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Abstract: Gene expression profiling data contains more information than is routinely extracted
with standard approaches. Here we present Fold-change-Specific Enrichment Analysis (FSEA), a
new method for functional annotation of differentially expressed genes from transcriptome data
with respect to their fold changes. FSEA identifies GO terms, which are shared by the group of
genes with a similar magnitude of response, and assesses these changes. GO terms found by FSEA
are fold-change-specifically (e.g. weakly, moderately or strongly) affected by a stimulus under
investigation. We demonstrate that many responses to abiotic factors, mutations, treatments, and
diseases occur in a fold-change-specific manner. FSEA analyses suggest that there are two
prevailing responses of functionally-related gene groups, either weak or strong. Notably, some of
the fold-change-specific GO terms are invisible by classical algorithms for functional gene
enrichment, SEA and GSEA. These are GO terms not enriched compared to the genome
background but strictly regulated by a factor within specific fold-change intervals. FSEA analysis
of a cancer-related transcriptome suggested that the gene groups with a tightly coordinated
response can be the valuable source to search for possible regulators, markers and therapeutic
targets in oncogenic processes.

Availability and Implementation: FSEA is implemented as the FoldGO Bioconductor R package and

a web-server https://webfsgor.sysbio.cytogen.ru/ .
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1. Introduction

Next generation sequencing technologies revolutionized the field of molecular genetics,
providing whole genome expression profiles for every aspect of life. However, with current
analytical tools we retrieve just a small portion of information encoded in the expression profiles
and development of new methods is more relevant as ever.

The typical scenario of transcriptome data analysis is the identification of differentially
expressed genes (DEGs), followed by a functional enrichment analysis of the gene set using Gene
Ontology (GO) [1]. For that three classes of algorithms are used: Singular Enrichment Analysis
(SEA) [2], Gene Set Enrichment Analysis (GSEA) [3] and Modular Enrichment Analysis (MEA) [2].
As a result, GO terms for biological processes, molecular functions and cellular components
associated with the gene expression changes are identified. SEA and MEA identify which
functionally-related group of the genes are overrepresented in differentially expressed genes

compared to the genome background, GSEA does that on the entire transcriptome ranking the
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genes by the fold change value. Dozens of tools and web-servers exist implementing these
algorithms for functional annotation (reviewed in [2,4]).

The limitation of these methods is that they do not give an idea to what extent functionally
related genes are coordinated in their expression fold changes. In other words, what is the strength
of response for a particular process? To understand the impact of a process in response to a certain
factor, it is important to know if it is weakly, moderately or highly activated/inhibited. SEA and
MEA ignore the fold change values, GSEA uses them only for ranking the genes. Here we suggest
the Fold-change-Specific Enrichment Analysis (FSEA), that identifies functionally-related gene
groups that change their expression with a certain strength - fold-change-specifically.

Earlier, we proposed the concept to study the magnitude of response in functionally-related gene
groups and showed that there are many GO terms that coordinatively, with certain strengths, were
activated or repressed in response to phytohormone auxin in the model plant species Arabidopsis
thaliana [5]. For example, auxin most strongly upregulates “auxin signaling”, but it is not the only
positive response, as many processes were upregulated moderately (e.g. “histone modifications”)
and weakly (e.g. “translation” and “gene expression” in general). Sharma and co-authors found
many GO terms that fold-change-specifically differ between drought-tolerant and drought-sensitive
rice varieties [6]. Fold-change-specific GO terms were occasionally detected in animal
transcriptomes as well, e.g. very weak, but significant activation of immunity-related processes
have been shown in [7]. However the role of fold-change-specific transcriptional response has not
been studied systematically, because there were no ready-to-use tools.

Here we provide FSEA formal description, adjust and validate the statistical procedures, and
implement it as a FoldGO R package and a web-server. FoldGO application on a cancer-related
transcriptome demonstrates that both FSEA/SEA or FSEA/GSEA algorithms should be applied to

better understand biological processes underlying cancerogenesis and beyond.

