

1 **Respiratory virus infection is a high-risk factor for developing coronavirus**
2 **disease 2019 (COVID-19)**

3

4 Mingyue Chen^{1,4}, Wenxiu Wang^{1,4}, Jing Yu^{2,4}, Zhou Wang¹, Xiaofeng Zheng¹,
5 Mingshu Han¹, Youwei Zhang^{3,*}, Lei Zhang^{1,*}

6

7 ¹National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key
8 Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of
9 Technology, Wuhan, 430068, China;

10 ²Department of Clinical Laboratory, Hubei cancer hospital, Tongji Medical College,
11 Huazhong University of Science and Technology, Wuhan, 430079, China;

12 ³Department of Pharmacology, Case Comprehensive Cancer Center, School of
13 Medicine, Case Western Reserve University, Cleveland, OH 44106

14

15 ⁴These authors contributed equally

16 *Correspondence:

17 rei0222@foxmail.com;

18 zhanglei0222@163.com

19

20 **Abstract**

21 Coronavirus disease 2019 (COVID-19) is caused by infection with the 2019 novel
22 coronavirus 2 (2019-nCoV, now referred to as SARS-CoV-2). COVID-19 has become
23 a global pandemic since its outbreak at the end of Dec 2019. COVID-19 could lead to
24 severe acute respiratory disease, especially to those who have reduced immunity.
25 Binding of the viral Spike protein (S) to its receptor ACE2 (Angiotensin Converting
26 Enzyme 2) on the surface of target cells has been proven to be key for virus entry and
27 infection. Although ACE2 expression in the respiratory system is necessary for
28 pneumonia infection by SARS-CoV-2, the regulation of *ACE2* gene expression
29 remains poorly investigated, especially for patients that are in pre-pathological
30 conditions. Here, by analyzing The Gene Expression Omnibus (GEO) database, we
31 investigated the expression regulation of *ACE2* in various kinds of primary epithelial
32 cells from the respiratory system after varies of respiratory viruses infection such as
33 influenza A virus (IFV), respiratory syncytial virus (RSV) and human rhinovirus
34 (hRV). Our analyses reveal that infection of multiple kinds of respiratory viruses or
35 influenza vaccines greatly increased *ACE2* expression, suggesting that respiratory
36 viruses infection could represent a high risk factor for developing COVID-19. We also
37 found that the regulatory effect of influenza A virus on *ACE2* expression is associated
38 with activation of the interferon beta-induced pathway and viral RNA-activated host
39 response. Together, our data provide a theoretical framework for clinical classification
40 for SARS-CoV-2 infection susceptibility and could be used for future prevention and
41 therapy treatment for COVID-19.

42

43 Keywords: COVID-19; respiratory virus; SARS-CoV-2; ACE2; risk factor

44

45 **Introduction**

46 According to the estimate report from World Health Organization (WHO), COVID-19
47 has spread across 216 countries and regions and caused more than 917,417 deaths over
48 the world by September 13, 2020. Besides China, numerous laboratory-confirmed
49 infections and fatal cases have been reported in several countries including USA, Brazil,
50 India, Russia, South Africa, Mexico, France, Italy, etc. SARS-CoV-2 was found to
51 share similar genome sequences with severe acute respiratory syndrome coronaviruses
52 (SARS) and probably was originated from the same type of natural host [1]. The rapid
53 spread of SARS-CoV-2 is largely related to its transmission route. Although the
54 fecal-oral route has been indicated to be a possible mechanism for virus transmission,
55 respiratory droplets and/or environmental contact are still the main routes for
56 SARS-CoV-2 spreading [2]. Besides respiratory failure, multiple organ dysfunction
57 syndromes caused by cytokine storm have been revealed to be main reasons for patient
58 death [3]. So far, protease inhibitors, antibiotics, and corticosteroid have been used in
59 treating COVID-19 with limited success. While effective therapies are still needed, we
60 reason that determining risk factors that could increase the chance of SARS-CoV-2
61 infection or severe COVID-19 syndrome development is crucial for clinical prevention
62 and intervention.

63

64 Similar to SARS, infection of SARS-CoV-2 is dependent on the binding between its
65 Spike protein (S) and the host receptor Angiotensin converting enzyme II (ACE2) [1].
66 However, the S protein of SARS-CoV-2 exhibited a much higher binding affinity than
67 that of SARS [4], correlating with the greatly elevated infection potential of the former.
68 So far, SARS-CoV-2 has been detected in multiple tissues and metabolites, such as
69 gastrointestinal tract [5], nervus centralis [6], saliva, urine, feces [7], tears [8], etc,
70 which might be due to the widespread expression of the ACE2 protein. Hence,
71 analyzing ACE2 expression level could provide a prediction for tissue and organ
72 infection of SARS-CoV-2. This seems to be particularly important for those who have
73 pre-pathological conditions that can increase or induce ACE2 expression, leading to
74 severe COVID-19. For instance, a higher ACE2 expression was observed in colorectal
75 cancer patients than in healthy controls [9], suggesting that colorectal cancer patients
76 might be more susceptible to COVID-19 than healthy people.

