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Abstract: Gene expression profiling data contains more information than is routinely extracted 

with standard approaches. Here we present Fold-change-Specific Enrichment Analysis (FSEA), a 

new method for functional annotation of differentially expressed genes from transcriptome data 

with respect to their fold changes. FSEA identifies GO terms, which are shared by the group of 

genes with a similar magnitude of response, and assesses these changes. GO terms found by FSEA 

are fold-change-specifically (e.g. weakly, moderately or strongly) affected by a stimulus under 

investigation. We demonstrate that many responses to abiotic factors, mutations, treatments, and 

diseases occur in a fold-change-specific manner. FSEA analyses suggest that there are two 

prevailing responses of functionally-related gene groups, either weak or strong. Notably, some of 

the fold-change-specific GO terms are invisible by classical algorithms for functional gene 

enrichment, SEA and GSEA. These are GO terms not enriched compared to the genome 

background but strictly regulated by a factor within specific fold-change intervals. FSEA analysis 

of a cancer-related transcriptome suggested that the gene groups with a tightly coordinated 

response can be the valuable source to search for possible regulators, markers and therapeutic 

targets in oncogenic processes. 

Availability and Implementation: FSEA is implemented as the FoldGO Bioconductor R package and 

a web-server https://webfsgor.sysbio.cytogen.ru/ . 
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1. Introduction 

Next generation sequencing technologies revolutionized the field of molecular genetics, 

providing whole genome expression profiles for every aspect of life. However, with current 

analytical tools we retrieve just a small portion of information encoded in the expression profiles 

and development of new methods is more relevant as ever. 

The typical scenario of transcriptome data analysis is the identification of differentially 

expressed genes (DEGs), followed by a functional enrichment analysis of the gene set using Gene 

Ontology (GO) [1]. For that three classes of algorithms are used: Singular Enrichment Analysis 

(SEA) [2], Gene Set Enrichment Analysis (GSEA) [3] and Modular Enrichment Analysis (MEA) [2]. 

As a result, GO terms for biological processes, molecular functions and cellular components 

associated with the gene expression changes are identified. SEA and MEA identify which 

functionally-related group of the genes are overrepresented in differentially expressed genes 

compared to the genome background, GSEA does that on the entire transcriptome ranking the 
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genes by the fold change value. Dozens of tools and web-servers exist implementing these 

algorithms for functional annotation (reviewed in [2,4]). 

The limitation of these methods is that they do not give an idea to what extent functionally 

related genes are coordinated in their expression fold changes. In other words, what is the strength 

of response for a particular process? To understand the impact of a process in response to a certain 

factor, it is important to know if it is weakly, moderately or highly activated/inhibited. SEA and 

MEA ignore the fold change values, GSEA uses them only for ranking the genes. Here we suggest 

the Fold-change-Specific Enrichment Analysis (FSEA), that identifies functionally-related gene 

groups that change their expression with a certain strength - fold-change-specifically. 

Earlier, we proposed the concept to study the magnitude of response in functionally-related gene 

groups and showed that there are many GO terms that coordinatively, with certain strengths, were 

activated or repressed in response to phytohormone auxin in the model plant species Arabidopsis 

thaliana [5]. For example, auxin most strongly upregulates “auxin signaling”, but it is not the only 

positive response, as many processes were upregulated moderately (e.g. “histone modifications”) 

and weakly (e.g. “translation” and “gene expression” in general). Sharma and co-authors found 

many GO terms that fold-change-specifically differ between drought-tolerant and drought-sensitive 

rice varieties [6]. Fold-change-specific GO terms were occasionally detected in animal 

transcriptomes as well, e.g. very weak, but significant activation of immunity-related processes 

have been shown in [7]. However the role of fold-change-specific transcriptional response has not 

been studied systematically, because there were no ready-to-use tools. 

Here we provide FSEA formal description, adjust and validate the statistical procedures, and 

implement it as a FoldGO R package and a web-server. FoldGO application on a cancer-related 

transcriptome demonstrates that both FSEA/SEA or FSEA/GSEA algorithms should be applied to 

better understand biological processes underlying cancerogenesis and beyond. 

2. Materials and Methods  

2.1. Datasets for FSEA testing and application 

2.1.1. Real datasets for FSEA application 

We used randomly chosen 30 microarray and RNA-seq datasets from GEO database [8] in 

Homo sapiens and Arabidopsis thaliana (Table S1) on different treatments, conditions and mutants. 