2. Materials and Methods

2.1. Datasets for FSEA testing and application

2.1.1. Real datasets for FSEA application

We used randomly chosen 30 microarray and RNA-seq datasets from GEO database [8] in
Homo sapiens and Arabidopsis thaliana (Table S1) on different treatments, conditions and mutants.
Here, as an example we discuss FSEA results for one of the datasets, RNA-Seq experiment
GSE70466 on comparison of gene expression between primary prostate epithelial cell line (HPrEC)
and prostate adenocarcinoma cell line (LNCaP). Starting with raw data, RNA-Seq reads were
mapped on the reference Homo sapiens genome assembly GRCh38 using STAR aligner [9] followed
by quantification with Rsubread package [10]. Differential expression analysis was conducted using
edgeR package [11].

Oncogenes identification was performed via The Network of Cancer Genes (NCG) database
(http://ncg.kcl.ac.uk/query.php) [12].

2.1.2. Simulated datasets for FSEA testing

False positive. To estimate the proportion of false positive FSEA results, we shuffled two of
the real datasets (GSE71334 and GSE70466). In order to disrupt the relations between the GO terms
and the fold change values, the gene identifiers were shuffled 2000 times. FSEA was applied to each
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of 2000 shuffled datasets. Then we calculated the proportion of datasets in which at least one fold-
specific GO term passed the FDR threshold 0.05.

Sensitivity assessment. In order to simulate the datasets with a specific correlation structure
of the fold changes, we created the multidimensional normal distribution, which consists of the

following groups:

° 6 groups of DEGs (u = 1) of different sizes (5, 10, 20, 30, 40, 50 genes) with strong correlation
within each group (p > 0.7). These gene sets simulate pseudo GO terms.

e 1group of DEGs (u =1) of 100 genes without any correlation (p ~ 0)

e 1 group of not DEGs (u = 0) of 700 genes without any correlation (p ~ 0)

Then 100 gene sets were sampled from the obtained multidimensional normal distribution.

2.2. FSEA method formal description

As an input data FSEA method uses a set of genes G = Gy, ....., G, and corresponding absolute
logarithmic values of fold changes (logFC) X = X, .....,X,,. The initial set of genes is sorted by the
fold change (FC) values Gy, ....., G, 50 that X4y < Xz) <...< Xyl X1y = min(Xy, ..., X)), Xy =
max(Xy, ....., X,). Further, sorted set of genes G is divided into k quantiles Q, ....., Qy, so that for each

Q; = Giq,....., Giy the following conditions are satisfied:
1.X;; < f(i))

2.Xi; 2 f(i_Tl), incaseof i > 1;

3.X;; = min (Xy,.....,X,), incase of i =1,

where X; ; is the fold change value for G;;|i € {1, ...,k},j € {1, ..., m}, and fis a function, which takes a
fraction of the FC values below the boundary of the corresponding quantile as an argument, and
returns the FC value corresponding to the boundary of the quantile. Next, ¥X_, n variants for the
combinations of neighboring quantiles Uiz:i Q, are generated, where i,j €{1,...k},i<j,i#1A j#
k.

Further, for each GO term from a preliminary prepared set GO = GO;,.....,GOs;, where GO; =
{Gir) o, Gi 3V Gy j € G € {1, ..., 5},j € {1, ..., t} (tis the number of genes annotated to the GO: ) and
all quantiles and unions of neighboring quantiles, the enrichment is estimated using Fisher's exact test

for the contingency table (Table 1).
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Table 1. The contingency table for Fisher’s exact test. Q- +/- - the number of genes inside/outside of the
fold-change interval. GOi +/- - the number of genes annotated/not annotated with a distinct GO term.
N - the number of DEGs.

Qr+ Qr- Total
GO+ A B A+B
GO:i- C D C+D
Total A+C B+D N

In Table 1, A=1G0; N Q,|, B=160;\Q,|, C =1Q:\GO;|, D = |G\(Qr U GOi)

{1, ..., k}. For each GO term, the quantile or union of neighboring quantiles with the minimal p-value is

, ie{l,..,s}re

selected. Then the multiple testing correction is applied with the number of tests equal to s * Yk_, n,
where s - the number of all GO terms under study and k - the number of quantiles. Every GO term
which p-value passed the multiple testing correction threshold is considered as fold-change-specific.

