.

Soft story, weak story,
and short column effect,
relative strength at joints,

plan irregularity,
torsional irregularity,

diaphragm continuity,
re-entrant corners,

structural walls,
construction and design

quality, code
enforcement, damage

from previous
earthquake, damage due
to deterioration, relative

height of slabs

Hierarchical
fuzzy

rule-based,
Mamdani

Continued on next page
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Table 1 – continued from previous page
Author(s) Year Studied data Purpose Parameters Fuzzy inference

Tesfamariam
and
Saatcioglu[28]

2008 93 RC (73 modeling
and 20 test) buildings
in Northridge, USA

Proposed a risk-based
seismic vulnerability
assessment based on
FEMA154 and fuzzy
logic for prioritizing
buildings for retrofit

and repair.

Structural system, plan
irregularity, vertical
irregularity, year of

construction,
construction quality,

building importance and
occupancy

Hierarchical
fuzzy

rule-based,
Mamdani

Moseley and
Dritsos[29]

2008 101 and 454 buildings
in Athens, Greece

Proposed a fuzzy logic
rapid visual screening

procedure based on
Greece method to

improve the screening
procedures

Same as below
parameters

Hierarchical
fuzzy

rule-based,Sugano

Demartinos
and
Dristos[30]

2006 102 buildings in
Athens, Greece

Fuzzy logic–based
rapid visual screening

procedure for
categorization of

buildings into five
different types of

possible damage with
respect to the potential
occurrence of a major

seismic event.

Seismic hazard (ground
motion, soil quality,

building height),
structural strength

(building height, infill
wall layout, soft story,
short columns, design
code ),regularity (plan

regularity, torsion
possibility, height

regularity, pounding
possibility, plan

regularity),structure’s
condition (previous

damage, maintenance)

Hierarchical
fuzzy

rule-based,
Sugano

3. Type-2 Fuzzy Logic System

Lotfi Zadeh introduced the initial concept of Fuzzy set (type-1) in 1965 [31] and later in 1975 developed the
extension of it as the type-2 fuzzy set [32]. In this paper, it has been assumed that the reader is familiar with the
basics of the Fuzzy logic system and type-1 Fuzzy Logic Systems (T1FLS) so that here the focus is entirely on the
interval type-2 Fuzzy Logic Systems (IT2FLS) and its advantages over type-1 FLSs (T1FLS). The main limitations
of the T1FLS is that it cannot adequately handle the linguistic, measurement and parameter uncertainties [33] due
to [5]: 1- the expressions and words that are used in the antecedents and consequents of rules can be uncertain,
and 2- consequents may have a histogram of values associated with them, mainly when knowledge is obtained
from a group of experts who do not all agree. In this regard, IT2FLS, characterized by MFs that are themselves
fuzzy, therefore, in case there are difficulties in the determination of membership grade even as a crisp number in
[0,1], type-2 fuzzy sets are then adequate to use. So far, IT2FLSs have been used in different areas to deal with
high uncertainty, nonlinearity and time-varying behavior [34], including computing with words [35], intelligent
controllers [36], pattern recognition [37], and so on. A typical IT2 FLS consists of five parts as fuzzifier, rule base,
inference engine, type-reducer, and defuzzifier. Moreover, in T2FLS, at least one of the fuzzy sets (membership
functions) in the rule base must be type-2. All parts of T2FLS are similar to T1FLS except the type-reducer, which
is introduced to convert the type-2 membership functions into a type-1 before defuzzification. The process of
type-reduction is usually performed by the most popular computationally intensive Karnik-Mendel (KM) iterative
algorithms proposed by Wu and Mendel [38]. A T2 fuzzy set Ã can be defined by its T2 membership function
µÃ(x, u) as:

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x, u)
(x, u)

(1)
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where x ∈ X, u ∈ Jx ⊆ [0 ,1], and X represent the universe of the primary variable x of Ã. Here
∫∫

denotes
all the admissible x and u. The point-value representation of Ã is as:

Ã =
{
((x, u), µÃ(x, u)) | ∀x ∈ X, ∀u ∈ [0, 1]

}
(2)

The secondary MF of Ã is also called a vertical slice of µÃ(x, u):

µÃ(x = x′, u) ≡ µÃ(x′) =
∫

u∈Jx′

fx′ (u)
u

(3)

where 0 ≤ fx′ (u) ≤ 1, and µÃ(x′) denotes the secondary MF of Ã. The secondary membership grades of IT2FS all
equal 1, that is to say, for any x=x’, fx′ (u) ≡ 1.