Here, as an example we discuss FSEA results for one of the datasets, RNA-Seq experiment 

GSE70466 on comparison of gene expression between primary prostate epithelial cell line (HPrEC) 

and prostate adenocarcinoma cell line (LNCaP). Starting with raw data, RNA-Seq reads were 

mapped on the reference Homo sapiens genome assembly GRCh38 using STAR aligner [9] followed 

by quantification with Rsubread package [10]. Differential expression analysis was conducted using 

edgeR package [11]. 

Oncogenes identification was performed via The Network of Cancer Genes (NCG) database 

(http://ncg.kcl.ac.uk/query.php) [12]. 

2.1.2. Simulated datasets for FSEA testing 

False positive. To estimate the proportion of false positive FSEA results, we shuffled two of 

the real datasets (GSE71334 and GSE70466). In order to disrupt the relations between the GO terms 

and the fold change values, the gene identifiers were shuffled 2000 times. FSEA was applied to each 
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of 2000 shuffled datasets. Then we calculated the proportion of datasets in which at least one fold-

specific GO term passed the FDR threshold 0.05.  

Sensitivity assessment. In order to simulate the datasets with a specific correlation structure 

of the fold changes, we created the multidimensional normal distribution, which consists of the 

following groups: 

• 6 groups of DEGs (μ = 1) of different sizes (5, 10, 20, 30, 40, 50 genes) with strong correlation 

within each group (𝜌 > 0.7). These gene sets simulate pseudo GO terms. 

• 1 group of DEGs (μ = 1) of 100 genes without any correlation (𝜌 ~ 0) 

• 1 group of not DEGs (μ = 0) of 700 genes without any correlation (𝜌 ~ 0) 

Then 100 gene sets were sampled from the obtained multidimensional normal distribution. 

2.2. FSEA method formal description 

As an input data FSEA method uses a set of genes 𝐺 =  𝐺1, … . . , 𝐺𝑛 and corresponding absolute 

logarithmic values of fold changes (logFC)  𝑋 =  𝑋1, … . . , 𝑋𝑛. The initial set of genes is sorted by the 

fold change (FC) values 𝐺(1), … . . , 𝐺(𝑛), so that  𝑋(1) < 𝑋(2) <. . . < 𝑋(𝑛)|𝑋(1) = min(𝑋1, … . . , 𝑋𝑛) ,  𝑋(𝑛) =

max(𝑋1, … . . , 𝑋𝑛). Further, sorted set of genes G is divided into k quantiles 𝑄1, … . . , 𝑄𝑘, so that for each  

𝑄𝑖 =  𝐺𝑖,1, … . . , 𝐺𝑖,𝑚 the following conditions are satisfied: 

1. 𝑋𝑖,𝑗 < 𝑓(
𝑖

𝑘
) ; 

2. 𝑋𝑖,𝑗 ≥ 𝑓(
𝑖−1

𝑘
), in case of 𝑖 > 1; 

3. 𝑋𝑖,𝑗 ≥ min (𝑋1, … . . , 𝑋𝑛), in case of 𝑖 = 1, 

where 𝑋𝑖,𝑗 is the fold change value for 𝐺𝑖,𝑗|𝑖 ∈ {1, … , 𝑘}, 𝑗 ∈ {1, … , 𝑚}, and f is a function, which takes a 

fraction of the FC values below the boundary of the corresponding quantile as an argument, and 

returns the FC value corresponding to the boundary of the quantile. Next, ∑ 𝑛𝑘
𝑛=2  variants for the 

combinations of neighboring quantiles ⋃ 𝑄𝑛
𝑗
𝑛=𝑖  are generated, where  𝑖, 𝑗 ∈ {1, … , 𝑘}, 𝑖 < 𝑗, 𝑖 ≠ 1 ⋀  𝑗 ≠

𝑘. 

Further, for each GO term from a preliminary prepared set 𝐺𝑂 =  𝐺𝑂1, … . . , 𝐺𝑂𝑠, where 𝐺𝑂𝑖 =

 {𝐺𝑖,1, … . . , 𝐺𝑖,𝑡}|∀ 𝐺𝑖,𝑗 ∈ 𝐺, 𝑖 ∈ {1, … , 𝑠}, 𝑗 ∈ {1, … , 𝑡} (t is the number of genes annotated to the GOi ) and 

all quantiles and unions of neighboring quantiles, the enrichment is estimated using Fisher's exact test 

for the contingency table (Table 1). 
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Table 1. The contingency table for Fisher’s exact test. Qr +/- - the number of genes inside/outside of the 

fold-change interval. GOi  +/- - the number of genes annotated/not annotated with a distinct GO term. 