The fold-change interval with a minimal p-value was considered as the magnitude of response.
2.3. FSEA implementation

FSEA method has been implemented as FoldGO R package [13] and deposited in the
Bioconductor repository (http://bioconductor.org/packages/release/bioc/html/FoldGO.html) along
with detailed documentation and examples. The FoldGO R package allows the user to apply both
SEA and FSEA to any transcriptome dataset. FoldGO provides the output in both table and chart
views depicting the relationship between the fold-change-specific GO terms and specifying their
strength of response.

Since the R package requires basic programming knowledge, in order to make FSEA available
for a broader audience we also implemented it as the web-server FoldGO

(https://webfsgor.sysbio.cytogen.ru/). The FoldGO web-server provides a web interface and REST

API for remote calculations. The frontend and backend parts of the web-server are implemented

using Vue.JS JavaScript and Spring Java frameworks correspondingly.

2.4. Comparison of FSEA with GSEA and SEA

GSEA and SEA were performed using fgsea [14] and topGO [15] R packages correspondingly
with Homo sapiens GO annotation (presented in org.Hs.eq.db R package [16]). GSEA was used with
the number of permutations set to 10000 and fold-change values as a ranking metric. For both SEA
and GSEA the FDR threshold was set to 0.05.
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3. Results

3.1. FSEA description

We developed the FSEA method to supplement classical GO enrichment analysis (e.g. SEA or
GSEA) with the estimate of the magnitude of response for different functional gene groups. FSEA
is aimed to find the relationship between the function of genes and the changes in their expression
levels. It is important to highlight that FSEA tests an alternative null hypothesis compared to SEA
and GSEA. While SEA and GSEA evaluate if there is a bias in expression of a functionally-related
gene group relative to the whole genome background; FSEA analyzes only differentially expressed

genes and assesses if there is a bias in their expression towards a certain range of fold-changes.

An algorithm behind FSEA consists of two steps (see formal description in chapter 2.2). At
the first step, FSEA sorts the lists of upregulated and downregulated DEGs (uUDEGs and dDEGs)
according to their fold-change values (Fig. 1A). Then FSEA divides the sorted lists into n-quantiles
(where n is defined by a user) and generates gene sublists for all combinations of neighboring
quantiles (hereinafter fold-change intervals). At the second step, FSEA employs Gene Ontology
data for the selected species and estimates for each GO term its enrichment within each fold-change
interval compared to the whole uDEGs and dDEGs lists (Table 1). Significance of enrichment is
evaluated by Fisher’s exact test with post hoc multiple testing correction procedure (see chapter 2.2.).
GO terms enriched in a specific fold-change interval which passed the multiple testing correction
threshold are considered as fold-change-specific and the gene sets annotated to them are regarded

as coordinatively regulated with a certain strength by the factor under investigation.

FSEA method was implemented as the FoldGO Bioconductor R package and as the FoldGO

web-server for a set of model species.
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Figure 1. A. Fold-change-specific intervals generated for significantly activated genes (uUDEGs) in 5-
quantile FSEA in analysis of 30 randomly chosen transcriptome datasets (Table S1). Rectangles
denote the fold-change intervals (14 in total). The numbers are the percentages of fold-change-
specific GO terms for the intervals relative to the total number of fold-change-specific GO terms
detected in all datasets. B. Portion of false-positive results. The line chart shows the fraction of false-
positive FSEA results (FPR; False Positive Rate) depending on the amount of DEGs and the number
of n-quantiles. The dotted line indicates the fraction of false-positive results equal to 5 percent. C.
Assessment of FSEA method sensitivity. The line chart shows the percent of correlated gene groups
recognized by FSEA depending on the amount of genes in a group and the number of n-quantiles.
D-E. The numbers of fold-change-specific GO terms detected in dDEGs (D) and uDEGs (E) of 30
randomly chosen transcriptome datasets (Table S1). GO terms from three vocabularies highlighted
by different colors: biological processes (BP, red), cellular components (CC, green) and molecular
function (MF, blue). X axis is the number of the dataset, listed in Supplementary Table 1. F-G. The
percentage of GO terms defined as fold-change-specific in certain intervals relative to the total
number of fold-change-specific GO terms detected in 30 randomly chosen experiments (Table S1).

