Graphene-oxide (G) was prepared by the Hummers’ method. A G-COOH layer was synthesised using chloroacetic acid and G. To fabricate carboxylated graphene-RuO2 (G-COORu) nano¬¬-composites, RuO2 nano particles were grown on graphene layers using a one-step thermal method, -COOH(G-COOH), and RuCl3. All materials were characterised using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, 13C-nuclear magnetic resonance as well as X-ray photoelectron, Fourier-transform infrared spectroscopy, and Raman. The electrochemical characteristics of the G-COORu supercapacitors were analysed using electrochemical impedance spectroscopy, cyclic voltammetry, constant current charge–discharge tests, and Nyquist impedance plots. The supercapacitors exhibit a specific capacitance of ~125 F g-1 at 100 mA cm-2 within the potential range of 0–1.0 V. The method used here provides a simple approach for the deposition of RuO2 nano particles on graphene layers and can be widened to the fabrication of other classes of hybrids based on G layers for specific technical applications.
Keywords:
Subject:
Chemistry and Materials Science - Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.