N - the number of DEGs. 

 Qr + Qr - Total 

GOi + A B A + B 

GOi - C D C + D 

Total A + C B + D N 

 

In Table 1, 𝐴 = |𝐺𝑂𝑖 ∩ 𝑄𝑟|, 𝐵 = |𝐺𝑂𝑖\𝑄𝑟|, 𝐶 = |𝑄𝑟\𝐺𝑂𝑖|, 𝐷 = |𝐺\(𝑄𝑟 ∪ 𝐺𝑂𝑖)|, 𝑖 ∈ {1, … , 𝑠}, 𝑟 ∈

{1, … , 𝑘}. For each GO term, the quantile or union of neighboring quantiles with the minimal p-value is 

selected. Then the multiple testing correction is applied with the number of tests equal to 𝑠 ∗ ∑ 𝑛𝑘
𝑛=2 , 

where s - the number of all GO terms under study and k - the number of quantiles. Every GO term 

which p-value passed the multiple testing correction threshold is considered as fold-change-specific. 

The fold-change interval with a minimal p-value was considered as the magnitude of response. 

2.3. FSEA implementation 

FSEA method has been implemented as FoldGO R package [13] and deposited in the 

Bioconductor repository (http://bioconductor.org/packages/release/bioc/html/FoldGO.html) along 

with detailed doсumentation and examples. The FoldGO R package allows the user to apply both 

SEA and FSEA to any transcriptome dataset. FoldGO provides the output in both table and chart 

views depicting the relationship between the fold-change-specific GO terms and specifying their 

strength of response. 

Since the R package requires basic programming knowledge, in order to make FSEA available 

for a broader audience we also implemented it as the web-server FoldGO 

(https://webfsgor.sysbio.cytogen.ru/). The FoldGO web-server provides a web interface and REST 

API for remote calculations. The frontend and backend parts of the web-server are implemented 

using Vue.JS JavaScript and Spring Java frameworks correspondingly. 

 

2.4. Comparison of FSEA with GSEA and SEA 

GSEA and SEA were performed using fgsea [14] and topGO [15] R packages correspondingly 

with Homo sapiens GO annotation (presented in org.Hs.eg.db R package [16]). GSEA was used with 

the number of permutations set to 10000 and fold-change values as a ranking metric. For both SEA 

and GSEA the FDR threshold was set to 0.05. 
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3. Results 

3.1. FSEA description 

We developed the FSEA method to supplement classical GO enrichment analysis (e.g. SEA or 

GSEA) with the estimate of the magnitude of  response for different functional gene groups. FSEA 

is aimed to find the relationship between the function of genes and the changes in their expression 

levels. It is important to highlight that FSEA tests an alternative null hypothesis compared to SEA 

and GSEA. While SEA and GSEA evaluate if there is a bias in expression of a functionally-related 

gene group relative to the whole genome background; FSEA analyzes only differentially expressed 

genes and assesses if there is a bias in their expression towards a certain range of fold-changes. 

An algorithm behind FSEA consists of two steps (see formal description in chapter 2.2). At 

the first step, FSEA sorts the lists of upregulated and downregulated DEGs (uDEGs and dDEGs) 

according to their fold-change values (Fig. 1A). Then FSEA divides the sorted lists into n-quantiles 

(where n is defined by a user) and generates gene sublists for all combinations of neighboring 

quantiles (hereinafter fold-change intervals). At the second step, FSEA employs Gene Ontology 

data for the selected species and estimates for each GO term its enrichment within each fold-change 

interval compared to the whole uDEGs and dDEGs lists (Table 1). Significance of enrichment is 

evaluated by Fisher’s exact test with post hoc multiple testing correction procedure (see chapter 2.2.). 

GO terms enriched in a specific fold-change interval which passed the multiple testing correction 

threshold are considered as fold-change-specific and the gene sets annotated to them are regarded 

as coordinatively regulated with a certain strength by the factor under investigation. 