The percentages in figures A and F-G match for upregulated genes.
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3.2. FSEA validation

To assess the adequacy of the FSEA statistical procedures for identification of fold-change-
specific GO terms we applied two tests.

First, we estimated the portion of false-positive results. For that we took a real dataset [17]
for which FSEA identified more than one hundred fold-change-specific GO terms. In order to
disrupt the relations between the GO annotation and the genes expression values, the gene
identifiers were shuffled to generate 2000 gene expression datasets. FSEA identified just a few fold-
change-specific GO terms over all shuffled datasets in total, with most of the shuffled datasets
having no significant results. We performed this procedure for different numbers of n-quantiles (n =
2..10) and different amounts of DEGs from 100 to 1000 with a step of 100 genes (see chapter 2.1.2).
As a result, for any n-quantile and any amount of DEGs we observed a fraction of false-positive
results less than 2.5% (Fig. 1B). This suggests that FSEA is sufficiently reliable to identify fold-
change-specific GO terms.

Second, to assess FSEA method sensitivity we sampled 1000 datasets from a
multidimensional normal distribution with predefined gene groups of different sizes with high
correlation values (see chapter 2.1.2). Sensitivity assessment was done by varying the number of n-
quantiles and the amount of genes in generated groups. FSEA detected more than 75% of groups
containing 20 genes and more, if their correlation coefficient was above 0.7 (Fig. 1C). This analysis
showed that FSEA is sensitive enough to detect the functionally-related groups with a coordinated
expression behaviour.

After validation, we applied FSEA to real datasets for a 5-quantile analysis. For that we
randomly chose 30 datasets from the GEO database with a representative number of DEGs (>300).
FSEA found fold-change-specific GO terms in all tested datasets (Fig. 1D-E). This suggests that fold-
change-specific transcriptional response is a universal feature, which therefore should be taken into
account in transcriptome analysis. The composition of fold-change-specific GO terms was unique
for each dataset. In general, GO terms from “biological processes” GO vocabulary were detected as
fold-change-specific more often, while terms for “molecular functions” were rare FSEA results (Fig.
1D-E). Cellular components were not that abundant, but most significant fold-change-specific GO
terms (Table S3). These results are logical, as the networks behind cellular components functioning
and biological processes regulation have to be more coordinated than the gene sets united by a
molecular function.

We also analyzed which fold-change intervals engage more coordinative response (Fig 1A, F-
G). There were two polar attractors - fold-change-specific response was mainly either weak or very
strong. Scientists usually pay more attention to the genes with the highest fold changes and to the
processes they belong to. FSEA detected many processes activated or repressed weakly and this
response was largely understudied. Earlier the importance to consider small changes in RNA

expression was highlighted [7], but never studied in depth.
3.3. Comparative study of FSEA, GSEA and SEA performance on a cancer-related dataset

To demonstrate FSEA performance, here we discuss functional annotation of one particular
dataset, namely, the differential expression data between primary prostate epithelial cell line

(HPrEC) and prostate adenocarcinoma cell line (LNCaP), representing essentially healthy and
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disease states, respectively. For this dataset, we compared the outputs of FSEA (5-quantile) with
other widely-used methods for gene set enrichment analysis, SEA and GSEA [3].

FSEA results for the cancer-related dataset only partially overlap those detected by GSEA and
SEA (Fig. 2, Table S2). As mentioned in chapter 3.1, FSEA tests another null hypothesis, so it does
not compete, but complements GSEA and SEA approaches. Thus, both positive and negative results
of FSEA for a particular GO term are valuable, as they suggest if the functionally related gene
group responded to a stimulus coordinatively, within specific ranges of fold-changes, or not. Below
we discuss three groups of GO terms in more detail: identified by both FSEA and SEA, and either
by SEA or FSEA.