77

78 Being a type of acute respiratory disease, COVID-19 exhibits fever, cough and
79 abnormal chest computed tomography characteristics (*i.e.*, ground-glass opacity) as
80 dominant symptoms [2], which are similar to respiratory viruses infection. These
81 common clinical manifestations make it hard to distinguish the patients from one to
82 another using just these symptoms, especially when considering that COVID-19
83 happened to outbreak during the influenza season in certain regions. In several cases
84 reported, patients might be co-infected with SARS-CoV-2 and influenza A virus or

85 other kinds of respiratory virus, which not only complicated the clinical identification,
86 but could have also increased the difficulty of treatment [10-13].

87

88 Considering that pre-pathological conditions such as diabetes, coronary heart disease,
89 and hypertension may influence the COVID-19 morbidity [2], we wondered whether
90 prior respiratory virus infection could affect the incidence rate and the disease
91 progression of COVID-19. To address this question, we evaluate ACE2 expression
92 levels in epithelial cells from the respiratory tract including nose, airway, bronchi and
93 lung. Our data demonstrate that ACE2 expression was greatly elevated by infection
94 with varies kinds of respiratory viruses. Surprisingly, we noticed that live attenuated
95 influenza vaccine (LAIV) also increased ACE2 transcription in primary human nasal
96 epithelial cells, indicating potential risk of administrating LAIV in developing
97 COVID-19. We further revealed that the up-regulation of ACE2 by Influenza is
98 associated with the interferon beta (IFN β)-induced pathway and host reactions to viral
99 RNA.

100

101 **Materials and Methods**

102 In this work, all raw data of RNA Expression profiling were extracted from NCBI-GEO
103 database [14,15]. All raw data have been normalized to produce cross-comparable
104 values proved with the median-centered values distribution. After data normalization,
105 expression value was analyzed with the interactive web tool GEO2R. Fold-change and
106 p-values were calculated for each virus infection, as compared to the mock-infected or

107 uninfected sample. All data were analyzed by one-way ANOVA and presented as the
108 mean \pm standard error of mean (SEM) using the GraphPad Prism 8.0. Significant
109 differences were accepted at $^*P<0.05$ or $^{**}P<0.01$. All data source and protocols used
110 in this study, including GSE accession numbers, cells types, virus strains, experimental
111 protocols, etc were listed in Table 1.

112

113 **Results**

114 ***Influenza Infection Causes An Increase in ACE2 Expression in Primary Epithelial*** 115 ***Cells of the Respiratory Tract***

116 To reveal the effect of influenza infection on COVID-19 susceptibility, we surveyed
117 ACE2 expression in primary epithelial cells isolated from both the upper and the lower
118 tract of the respiratory system. In the GEO dataset GSE83215 [16], primary human
119 nasal epithelial cells (hNECs) was infected with seasonal influenza A virus
120 A/Victoria/361/2011 (H3N2) at the multiplicity of infection (MOI) of 1. Thirty-six
121 hours after one-hour incubation, cells were harvested and subjected to RNA extraction.
122 From the public database, we were able to extract the expression array data from 5
123 individual donors and then compared ACE2 expression levels under different treatment
124 conditions. Interestingly, we observed a mild, yet statistically significant, increase in
125 ACE2 expression after influenza A virus infection compared with mock infected
126 samples in each group of cells from all donors (Figure 1(A)). We then evaluated the
127 effect of influenza A virus on epithelial cells derived from lung and bronchus, the lower
128 tract of the respiratory system [17]. Three strains of virus including seasonal H1N1

129 (BN/59) and pandemic H1N1 (KY/180 and KY/136) were used to infect primary lung
130 bronchus epithelial cells (wd-NHBE). Microarray analysis was conducted using two
131 independent probes recognizing *ACE2* transcripts. Data extracted from GSE48466
132 showed that both seasonal H1N1 A and pandemic H1N1 isolates caused a significant
133 increase in *ACE2* expression in wd-NHBE cells detected by two probes (Figure 1(B)).
134 We noticed that the fold of increase was much greater in lower respiratory tract cells
135 (Figure 1(B)) than in upper respiratory tract epithelial cells (Figure 1(A)), consistent
136 with the infection pattern of SARS-CoV-2. Further, the increase in the expression of
137 *ACE2* was much greater in pandemic H1N1 infected cells than in seasonal flu infected
138 cells, suggesting that the pandemic influenza virus generate greater host response (*i.e.*,
139 *ACE2* expression) than seasonal isolates.