FSEA method was implemented as the FoldGO Bioconductor R package and as the FoldGO 

web-server for a set of model species. 
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Figure 1. A. Fold-change-specific intervals generated for significantly activated genes (uDEGs) in 5-

quantile FSEA in analysis of 30 randomly chosen transcriptome datasets (Table S1). Rectangles 

denote the fold-change intervals (14 in total). The numbers are the percentages of fold-change-

specific GO terms for the intervals relative to the total number of fold-change-specific GO terms 

detected in all datasets. B. Portion of false-positive results. The line chart shows the fraction of false-

positive FSEA results (FPR; False Positive Rate) depending on the amount of DEGs and the number 

of n-quantiles. The dotted line indicates the fraction of false-positive results equal to 5 percent. C. 

Assessment of FSEA method sensitivity. The line chart shows the percent of correlated gene groups 

recognized by FSEA depending on the amount of genes in a group and the number of n-quantiles. 

D-E. The numbers of fold-change-specific GO terms detected in dDEGs (D) and uDEGs (E) of 30 

randomly chosen transcriptome datasets (Table S1). GO terms from three vocabularies highlighted 

by different colors: biological processes (BP, red), cellular components (CC, green) and molecular 

function (MF, blue). X axis is the number of the dataset, listed in Supplementary Table 1. F-G. The 

percentage of GO terms defined as fold-change-specific in certain intervals relative to the total 

number of fold-change-specific GO terms detected in 30 randomly chosen experiments (Table S1). 

The percentages in figures A and F-G match for upregulated genes. 
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3.2. FSEA validation 

To assess the adequacy of the FSEA statistical procedures for identification of fold-change-

specific GO terms we applied two tests.  

First, we estimated the portion of false-positive results. For that we took a real dataset [17] 

for which FSEA identified more than one hundred fold-change-specific GO terms. In order to 

disrupt the relations between the GO annotation and the genes expression values, the gene 

identifiers were shuffled to generate 2000 gene expression datasets. FSEA identified just a few fold-

change-specific GO terms over all shuffled datasets in total, with most of the shuffled datasets 

having no significant results. We performed this procedure for different numbers of n-quantiles (n = 

2...10) and different amounts of DEGs from 100 to 1000 with a step of 100 genes (see chapter 2.1.2). 

As a result, for any n-quantile and any amount of DEGs we observed a fraction of false-positive 

results less than 2.5% (Fig. 1B). This suggests that FSEA is sufficiently reliable to identify fold-

change-specific GO terms. 

Second, to assess FSEA method sensitivity we sampled 1000 datasets from a 

multidimensional normal distribution with predefined gene groups of different sizes with high 

correlation values (see chapter 2.1.2). Sensitivity assessment was done by varying the number of n-

quantiles and the amount of genes in generated groups. FSEA detected more than 75% of groups 

containing 20 genes and more, if their correlation coefficient was above 0.7 (Fig. 1C). This analysis 

showed that FSEA is sensitive enough to detect the functionally-related groups with a coordinated 

expression behaviour. 

After validation, we applied FSEA to real datasets for a 5-quantile analysis. For that we 

randomly chose 30 datasets from the GEO database with a representative number of DEGs (>300). 

FSEA found fold-change-specific GO terms in all tested datasets (Fig. 1D-E). This suggests that fold-

change-specific transcriptional response is a universal feature, which therefore should be taken into 

account in transcriptome analysis. The composition of fold-change-specific GO terms was unique 

for each dataset. In general, GO terms from “biological processes” GO vocabulary were detected as 

fold-change-specific more often, while terms for “molecular functions” were rare FSEA results (Fig. 

1D-E). Cellular components were not that abundant, but most significant fold-change-specific GO 

terms (Table S3). These results are logical, as the networks behind cellular components functioning 

and biological processes regulation have to be more coordinated than the gene sets united by a 

molecular function.   

We also analyzed which fold-change intervals engage more coordinative response (Fig 1A, F-

G). There were two polar attractors - fold-change-specific response was mainly either weak or very 

strong. Scientists usually pay more attention to the genes with the highest fold changes and to the 

processes they belong to. FSEA detected many processes activated or repressed weakly and this 

response was largely understudied. Earlier the importance to consider small changes in RNA 

expression was highlighted [7], but never studied in depth.  