T2 carries the UMFs, LMFs, and FOU. The FOU is uncertainty in the primary membership grades of a type-2
MF, which consists of a bounded region; the UMF is a subset that has the maximum membership grade of the
FOU, and the LMF is a subset that has the minimum membership grade of the FOU. The two-dimensional µÃ(x, u)
is referred to as the footprint of uncertainty (FOU) of Ã:

FOU(Ã) =
⋃

x∈X
Jx = {(x, u)|u ∈ Jx ⊆ [0, 1]} (4)

where Jx is the primary membership of Ã; here the lower MF (LMF) µ
Ã
(x) and upper MF (UMF) µÃ(x) comprise

the FOU, where [39]:

µ
Ã
(x) = LMF(Ã) = in f {u|u ∈ [0, 1], µÃ(x, u) > 0} (5)

And,

µÃ(x) = UMF(Ã) = sup{u|u ∈ [0, 1], µÃ(x, u) > 0} (6)

There are two types of T2FL systems as Mamdani and Takagi-sugeno [34]. Here our focus is on Mamdani
type as it is more popular than Takagi-Sugeno. Therefore, the rules of IF-THEN [40] can be written as:

R̃l : IF x1 is F̃l
1 and ... xp is F̃l

p THEN y is G̃l l = 1, ..., N (7)

Or in another way:
R̃l : F̃l

1 × ...× F̃l
p → G̃l = Ãl → G̃l (8)

Where l is the rule number, xi and F̃l
i are the ith (i=1,...,p) input and antecedent set of rule l, respectively, Gl

are consequent sets and A is the input fuzzy sets, while y is the input and "∼" shows that the fuzzy set is a T2
fuzzy set.

According to equation 8, the output of inference engine for each rule can be defined as [34]:

µB̃l (y) = µÃl→G̃l (x, y) = µF̃l
1(x′1)
∩ ...∩ µF̃l

p
(x′p) ∩ µG̃(y) =

[ p⋂
i=1

µF̃l
i
(x′i)

]
∩ µG̃(y) (9)

While adopting the popular centroid TR [41], the firing output set B̃l is generated from by each fuzzy rule
and the corresponding consequent IT2FS, i.e.,

B̃l :


FOU(B̃l) = [µ

B̃l (y | x′), µB̃l (y | x′)]
µ

B̃l (y | x′) = f l(x′) ∩ µ
G̃l (y)

µB̃l (y | x′) = f
l
(x′) ∩ µ

G̃l (y)

(10)

While ∩ denotes the minimum or product t-norm operation. The final output B̃ can be achieved by merging
all the rule firing output sets B̃l :

B̃ :


FOU(B̃) = [µ

B̃
(y | x′), µB̃(y | x′)]

µ
B̃
(y | x′) = µ

B̃l (y | x′) ∪ ...∪ µ
B̃M (y | x′)

µB̃(y | x′) = µB̃l (y | x′) ∪ ...∪ µB̃M (y | x′)
(11)

Here ∪ indicates the maximum operation. Then the type-reduced set Yc(x′) can be obtained by computing
the centroid CB̃ of B̃ :
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Yc(x′) = CB̃(x′) =
1

[lB̃(x′), rB̃(x′)] (12)

To find the final crisp output value for the inference process, the aggregate type-2 fuzzy set is first reduced to
an interval type-1 fuzzy set, which is a range with lower limit and upper limit. This interval type-1 fuzzy set is
commonly referred to as the centroid of the type-2 fuzzy set. In theory, this centroid is the average of the centroids
of all the type-1 fuzzy sets embedded in the type-2 fuzzy set. In practice, it is not possible to compute the exact
values of lower and upper limits. Instead, iterative type-reduction methods are used to estimate these value. Here
the two points lB̃(x′) and rB̃(x′) can be calculated by common type-reduction algorithms like Karnik-Mendel
(KM) [42], Enhanced Karnik-Mendel (EKM) [43] and weighted EKM [44].

3.1. RVS Modelling Based on Interval Type 2 Fuzzy System

Figure 1 presents the schematic structure of a proposed RVS model based on IT2FLS. The model consists of 6
input variables and one output variable as damage category (damage index).