A Activation B Inhibition

GSEA 234
7
FSEA 378 714
61 244 FSEA 257
GSEA 1082 o = 126
20
SEA 81 SEA 1295

Figure 2. Summary statistics for the GO terms detected by FSEA, GSEA and SEA in comparison of
transcriptomes between HPrEC and LNCaP cell lines (GSE70466). A. Activation of gene

expression. B. Inhibition of gene expression.
3.3.1. FSEA and SEA: FSEA gives an additional dimension to SEA results

There are 91 GO terms for uDEGs and 370 terms for dDEGs in intersection of FSEA and SEA
outputs (Fig. 2). These processes are overrepresented in DEGs compared with the whole genome
background and enriched in DEGs changing their expression within specific fold-change intervals
compared with the whole set of DEGs. The latter means that the functionally related genes alter
their expression coordinatively and with a certain magnitude of response. For example, FSEA
showed a significant association of the genes related to the oxidative phosphorylation (GO:0006119)
with a weak activation (Fig. 3A). It is known that prostate cancer cells have the shift in metabolism
to oxidative phosphorylation [18]. While SEA suggests that this process is influenced by
cancerogenesis, FSEA highlights that the genes related to this process are conjugately weakly
activated in the LNCaP line.

Another example, the GO term detected by both SEA and FSEA in dDEGs is blood vessel
morphogenesis (GO:0048514) (Fig. 3C-D). FSEA, identified that a notable part of genes associated
with this GO term are inhibited from moderate to very strong levels (interval 3-5 out of 5). The
Network of Cancer Genes (NCG) [12] identified as oncogenes 56 out of 182 genes, related to this GO
term and fold-change-specifically inhibited in the cancer line. Nine of them were tumor
suppressors, e.g. FBXW7 [19] and BAX [20,21]. It is known that tumors have abnormal vasculature
development [22], FSEA results suggest that to identify the gene networks involved in various

aspects of cancerogenesis, relevant genes under strong inhibition should be explored in more detail.
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There are many other meaningful fold-change-specific associations detected for this
experiment and worth studying by specialists in cancer genomics (Table 52). To sum up, FSEA
provides an insight that may help to narrow the set of candidate genes responsible for the observed
phenotype by selecting those associated with the fold-change-specific GO term and responding

within the significant fold-change interval.

GO:0006119 oxidative phosphorylation GO:0006554 lysine catabolic process
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Figure 3. Cancer-related processes identified as overrepresented in functional annotation of
LNCaP cell line in comparison to HPrEC line by either SEA (E-F), or FSEA (G-H), or both (A-D).
For each GO term, we provide two histograms, the left one (A, C, E, G) shows FSEA output. Red
colored is the percentage of DEGs related to the GO term and belonging to a fold-change interval
compared to all DEGs in this interval; blue colored is the percentage of DEGs out of the interval
but related to the GO term to all DEGs out of the interval. 5-quantile FSEA marks the following
intervals: 1 is for very weak response, 2 - weak response, 3 - moderate, 4 - strong, and 5 - very
strong. Horizontal lines with asterisks denote the interval on which FSEA shows the significant
enrichment of red colored fractions versus blue ones. On the right histograms (B, D, F, H) we
present the SEA output with (yellow colored) the percentage of DEGs annotated to the GO term
in DEGs and (gray colored) the percentage of genes annotated to the GO term in not DEGs.
Asterisks denote enrichment of yellow colored fractions versus gray ones. A-B. Oxidative
phosphorylation (GO:0006119). C-D. Blood vessel morphogenesis (GO:0048514). E-F. Lysine
catabolic process (GO:0006554). G-H. Regulation of phagocytosis (GO:0050764)
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3.3.2. Functional groups detected by SEA but not FSEA: non-coordinated response

Identification of a GO term enrichment by SEA, but not by FSEA means that coordination in
gene expression was not found for this process. Along with this we noticed that GO terms
identified only by SEA are often presented as a redundant set of nested and mainly general GO
terms representing multicomponent processes (Table S2).