3.3. Comparative study of FSEA, GSEA and SEA performance on a cancer-related dataset  

To demonstrate FSEA performance, here we discuss functional annotation of one particular 

dataset, namely, the differential expression data between primary prostate epithelial cell line 

(HPrEC) and prostate adenocarcinoma cell line (LNCaP), representing essentially healthy and 
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disease states, respectively. For this dataset, we compared the outputs of FSEA (5-quantile) with 

other widely-used methods for gene set enrichment analysis, SEA and GSEA [3].  

FSEA results for the cancer-related dataset only partially overlap those detected by GSEA and 

SEA (Fig. 2, Table S2). As mentioned in chapter 3.1, FSEA tests another null hypothesis, so it does 

not compete, but complements GSEA and SEA approaches. Thus, both positive and negative results 

of FSEA for a particular GO term are valuable, as they suggest if the functionally related gene 

group responded to a stimulus coordinatively, within specific ranges of fold-changes, or not. Below 

we discuss three groups of GO terms in more detail: identified by both FSEA and SEA, and either 

by SEA or FSEA. 

 

 

Figure 2. Summary statistics for the GO terms detected by FSEA, GSEA and SEA in comparison of 

transcriptomes between HPrEC and LNCaP cell lines (GSE70466). A. Activation of gene 

expression. B. Inhibition of gene expression. 

3.3.1. FSEA and SEA: FSEA gives an additional dimension to SEA results 

There are 91 GO terms for uDEGs and 370 terms for dDEGs in intersection of FSEA and SEA 

outputs (Fig. 2). These processes are overrepresented in DEGs compared with the whole genome 

background and enriched in DEGs changing their expression within specific fold-change intervals 

compared with the whole set of DEGs. The latter means that the functionally related genes alter 

their expression coordinatively and with a certain magnitude of response. For example, FSEA 

showed a significant association of the genes related to the oxidative phosphorylation (GO:0006119) 

with a weak activation (Fig. 3A). It is known that prostate cancer cells have the shift in metabolism 

to oxidative phosphorylation [18]. While SEA suggests that this process is influenced by 

cancerogenesis, FSEA highlights that the genes related to this process are conjugately weakly 

activated in the LNCaP line. 

Another example, the GO term detected by both SEA and FSEA in dDEGs is blood vessel 

morphogenesis (GO:0048514) (Fig. 3C-D). FSEA, identified that a notable part of genes associated 

with this GO term are inhibited from moderate to very strong levels (interval 3-5 out of 5). The 

Network of Cancer Genes (NCG) [12] identified as oncogenes 56 out of 182 genes, related to this GO 

term and fold-change-specifically inhibited in the cancer line. Nine of them were tumor 

suppressors, e.g. FBXW7 [19] and BAX [20,21]. It is known that tumors have abnormal vasculature 

development [22], FSEA results suggest that to identify the gene networks involved in various 

aspects of cancerogenesis, relevant genes under strong inhibition should be explored in more detail. 
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There are many other meaningful fold-change-specific associations detected for this 

experiment and worth studying by specialists in cancer genomics (Table S2). To sum up, FSEA 

provides an insight that may help to narrow the set of candidate genes responsible for the observed 

phenotype by selecting those associated with the fold-change-specific GO term and responding 

within the significant fold-change interval. 

 

 

Figure 3. Сancer-related processes identified as overrepresented in functional annotation of 

LNCaP cell line in comparison to HPrEC line by either SEA (E-F), or FSEA (G-H), or both (A-D). 

For each GO term, we provide two histograms, the left one (A, C, E, G) shows FSEA output. Red 

colored is the percentage of DEGs related to the GO term and belonging to a fold-change interval 

compared to all DEGs in this interval; blue colored is the percentage of DEGs out of the interval 

but related to the GO term to all DEGs out of the interval. 5-quantile FSEA marks the following 

intervals: 1 is for very weak response, 2 - weak response, 3 - moderate, 4 - strong, and 5 - very 

strong. Horizontal lines with asterisks denote the interval on which FSEA shows the significant 

enrichment of red colored fractions versus blue ones. On the right histograms (B, D, F, H) we 

present the SEA output with (yellow colored) the percentage of DEGs annotated to the GO term 

in DEGs and (gray colored) the percentage of genes annotated to the GO term in not DEGs. 