Figure 1. The structure of the IT2FLS in this study

Following are the explanation of different parts of the model: Input variables represent structural and
environmental characteristics, which affect the global seismic response of a structure. These characteristics are
presented in Figure 1 as input variables and in the fuzzification component. Each characteristic is described
in linguistic terms that indicate its state. These terms are attributed to fuzzy sets, which are defined over
the variable’s universe of discourse via MFs. As can be seen in Figure 1 the fuzzifier of maps a vector of six
inputs x = (x′1, ..., x′6)

T into six IT2 fuzzy sets X̃i, i=1,2,...,6. In this study a non-singleton fuzzifier has been
considered because it is useful when the measurements are corrupted by non-stationary noise and has shown
better performance [45].

Generally, there is no restriction on the number of MFs one could use; however, it is practically recommended
to use less than 7 MFs in each input domain of a T1 or T2 fuzzy system to reduce computational cost, reduce
number of rules, and make interpreting more straightforward [46]. The common MF shapes in T2 are Gaussian,
bell-shaped and piecewise linear. Figure 2 shows the Gaussian and generalized bell-shaped MFs for story number,
plan irregularity, vertical irregularity, age, soil type, and PGV, respectively. While a few of these variables have
numerical values, the others are all in linguistic forms. However, in the classical modeling the inputs, plan
irregularity and vertical irregularity are quantified as 1 implying existence (yes) and 0 as nonexistence (no) of the
effect according to the crisp two-valued logic. The linguistic terms used for the definition of each variable and the
respective fuzzy sets are described as:
Story number: Depending on the number of stories, either of these classes should be selected. The classifications
on this study are for mid-rise buildings as the number of stories less than 3 (Low), between 3 and 6 (Medium), and
more than 6 (High) as presented in Figure 2(a).
Plan Irregularity: This parameter should be considered when any of the irregularities, like buildings with
re-entrant corners (L, T, U, E, + shape) and buildings with different lateral resistance in both directions, have been
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observed. Any asymmetrical plan and distribution of vertical elements can cause torsion to the building (Figure
2(b)).
Vertical irregularity: If any of the irregularities such as steps in elevation view, inclined walls, buildings on a hill,
soft story, buildings with short columns, and discontinuity in frames are identified, then this parameter should be
considered (see Figure 2(c)).
Age of building: This parameter is classified into three different input variable membership function as New ( age
<15 years), Moderate ( 15 < age < 30), and Old (age > 30) as presented in Figure 2(d).
Soil type: The soil type is classified into three different input variable membership function as A/B ( rock and
dense soil), C ( stiff soil), and E (soft) as shown in Figure 2(e).
Peak Ground Velocity (PGV): The velocity is used to characterize the amplitude of seismic motion at intermediate
frequencies, and, therefore, it is useful to indicate the potential damage for structures sensitive to the field of
intermediate frequencies [9], [47]. In this paper, the PGV numerical values at any desired locations are based
on the micro zoning studies by [48], which are fuzzified into three MFs as Low, Medium, and High, which are
illustrated in Figure 2(f)).

(a) Story number (b) Plan irregularity

(c) Vertical irregularity (d) Age

(e) Soil type (f) PGV

Figure 2. Gaussian and generalized bell-shaped membership function for input variables (a) story
number, (b) plan irregularity, (c) vertical irregularity, (d) age, (e) soil type, (f) PGV
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Lastly, the output variable damage index represents the possibility that a structure will suffer a particular
damage type. Five MFs for the building damage categorization (Output variable) are considered as: No damage,
Low, Medium, Severe, and Collapse. Figure 3 presents the building damage index categorization MFs.

Figure 3. Gaussian and generalized bell-shaped membership function for damage as output variable

Following the above explanations, the logical rules for each variable are presented with the building
assessment, and their fuzzification can be achieved by considering fuzzy words for input variables and damage
categories. The defined rules in this study are 3×2×2×3×3×3= 324 rules, of which some examples are presented
in Table 2. In this study Mamdani Fuzzy system is considered where the rule consequents are fuzzy IT2 sets.
Therefore, all rules defined based on Mamdani Type.

Table 2. The structure of the T2FLS in this study

Rule
No.