140

141 To further test our hypothesis that influenza infection activates *ACE2* expression, we
142 surveyed the host response in other type of respiratory tract epithelial cells, such as
143 primary human airway epithelial cell (hAEC) that is isolated from human mainstream
144 bronchi [18]. hAEC was infected with H3N2 (A/Udorn/72) or rgRSV244 (Respiratory
145 syncytial virus) at a MOI of 2 for 2 hours and then harvested 24 or 48 h post infection
146 (hpi). Microarray analysis was performed on two individual platforms. The *ACE2*
147 expression value of each sample was mined from dataset GSE32138 and GSE32139.
148 Our analysis showed that H3N2 and RSV substantially increased *ACE2* expression
149 levels compared to their corresponding mock control (Figure 1(C)). Together, these

150 data suggest that influenza infection in primary epithelial cells of the respiratory tract
151 causes a significant increase in *ACE2* expression.

152

153 ***Human Rhinovirus (hRV) Infection Causes An Increase in ACE2 Expression in***
154 ***Respiratory Epithelial Cells in Vitro or in Vivo***

155 Besides IFV and RSV, hRV is another common viral infectious agent in human
156 respiratory tract. hRV was reported to be responsible for more than 50% common
157 cold and the symptoms include fever, cough, sneezing, etc. [19]. We then wondered
158 whether hRV infection in respiratory epithelial cells could cause similar host response,
159 such as *ACE2* activation with IFV and RSV. To figure out this issue, we surveyed
160 *ACE2* expression in respiratory epithelial cells or tissues after hRV infection in
161 several separate experiments [20-22]. In two separate experiments primary human
162 bronchial epithelial cells derived from different donors were infected with hRV at
163 MOI of 1. Twenty four hours later, RNA was extracted then subjected for
164 transcriptome microarray. Interesting, in each experiment, *ACE2* expression was
165 activated in hRV infection sample compared to in control, no matter which donors
166 these cells come from (Figure 1(D) and 1(E)). These results from *in vitro* study
167 showed hRV infection in primary human bronchial epithelial cells could activate
168 *ACE2* expression, which is further strengthened by an *in vivo* experiment. Nasal
169 epithelial scrapings were collected from 31 patients pre- or 2 days post-infected with
170 hRV then microassay analysis was performed. By analyzing the GEO datasets, we
171 also found an elevated *ACE2* in hRV infection groups (Figure 1(F)). Taken together,

172 these data suggest that similar with other types of respiratory viruses, hRV infection
173 could also cause an increase in *ACE2* expression in respiratory epithelial cells *in vitro*
174 or *in vivo*.

175

176 ***Live Attenuated Influenza Vaccine Infection Increased ACE2 Expression***

177 Live attenuated influenza vaccine (LAIV) has been broadly used to elicit immune
178 responses. Several reports have showed that antigenically-matched LAIV can elicit
179 enhanced innate immune responses as compared to WT virus [16,23]. We wondered
180 whether LAIV could also induce similar host response on *ACE2* expression as its
181 antigenically-matched WT virus. To answer this question, we re-analyzed the
182 microarray data from GEO dataset GSE83215, in which primary human nasal epithelial
183 cells isolated from different individual donors were infected with WT seasonal
184 influenza A virus (H3N2) or antigenically-matched LAIV at the same dose and dpi.
185 The results show that LAIV resulted in a similar increase in *ACE2* levels to the WT
186 virus (Figure 2). In some donors, LAIV infection caused even higher *ACE2* expression
187 than the H3N2 WT virus (Figure 2). These results show that LAIV could also increase
188 *ACE2* expression in primary human nasal epithelial cells, suggesting that it is likely the
189 host cell response, but not the influenza virus itself, that caused the upregulation of
190 *ACE2*.

191

192 ***The Host Response of ACE2 Up-regulation by Influenza A Infection Is Associated***
193 ***with Activation of the Interferon Beta and Viral RNA-sensing Pathways***

194 As our analyses showed that both influenza A virus and LAIV induced *ACE2*
195 expression in epithelial cells in the respiratory tract, we next sought to understand the
196 cellular mechanism underlying such host response. Although the existing data are
197 limited, we were still able to extract valuable information by mining the public database.
198 In the dataset GSE19392 [24], Sagi *et al* evaluated the host response of primary human
199 bronchial epithelial cells after challenged with different virus infection. Cells were
200 infected with H1N1 (PR8) or PR8 NS1 mutant virus in which the NS1 gene, an
201 important viral gene that regulates virus-cell interactions [25], was mutated from the
202 PR8 genome. Meanwhile, cells were also treated with interferon beta or transfected
203 with virus RNA separately. All infections or treatments were performed as a time
204 course. By analyzing the relative *ACE2* expression levels in different cell samples, we
205 found several lines of interesting results (Figure 3): 1, Interferon-beta treatment
206 activated the *ACE2* expression in a time dependent manner; 2, The PR8 virus with NS1
207 mutation elicited even stronger host response in increasing *ACE2* expression than the
208 PR8 WT virus; 3, Viral RNA only also strongly activated *ACE2* expression (fold
209 change > 10 compared to the transfection reagent or media control). Our results
210 indicate that activation of *ACE2* expression by influenza virus infection is negatively
211 regulated by NS1 protein in virus; meanwhile, it's could be also associated with the
212 interferon beta pathway or host reactions caused by viral RNA.