The typical profile of expression changes for functionally related gene groups that was
detected by SEA, but not FSEA is shown in figure 3E for lysine catabolic process (GO:0006554).
Percentages of DEGs annotated to this GO term have approximately uniform distribution across all
fold-change intervals. However, this does not interfere with significant enrichment of this process
in uDEGs relative to the whole genome background (Fig. 3F). Indeed, increased and not
coordinated lysine degradation in prostate cancer was shown earlier, as elevated levels of some
intermediate metabolites from this process in tumor tissues were detected [23].

Another example of the process related to cancer development, that was detected by SEA but
not by FSEA is activation of coenzyme metabolic process (GO:0006732). The critical role of
coenzymes in cancer metabolism is well known [25]. Although FSEA showed that the whole set of
genes of this multicomponent process is not coordinated in strength of response, its subgroups can
be coordinated fold-change-specifically. E.g. the nested GO term coenzyme biosynthetic process

was activated from very weak to moderate levels (Table S2).

3.3.3. Only FSEA: a quantized response invisible for classical enrichment analysis methods

439 and 264 GO terms were detected by FSEA, but not SEA for uDEGs and dDEGs,
correspondingly (Fig. 2) and many of them are cancer-related (Table S2). For example, Figure 4
demonstrates the fold-change-specific intervals for several selected processes. Representative fold-
change-specific expression profile is shown on figure 3G for “regulation of phagocytosis”
(GO:0050764). FSEA detected a significant bias towards very strong down-regulation of DEGs
associated with this GO term. As the dDEGs downregulated not that strong were not enriched, or
even depleted, SEA overlooked this term as associated with dDEGs (Fig. 3H). Phagocytosis has
long been known as a process closely connected with tumor progression and directly with
organism reaction to cancer cells [26] and only FSEA showed the ability to recognize this process as
functionally relevant to the LNCaP cell line.

Another example of FSEA- but not SEA-detected GO term is neurotransmitter secretion
(GO:0007269) that was significantly associated with very strong activation of gene expression
(Figure S1). Recently the role of neurotransmitter signalling in tumor progression became an
important focus of cancer studies [27]. One of the examples is ERG oncogene which causes
overexpression of nicotinicacetylcholine receptors (nAChRs) in prostate cancer cells which in turn,
under nicotine treatment, induces tumor cells proliferation. These findings show that the processes
that are not enriched in the whole DEG sets and overlooked by classical functional annotation, may
show specific patterns of gene expression changes and provide an insight into the molecular

mechanisms under study.
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Figure 4. The FoldGO output data for comparison of gene expression between primary prostate
epithelial cell line (HPrEC) and prostate adenocarcinoma cell line (LNCaP). The chart provides the
fold-change intervals where selected GO terms (the whole list is in Table S2) showed the most
significant enrichment compared to the whole DEGs list. Bars for fold-change-specific GO terms

are painted in yellow and blue colors for up- and down-regulated processes, correspondingly.

4. Discussion

Here we formalized, validated and demonstrated the potential of Fold-change-Specific

Enrichment Analysis (FSEA) for functional annotation of transcriptome data. We developed

FoldGO Bioconductor package and web-server (https://webfsgor.sysbio.cytogen.ru/) to perform
functional annotation with both FSEA and SEA. FoldGO can be applied to microarray and RNA-
Seq datasets of any species, which has GO annotation.

The conceptual scheme of FSEA has been proposed to study Arabidopsis thaliana root transcriptome
responded to plant hormone auxin [5]. Here we showed that fold-change-specific response is a
rather common phenomenon with a unique composition of fold-change specific GO terms detected
for each individual transcriptome. FSEA analysis of multiple randomly chosen datasets showed
that there are two major fold-change-specific responses, either weak or strong. This suggests that
the genes with small changes in expression, which are often excluded from the analysis, are not less
important than ones with high levels of expression (Fig. 1F-G, Table S1).