Asterisks denote enrichment of yellow colored fractions versus gray ones. A-B. Oxidative 

phosphorylation (GO:0006119). C-D. Blood vessel morphogenesis (GO:0048514). E-F. Lysine 

catabolic process (GO:0006554). G-H. Regulation of phagocytosis (GO:0050764)  
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3.3.2. Functional groups detected by SEA but not FSEA: non-coordinated response 

Identification of a GO term enrichment by SEA, but not by FSEA means that coordination in 

gene expression was not found for this process. Along with this we noticed that GO terms 

identified only by SEA are often presented as a redundant set of nested and mainly general GO 

terms representing multicomponent processes (Table S2). 

The typical profile of expression changes for functionally related gene groups that was 

detected by SEA, but not FSEA is shown in figure 3E for lysine catabolic process (GO:0006554). 

Percentages of DEGs annotated to this GO term have approximately uniform distribution across all 

fold-change intervals. However, this does not interfere with significant enrichment of this process 

in uDEGs relative to the whole genome background (Fig. 3F). Indeed, increased and not 

coordinated lysine degradation in prostate cancer was shown earlier, as elevated levels of some 

intermediate metabolites from this process in tumor tissues were detected [23]. 

Another example of the process related to cancer development, that was detected by SEA but 

not by FSEA is activation of coenzyme metabolic process (GO:0006732). The critical role of 

coenzymes in cancer metabolism is well known [25]. Although FSEA showed that the whole set of 

genes of this multicomponent process is not coordinated in strength of response, its subgroups can 

be coordinated fold-change-specifically. E.g. the nested GO term coenzyme biosynthetic process 

was activated from very weak to moderate levels (Table S2). 

 

3.3.3. Only FSEA: a quantized response invisible for classical enrichment analysis methods 

439 and 264 GO terms were detected by FSEA, but not SEA for uDEGs and dDEGs, 

correspondingly (Fig. 2) and many of them are cancer-related (Table S2). For example, Figure 4 

demonstrates the fold-change-specific intervals for several selected processes. Representative fold-

change-specific expression profile is shown on figure 3G for “regulation of phagocytosis” 

(GO:0050764). FSEA detected a significant bias towards very strong down-regulation of DEGs 

associated with this GO term. As the dDEGs downregulated not that strong were not enriched, or 

even depleted, SEA overlooked this term as associated with dDEGs (Fig. 3H). Phagocytosis has 

long been known as a process closely connected with tumor progression and directly with 

organism reaction to cancer cells [26] and only FSEA showed the ability to recognize this process as 

functionally relevant to the LNCaP cell line. 

Another example of FSEA- but not SEA-detected GO term is neurotransmitter secretion 

(GO:0007269) that was significantly associated with very strong activation of gene expression 

(Figure S1). Recently the role of neurotransmitter signalling in tumor progression became an 

important focus of cancer studies [27]. One of the examples is ERG oncogene which causes 

overexpression of nicotinicacetylcholine receptors (nAChRs) in prostate cancer cells which in turn, 

under nicotine treatment, induces tumor cells proliferation. These findings show that the processes 

that are not enriched in the whole DEG sets and overlooked by classical functional annotation, may 

show specific patterns of gene expression changes and provide an insight into the molecular 

mechanisms under study. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 April 2020                   

Peer-reviewed version available at Genes 2020, 11, 434; doi:10.3390/genes11040434

https://doi.org/10.3390/genes11040434


 

 

Figure 4. The FoldGO output data for comparison of gene expression between primary prostate 

epithelial cell line (HPrEC) and prostate adenocarcinoma cell line (LNCaP). The chart provides the 

fold-change intervals where selected GO terms (the whole list is in Table S2) showed the most 

significant enrichment compared to the whole DEGs list. Bars for fold-change-specific GO terms 

are painted in yellow and blue colors for up- and down-regulated processes, correspondingly. 

4. Discussion 

Here we formalized, validated and demonstrated the potential of Fold-change-Specific 

Enrichment Analysis (FSEA) for functional annotation of transcriptome data. We developed 

FoldGO Bioconductor package and web-server (https://webfsgor.sysbio.cytogen.ru/) to perform 

functional annotation with both FSEA and SEA. FoldGO can be applied to microarray and RNA-

Seq datasets of any species, which has GO annotation. 

The conceptual scheme of FSEA has been proposed to study Arabidopsis thaliana root transcriptome 

responded to plant hormone auxin [5]. Here we showed that fold-change-specific response is a 

rather common phenomenon with a unique composition of fold-change specific GO terms detected 

for each individual transcriptome. FSEA analysis of multiple randomly chosen datasets showed 

that there are two major fold-change-specific responses, either weak or strong. This suggests that 

the genes with small changes in expression, which are often excluded from the analysis, are not less 

important than ones with high levels of expression (Fig. 1F-G, Table S1). 