Input variable Output
(Damage)NS PI VI Age ST PGV

1 Low and No and No and Old and A/B and Low Then No damage
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
171 Medium and Yes and No and Old and E and Medium Then Severe
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
324 High and Yes and Yes and New and E and High Then Severe

Minimum and product t-norms are the most popular inference methods to compute firing intervals of the
rules for IT2 fuzzy systems. However, there is not too much difference between the outcome of each method.
Therefore, in this study, minimum t-norm is applied for the inference engine. Finally, for Type reduction, the EKM
method is applied as it is Modification of the Karnik-Mendel (KM) algorithm with an improved initialization,
modified termination condition, and improved computational efficiency.

4. Results and discussion

The methodology based on IT2FLS was implemented on MATLAB (MATLAB is a registered trademark of
The MathWorks, Inc.) using the provided Fuzzy Logic Toolbox. The version of the IT2FLS toolbox used allows the
intuitive implementation of IT2FLSs, where it can cover all the phases of its design. Furthermore, the proposed
method of this study has been examined by evaluating the buildings database of the Bingöl earthquake (2003) in
Turkey. For this purpose, the information of 28 buildings has been selected from the SERU (Structural Engineering
Research Unit) database [49], which was collected from the street survey by a team of researchers from Middle
East Technical University (METU), Ankara. The Bingöl earthquake struck with a Mw = 6.4, reported peak ground
acceleration (PGA) 535.3 cm/s2, and PGV 36.1 cm/s [50]. Moreover, a study by Akkar et al.[51] provide detailed
technical information about the characteristics of the Bingöl earthquake. A report from the observed damage to
the buildings in different places in Bingöl stated that damages were mostly due to the properties of structures,
and not due to the foundation conditions or any gross ground deformation [52]. Therefore, in this paper, it has
been assumed that, for assessing the vulnerability of the buildings in Bingöl there are no corrections or additional
parameters required for different soil conditions, and the soil condition of the selected area are quite uniform,
predominantly granular alluvial deposits, which are dense to very dense (Soil Type A or B) [53].
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Table 3. Damage distribution of studied data

No damage Low damage Moderate damage Severe damage Collapse
Observed damage [49] 21.4% 32.1% 25% 17.9% 3.6%
Estimated by Tesfamariam [54] 25% 32.1% 7.2% 35.7% 0%
Estimated by proposed method 14.3% 21.4% 32.1% 25% 7.1%

Table 3 shows the distribution of the observed damage categories of buildings [49], the estimation based on
the fuzzy synthetic evaluation proposed by Tesfamariam [54], and the estimation by the proposed method in this
paper based on IT2FLS. It shows that the proposed method agrees with the observed damage states. However,
depending on the requirements of the authorities, each model can be selected for classification and further
purposes. Table 4 presents the description of damage state of Table 3 and related decision and recommendations
for each of them.

Table 4. Description of damage levels and recommended decision (adopted from [55])

Damage state Description Decision
No damage No damage, small cracks Safe
Low damage Isolated non-structural damage, cracks in

the interior walls or ceilings, damage in
water lines, etc.

Slightly safe, might need small repair

Moderate damage Significant non-structural damage and
slight structural damage

Moderate safe, needs repair and
retrofitting

Severe damage Heavy non-structural damage and
important structural damage

Slightly dangerous, need immediate
repair and strengthening

Collapse Collapsed buildings or condemned to
demolition

Dangerous, evacuation and demolish
needed

5. Conclusion

The assessment of earthquake resistance identification of existing buildings in the pre-earthquake period
presents a very significant task, which must be accomplished in a rapid, simple, economical, and efficient manner.
In this regard, the RVS methods were developed to assess the seismic vulnerability of buildings via an observation
survey. Despite its efficiency, the evaluation process is dominated by vagueness type uncertainty. This issue has
been addressed by proposing a novel interval type-2 Fuzzy system of rapid visual hazard safety assessment of
buildings against earthquake. Later, for efficiency validation of the proposed method, it has been used to estimate
the building damage category of the Bingöl earthquake dataset, which shows a good estimation. Nonetheless, the
small size of the existing database used did not lead to a robust method and needs further investigation using
more data. Therefore, it is worthwhile to spend time and funds to collect data after future seismic events to
optimize the proposed method, when considering that pre-earthquake assessment aims to reduce seismic risk,
which in turn can be interpreted in terms of economic benefits and life protection.
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