213

214 *Epidemics of Influenza and SARS-CoV-2 Occurred in Nearly the Same Period*

215 To detect the potential relationship of respiratory viruses infection and COVID-19, we

216 analyzed the time course curve of positive test cases of influenza and SARS-CoV-2
217 virus in the period covering the COVID-19 outbreak and spread (Figure 4).
218 Considering the uneven distribution status of influenza cases in North and South
219 China, we collected the statistic data of confirmed influenza A and B cases in South
220 China from Chinese National Influenza Center since the twenty 1st week of 2019 to
221 10th week of 2020. From the collected data per week, a mild curve was observed until
222 the fourty-9th week (confirmed cases less than 1000 per week). Beginning from
223 fiftieth week of 2019 (1577 positive cases and 31.7% positive ratio), influenza cases
224 number increase dramatically to the peak at the 2nd week of 2020, indicating the
225 entry of influenza Season in South China. We then surveyed the number of confirmed
226 COVID-19 cases in Hubei province, the outbreak Center in China. The whole
227 epidemiological curve of COVID-19 in Hubei is just behind the influenza curve in
228 South China. One month later after the peak of influenza cases, confirmed COVID-19
229 cases number increase to summit at 6th in Hubei (more than 18,000 lab-confirmed
230 cases). Considering the delay of detection and test for SARS-CoV-2 virus, we deem
231 the near co-occurrence of influenza and SARS-CoV-2 infection in Hubei, indicating a
232 potential association of influenza and SARS-CoV-2 infection.

233

234 **Discussion**

235 In this study, we investigated how respiratory virus infection affects ACE2 expression
236 in various kinds of primary epithelial cells or specimens derived from the respiratory
237 tract. We reason that focusing on primary epithelial cells but not cancer or other

238 immortal cells lines will better mimic viral-host interactions in vivo. While we
239 recognize that the number of cell line types and influenza A virus isolates is limited in
240 the current study, the common host response in increasing *ACE2* expression observed
241 in these independent studies suggest that such upregulation of *ACE2* could be a
242 ubiquitous response for influenza A virus infection. Further, we demonstrated that the
243 relative *ACE2* expression level in NHBE cells was significantly higher when infected
244 with the pandemic influenza virus KY/180 and KY/136 than with the seasonal flu virus
245 BN/59, suggesting that pandemic influenza might predispose an even higher risk than
246 seasonal influenza in developing COVID-19. This result is also consistent with the
247 previous report that H1N1 pandemic IAV could induce stronger host response than
248 seasonal isolates [16].

249

250 The fact that RSV or hRV infection also activated *ACE2* expression leads to a
251 hypothesis that inflammation caused by virus influenza infection in the respiratory
252 tract is a high risk factor for COVID-19, especially when we observed a increased
253 *ACE2* expression after IFN β only treatment. These lines make us present a hypothesis
254 that multiple respiratory pathogens have the potential to activate *ACE2* expression
255 since they all could trigger the innate immune response and the COVID-19 patients
256 could also be infection with another respiratory virus. Interesting, several groups also
257 reported similar observations. Recently, a preliminary data reported by Ian Brown et
258 al. in Stanford School of Medicine also suggested that COVID-19 patients are often
259 infected with other respiratory viruses [13].

260

261 Our current analyses and predication are based on the widely accepted idea that *ACE2*
262 function as the receptor for SARS-CoV-2 entry into host cells. It has also been reported
263 that other host factors, such as cellular protease TMPRSS2, could facilitate host cell
264 entry of SARS-CoV-2 by priming S protein [26]. Recent study suggests that some
265 tumor markers, including CD147, can also provide a new entry for SARS-CoV-2
266 infection through binding to the viral S protein [27,28]. Therefore, it would be
267 interesting to investigate whether influenza infection also has any effect on these
268 invading routes in the future. Meanwhile, our conclusions might also be applicable to
269 the SARS virus infection, as it has been shown that both SARS-CoV-2 and SARS use
270 *ACE2* as the receptor for host entry [1]. While whether a more efficient entry of the
271 SARS-CoV-2 or SARS virus dependent on the increased *ACE2* expression still need
272 to be further confirmed.