FSEA complements and extends classical methods of functional annotation (SEA and GSEA),

providing new and potentially important information about coordinated behaviour of the
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functionally-related genes, which resulted in the specific strength of response for this functional
group. Figure 5 schematizes the differences between functionally-related gene groups recognized
by SEA, FSEA, or by both approaches. These are three different patterns of response and only one

of them has been studied before.

DEG - DEG +

I I I FSEA/SEA

0 11 0 I“W
-

I FSEA

—

—
[«

——

SEA
, | ]| _H_H |
0 I 1 0 i
fold-change fold-change
(sorted) (sorted)

Figure 5. Schematic representation of three functionally-related groups identified as
overrepresented in uDEGs by SEA, FSEA, or both methods. Left and right halves of the plot refer to
genes outside and inside uDEGs list, respectively. Genes annotated to the GO term of interest

denoted as red vertical bars on the scale of ascendingly sorted fold-change values.

It is known that tumor subtypes can be defined according to their gene expression profiles
[28,29]. Such classification is being used in guidelines for the treatment of early stages of certain
cancer types [28]. Since FSEA searches for connectivity between the function and the magnitude of
gene expression changes it finds the precisely regulated processes underlying the overall response
and forming its frame. Here we discussed FSEA/SEA functional annotation of RNA-Seq experiment
on comparison of gene expression between primary prostate epithelial cell line (HPrEC) and
prostate adenocarcinoma cell line (LNCaP). FSEA found more than 1000 GO terms significantly
enriched in certain fold-change intervals, and a great part of them were not detected by classical
approaches, SEA and GSEA (Fig. 2). Among these GO terms many were closely related to
cancerogenesis, e.g. FSEA found a slight activation in expression of genes related to mitotic sister
chromatid segregation [30] and high levels of activation for regulation of protein kinase C signaling
[31,32] (Fig. 4).

Earlier our approach was tested by a third-party group of researchers on the study of drought
stress response in rice [6]. Authors detected differential quantitative regulation of some gene groups
under drought stress conditions and concluded that drought-sensitive rice variety differs from
drought-tolerant ones in the compositions of fold-change-specific GO terms lists. Thus, our

approach may help to construct the roadmap for converting stress-sensitive varieties to stress-
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resistant ones by revealing which functional gene sets should be strengthened or inhibited and at
what degree.

In addition to Gene Ontology, one can use for FSEA analysis KEGG Pathways [33], BIOGRID
Protein Interactions [34], InterPro Domains [35] and other resources of data for functional
annotation to reveal more fold-change-specific features associated with DEGs. For example, in
Omelyanchuk et al. 2017 [5] we showed applicability of FSEA method to find the cis-regulatory

elements enriched within the promoters of genes having similar fold-changes in transcription.

5. Conclusions

Many tools are available for functional annotation of transcriptome changes. However, these
methods either ignore fold-change values or use them only for gene ranking. Here we developed
FSEA, the functional annotation method that considers fold-changes in gene expression and by this
allows estimating the magnitude of response for biological processes, cellular compartments and
molecular functions. This approach altogether with SEA was implemented in FoldGO web-server.
Comparing FSEA with SEA showed that FSEA provides additional biologically meaningful
outcomes to classical functional annotation. FSEA results not only provide a more comprehensive
annotation of transcriptome data but also give an insight into the diversity of magnitudes in

transcription response for different functional groups.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/sl, Figure SI:
Neurotransmitter secretion process (GO:0007269) identified as overrepresented in functional annotation of
LNCaP cell line in comparison to HPrEC line by FSEA; Table S1: Metadata on 30 microarray and RNA-seq
datasets from GEO database [7] selected for FSEA method validation and testing; Table S2: FSEA results for
RNA-Seq experiment GSE70466 on comparison of gene expression between primary prostate epithelial cell
line (HPrEC) and prostate adenocarcinoma cell line (LNCaP); Table S3: FSEA results for 30 microarray and
RNA-seq datasets from GEO database [7] selected for FSEA method validation; Table S4: Differential
expression data for RNA-Seq experiment GSE70466 on comparison of gene expression between primary
prostate epithelial cell line (HPrEC) and prostate adenocarcinoma cell line (LNCaP).
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