FSEA complements and extends classical methods of functional annotation (SEA and GSEA), 

providing new and potentially important information about coordinated behaviour of the 
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functionally-related genes, which resulted in the specific strength of response for this functional 

group. Figure 5 schematizes the differences between functionally-related gene groups recognized 

by SEA, FSEA, or by both approaches. These are three different patterns of response and only one 

of them has been studied before. 

 

 

Figure 5. Schematic representation of three functionally-related groups identified as 

overrepresented in uDEGs by SEA, FSEA, or both methods. Left and right halves of the plot refer to 

genes outside and inside uDEGs list, respectively. Genes annotated to the GO term of interest 

denoted as red vertical bars on the scale of ascendingly sorted fold-change values. 

 

It is known that tumor subtypes can be defined according to their gene expression profiles 

[28,29]. Such classification is being used in guidelines for the treatment of early stages of certain 

cancer types [28]. Since FSEA searches for connectivity between the function and the magnitude of 

gene expression changes it finds the precisely regulated processes underlying the overall response 

and forming its frame. Here we discussed FSEA/SEA functional annotation of RNA-Seq experiment 

on comparison of gene expression between primary prostate epithelial cell line (HPrEC) and 

prostate adenocarcinoma cell line (LNCaP). FSEA found more than 1000 GO terms significantly 

enriched in certain fold-change intervals, and a great part of them were not detected by classical 

approaches, SEA and GSEA (Fig. 2). Among these GO terms many were closely related to 

cancerogenesis, e.g. FSEA found a slight activation in expression of genes related to mitotic sister 

chromatid segregation [30] and high levels of activation for regulation of protein kinase C signaling 

[31,32] (Fig. 4). 

Earlier our approach was tested by a third-party group of researchers on the study of drought 

stress response in rice [6]. Authors detected differential quantitative regulation of some gene groups 

under drought stress conditions and concluded that drought-sensitive rice variety differs from 

drought-tolerant ones in the compositions of fold-change-specific GO terms lists. Thus, our 

approach may help to construct the roadmap for converting stress-sensitive varieties to stress-
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resistant ones by revealing which functional gene sets should be strengthened or inhibited and at 

what degree. 

In addition to Gene Ontology, one can use for FSEA analysis KEGG Pathways [33], BIOGRID 

Protein Interactions [34], InterPro Domains [35] and other resources of data for functional 

annotation to reveal more fold-change-specific features associated with DEGs. For example, in 

Omelyanchuk et al. 2017 [5] we showed applicability of FSEA method to find the cis-regulatory 

elements enriched within the promoters of genes having similar fold-changes in transcription. 

5. Conclusions 

Many tools are available for functional annotation of transcriptome changes. However, these 

methods either ignore fold-change values or use them only for gene ranking. Here we developed 

FSEA, the functional annotation method that considers fold-changes in gene expression and by this 

allows estimating the magnitude of response for biological processes, cellular compartments and 

molecular functions. This approach altogether with SEA was implemented in FoldGO web-server. 

Comparing FSEA with SEA showed that FSEA provides additional biologically meaningful 

outcomes to classical functional annotation. FSEA results not only provide a more comprehensive 

annotation of transcriptome data but also give an insight into the diversity of magnitudes in 

transcription response for different functional groups. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 

Neurotransmitter secretion process (GO:0007269) identified as overrepresented in functional annotation of 

LNCaP cell line in comparison to HPrEC line by FSEA; Table S1: Metadata on 30 microarray and RNA-seq 

datasets from GEO database [7] selected for FSEA method validation and testing; Table S2: FSEA results for 

RNA-Seq experiment GSE70466 on comparison of gene expression between primary prostate epithelial cell 

line (HPrEC) and prostate adenocarcinoma cell line (LNCaP); Table S3: FSEA results for 30 microarray and 

RNA-seq datasets from GEO database [7] selected for FSEA method validation; Table S4: Differential 

expression data for RNA-Seq experiment GSE70466 on comparison of gene expression between primary 

prostate epithelial cell line (HPrEC) and prostate adenocarcinoma cell line (LNCaP).  
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