273

274 Upon infection, influenza virus triggers the innate immune response in host cells to
275 produce Type I interferons (IFNs), which in turn inhibit viral replication. Hence, IFN
276 could be used as a therapy choice for influenza [29]. In our current work, IFN β
277 treatment activated *ACE2* expression in primary human bronchial epithelial cells,
278 suggesting that the host response of *ACE2* upregulation is associated with the IFN
279 signaling pathway. Our results raise a potential concern in using anti-viral interventions
280 such as IFN β , as they might increase the chance of SARS-CoV-2 infection and could
281 eventually cause COVID-19. In parallel, LAIV was broadly used to prevent the

282 influenza outbreak. In our study, LAIV treatment activated ACE2 expression in
283 primary human nasal epithelial cell (hNECs). In some individual donors, the activation
284 effect of LAIV is even greater than the WT virus, indicating that likely it is the
285 activation of the host innate immune response that triggered the upregulation of ACE2.
286 In conclusion, our study suggests that influenza spreading and its associated therapies
287 could exacerbate the symptoms of COVID-19 and therefore great care must be given
288 for patients with prior influenza infection.

289

290 **Acknowledgements** We would like to express our gratitude to all heroic Wuhan
291 citizens and all medical staffs fighting against COVID-19. We thank Dr. Cai Xiaolong
292 from GeneMediCo. Ltd., Shanghai (www.genemedi.net) for advice.

293

294 **Author contributions** All authors contributed to the development, analysis, and
295 drafting of this article.

296

297 **Funding** None.

298

299 **Compliance with ethical standards**

300 **Conflict of interest** The authors declared no potential conflicts of interests.

301 **Ethical approval** This article does not contain any studies with human participants or
302 animals performed by any of the authors.

303

304 **References**

305 [1] Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new
306 coronavirus of probable bat origin. *Nature*. 2020;579:270-273.

307 [2] Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease
308 2019 in China. *N Engl J Med*. 2020;382:1708-1720.

309 [3] Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a
310 nationwide analysis in China. *Lancet Oncol*. 2020;21:335-337.

311 [4] Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV
312 spike in the prefusion conformation. *Science*. 2020;367:1260-1263.

313 [5] Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical
314 therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the
315 status. *Mil Med Res*. 2020;7:11.

316 [6] Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may
317 play a role in the respiratory failure of COVID-19 patients. *J Med Virol*. 2020;
318 92:552-555.

319 [7] Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic Features and
320 Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. *JAMA*.
321 2020;323: 1488-1494.

322 [8] Xia J, Tong J, Liu M, et al. Evaluation of coronavirus in tears and conjunctival
323 secretions of patients with SARS-CoV-2 infection. *J Med Virol*.
324 2020;92:589-594.

325 [9] Chen H, Xuan B, Yan Y, et al. Profiling ACE2 expression in colon tissue of

326 healthy adults and colorectal cancer patients by single-cell transcriptome
327 analysis. *medRxiv*. 2020.

328 [10] Wu X, Cai Y, Huang X, et al. Co-infection with SARS-CoV-2 and Influenza A
329 Virus in Patient with Pneumonia, China. *Emerg Infect Dis*. 2020;26:1324-1326.

330 [11] Ma S, Lai X, Chen Z, et al. Clinical characteristics of critically ill patients
331 co-infected with SARS-CoV-2 and the influenza virus in Wuhan, China. *Int J
332 Infect Dis*. 2020;96:683-687.

333 [12] Hashemi SA, Safamanesh S, Ghasemzadeh-moghaddam H, et al. High
334 prevalence of SARS-CoV-2 and influenza A virus (H1N1) coinfection in dead
335 patients in Northeastern Iran. *J Med Virol*. 2020.

336 [13] Kim D, Quinn J, Pinsky B, et al. Rates of Co-infection Between SARS-CoV-2
337 and Other Respiratory Pathogens. *Jama-J Am Med Assoc*. 2020;323:2085-2086.

338 [14] Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene
339 expression and hybridization array data repository. *Nucleic Acids Res*.
340 2002;30:207-210.

341 [15] Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional
342 genomics data sets--update. *Nucleic Acids Res*. 2013;41:D991-5.

343 [16] Forero A, Fenstermacher K, Wohlgemuth N, et al. Evaluation of the innate
344 immune responses to influenza and live-attenuated influenza vaccine infection
345 in primary differentiated human nasal epithelial cells. *Vaccine*.
346 2017;35:6112-6121.

347 [17] Gerlach RL, Camp JV, Chu YK, et al. Early host responses of seasonal and

348 pandemic influenza A viruses in primary well-differentiated human lung
349 epithelial cells. *PLoS One.* 2013;8:e78912.

350 [18] Ioannidis I, McNally B, Willette M, et al. Plasticity and virus specificity of the
351 airway epithelial cell immune response during respiratory virus infection. *J*
352 *Virol.* 2012;86:5422-5436.

353 [19] Jacobs SE, Lamson DM, St George K, et al. Human rhinoviruses. *Clin*
354 *Microbiol Rev.* 2013;26:135-162.

355 [20] Proud D, Turner RB, Winther B, et al. Gene expression profiles during in vivo
356 human rhinovirus infection: insights into the host response. *Am J Respir Crit*
357 *Care Med.* 2008;178:962-968.

358 [21] Proud D, Hudy MH, Wiehler S, et al. Cigarette smoke modulates expression of
359 human rhinovirus-induced airway epithelial host defense genes. *PLoS One.*
360 2012;7:e40762.

361 [22] Bosco A, Wiehler S, Proud D. Interferon regulatory factor 7 regulates airway
362 epithelial cell responses to human rhinovirus infection. *BMC Genomics.*
363 2016;17:76.

364 [23] Mohn KG, Smith I, Sjursen H, et al. Immune responses after live attenuated
365 influenza vaccination. *Hum Vaccin Immunother.* 2018;14:571-578.

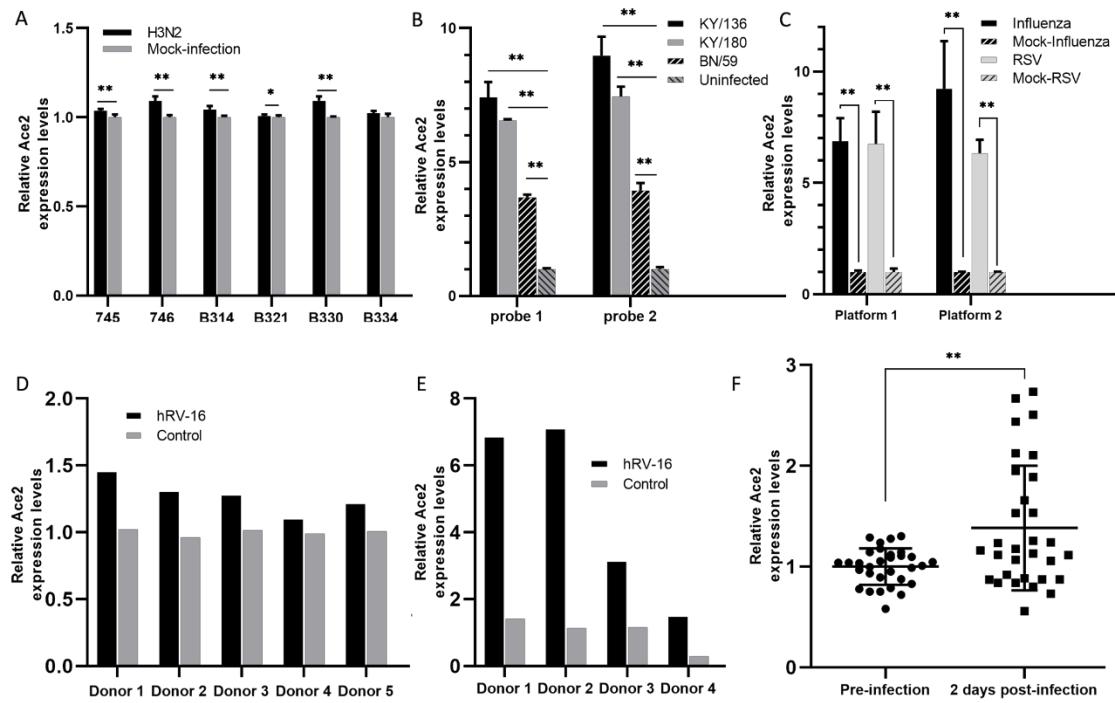
366 [24] Shapira SD, Gat-Viks I, Shum BO, et al. A physical and regulatory map of
367 host-influenza interactions reveals pathways in H1N1 infection. *Cell.*
368 2009;139:1255-1267.

369 [25] Hale BG, Randall RE, Ortin J, et al. The multifunctional NS1 protein of

370 influenza A viruses. *J Gen Virol.* 2008;89:2359-2376.

371 [26] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry
372 Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven
373 Protease Inhibitor. *Cell.* 2020;181:271-280.

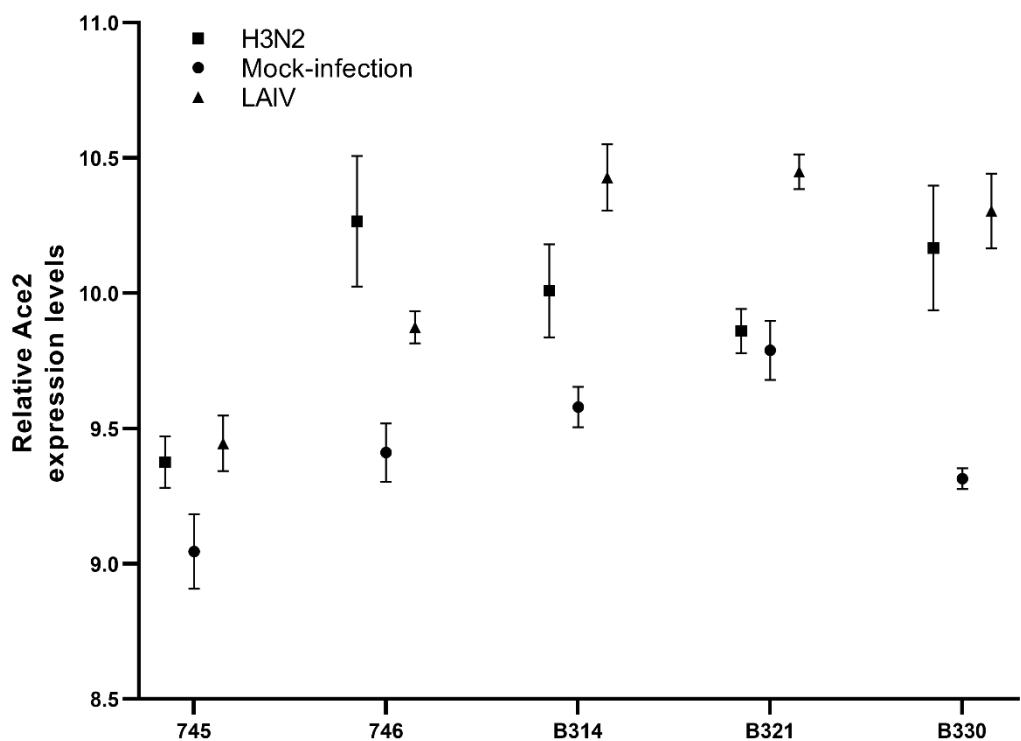
374 [27] Xia P, Dubrovska A. Tumor markers as an entry for SARS-CoV-2 infection?
375 *FEBS J.* 2020.


376 [28] Wang K, Chen W, Zhou Y-S, et al. SARS-CoV-2 invades host cells via a novel
377 route: CD147-spike protein. *bioRxiv.* 2020.

378 [29] Li SF, Gong MJ, Zhao FR, et al. Type I Interferons: Distinct Biological
379 Activities and Current Applications for Viral Infection. *Cell Physiol Biochem.*
380 2018;51:2377-2396.

381

Table 1. Data source and protocols used in this study.

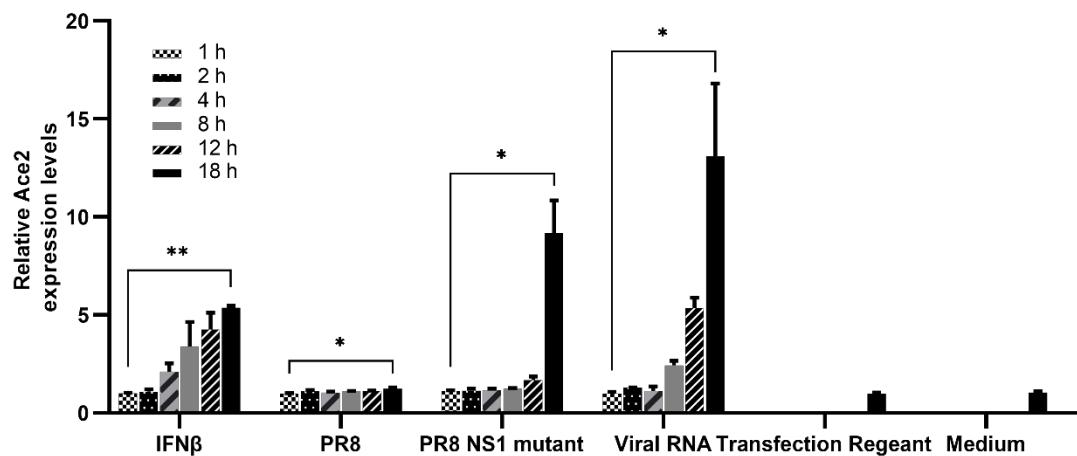

Data source	Data source	Virus Type	Dose (MOI)	Time course (hpi)	Citation (DOI)
GSE48466	Primary lung bronchus epithelial cells (wd-NHBE)	Seasonal H1N1 (A/BN/59/07)	3	36	10.1371/journal.pone.0078912
		Pandemic H1N1 (A/KY/180/10)			
		Pandemic H1N1 (A/KY/136/09)			
GSE32138	Primary human airway epithelial cell (hAEC)	H3N2 (A/Udorn/72)	1	24	10.1128/JVI.0675
GSE32139		rgRSV244 (Respiratory syncytial virus)	5	48	7-11
GSE83215	Primary human nasal epithelial cell (hNECs)	Seasonal H3N2 (A/Victoria/361/11)	1	36	10.1128/JVI.0675 7-11
		LAIv (HA, NA and all other proteins from A/Ann Arbor/6/1960)			
		H1N1 (A/PR/8/34)			
GSE19392	Primary human bronchial epithelial cells (HBEC)	Δ NS1 (PR8 with a deleted NS1 gene)	5	0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12, and 18	10.1016/j.cell.200 9.12.018
		Human rhinovirus (HRV-16)			
GSE70190	Primary human bronchial epithelial cells	Human rhinovirus (HRV-16)	1	24	10.1371/journal.pone.0040762
GSE27973	Primary human bronchial epithelial cells	Human rhinovirus (HRV-16)	1	24	10.1371/journal.pone.0040762
GSE11348	Nasal epithelial scrapings	Human rhinovirus (HRV-16)	No available	48	10.1164/rccm.200 805-670OC

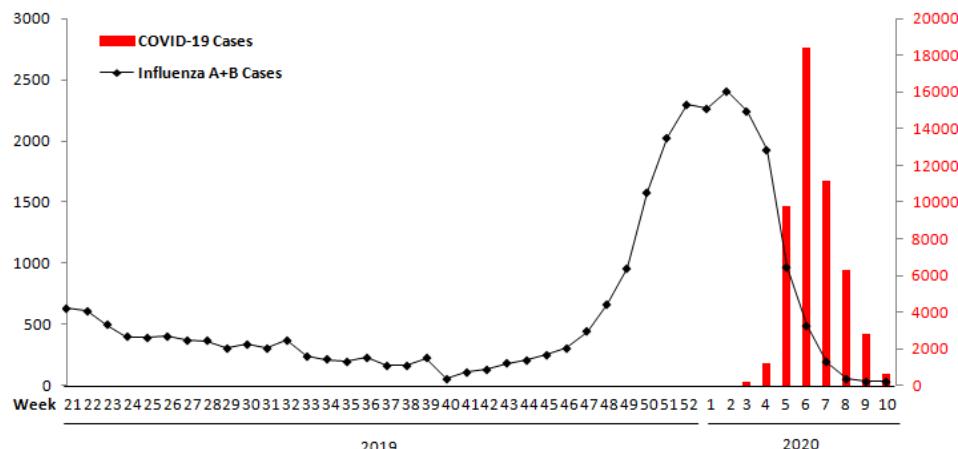
382 **Figure 1**

383

384

385 **Figure 2**




386

387

388 **Figure 3**

389
390

391 **Figure 4**

392

393

394 **Legend**

395 **Figure 1.** Influenza infection causes an increase in ACE2 expression in primary
 396 epithelial cells of the respiratory tract. (A) Relative ACE2 expression in primary human
 397 nasal epithelial cells after infection with H3N2 or mock virus. Cells were separated
 398 from indicated donors. (B) Relative ACE2 expression in primary human lung bronchial
 399 epithelial cells after infection with indicated virus. Probe 1 or 2 represents different
 400 probe for microarray analysis. (C) Relative ACE2 expression in primary human airway
 401 epithelial cell was evaluated after infection with indicated virus. Two microarray
 402 platforms were utilized for analysis. (D,E) Relative ACE2 expression in primary
 403 human bronchial epithelial cells after infection with hRV-16. Data from two separate
 404 experiments. (F) Comparing the ACE2 expression in nasal epithelial scrapings from
 405 cohorts before HRV-16 infection or 2 days after infection.
 406

407 **Figure 2.** Live attenuated influenza vaccine infection increases ACE2 expression.

408 Primary human nasal epithelial cells from different donors were infected with

409 indicated virus or vaccine and relative ACE2 expression level from each sample were

410 evaluated.

411

412 **Figure 3.** Both interferon beta and viral RNA increases ACE2 expression. Primary

413 human bronchial epithelial cells were infected with virus or treated with IFN β or

414 transfected with viral RNA as indicated. Relative ACE2 expression at different time

415 point was evaluated. Transfection reagent or medium only treatment was set as

416 control group.

417

418 **Figure 4.** The tendency chart of new cases of comfirmed COVID-19 in Hubei and

419 influenza A and B patients in South China. The x axis represents the time of

420 COVID-19 and influenza cases (influenza A and B). The y axes in the left and right

421 represents numbers of influenza and COVID-19 cases, respectively. The data of

422 laboratory-confirmed COVID-19 cases and influenza cases in South China are

423 collected from National Health Commission of the People's Republic of China and

424 Chinese National Influenza Center, respectively.