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Abstract  

Antibiotics (ABs) are common medications used for treating infections. In cancer patients 

treated with immune checkpoint inhibitors (ICIs), concomitant exposure to ABs may impair 

the efficacy of ICIs and lead to a poorer outcome compared to AB non-users. We report 

here the results of a meta-analysis evaluating the effects of ABs on the outcome of 

patients with solid tumors treated with ICIs. PubMed, the Cochrane Library, and Embase 

were searched from inception until September 2019 for observational or prospective 

studies reporting prognosis of adult patients with cancer treated with ICIs and with or 

without ABs. Overall survival (OS) was the primary endpoint, and progression-free survival 

(PFS) was the secondary endpoint. The effect size was reported as hazard ratios (HRs) 

with a 95% confidence interval (CI), and an HR > 1 associated with a worse outcome in 

ABs users compared to no-ABs users. Fifteen publications were retrieved for a total of 

2363 patients. In the main analysis (n = 15 studies reporting data), OS was reduced in 

patients exposed to ABs before or during treatment with ICIs (HR = 2.07, 95%CI 1.51–

2.84; P<.01). Similarly, PFS was inferior in ABs users in n = 13 studies with data available 

(HR = 1.53, 95%CI 1.22–1.93; p<.01). In cancer patients treated with ICIs, AB use 

significantly reduces OS and PFS. Short duration/course of ABs may be considered in 

clinical situations in which they are strictly needed. 
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Introduction 

Cancer immunotherapy with immune checkpoint inhibitors (ICIs) has demonstrated 

efficacy among several tumor types [1]. However, a non-negligible percentage of patients 

do not derive any benefit from ICIs, and the research for predictive factors may help to 

refine patients’ selection and improve treatment efficacy. 

Preclinical studies on murine models have demonstrated that gut microbiota may act as a 

key modulator of efficacy and toxicity of ICIs [2,3]. Thus, it has been supposed that 

response to ICIs in humans could be affected by conditions that alter the composition of 

gut microbiota, including dysbiosis, due to the administration of antibiotics (ABs). In fact, 

retrospective studies reported worse outcomes for patients treated with ICIs that received 

ABs as compared with those not receiving Abs [4-6].  

The present meta-analysis evaluated the association between AB use and outcomes in 

patients with solid tumors treated with ICIs.  

 

Results  

Among the publications retrieved using electronic search, 15 studies were eligible for 

quantitative analysis, for a total of 2,363 patients [4-18] (Fig. 1).  
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Fig.1 Flow diagram of included studies 

 

Baseline characteristics of the included studies and treatments received are presented in 

Table 1. Thirteen were retrospective series, and two were prospective studies.  
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Tab. 1 Characteristics of included studies 

Author/ 
year  

Type of study N°  
of patients 

Treatment 
received (%)  

Median 
age 
(years) 

Ab% 
/timing  

Med  
FUP 
(mos) 

Type of 
analysis 

Covariates 
of MVA  
for OS  

Quality  
(NOS 
score)  

Abu-
Sbeih/ 
2019 

retrospective 826 
(various) 

anti-PD(L)1 
(51.6), anti-
CTLA4 (32), 
combo (16.5) 

62 68.9 
/before 
or after 
start 
(47.5%), 
both 
(52.5%) 

NR MVA ICI type, 
Stage IV 
cancer, 
IMDC, 
anaerobic 
ab use 

6 

Ahmed/ 
2018 

retrospective 60 (various) anti-PD1 
(81.7), anti-
PDL1 (5), 
ICI + CT 
(13.3) 

59 28 
/2w 
before 
and/or 
after 
start  

NR MVA broad 
spectrum ab 
use, age 

5 

Derosa/ 
2018 

retrospective 36 (RCC, 
NSCLC) 

RCC: anti-
PD(L)1 (88), 
anti-PD(L)1 + 
anti-CTLA4 
(8), anti-
PD(L)1 + 
BEVA (4) 
NSCLC: anti-
PD(L)1 (86), 
anti-PD(L)1 + 
anti-CTLA4 
(14) 

64 21.5 
/1 mos 
prior 
start 

NR MVA RCC: ab 30-
0 days/no ab 
IMDC risk, 
tumor 
burden 
NSCLC: ab 
30-0 
days/no ab, 
PS, clinical 
trial Y/N, 
prior 
regimens>/<
3 

5 

Elkrief/ 
2019 

retrospective  59 
(melanoma)* 

NIVO/PEMBR
O/IPI (100) 

64.5 13.5° 
/1 month 
prior  

NR MVA age, PS, 
gender, ab 
use, LDH, 
BRAF, line 
of tx, type of 
ICI 

5 

Galli/ 
2019 

retrospective 157 
(NSCLC) 

anti-PD(L)1 
(95.6), anti-
CTLA4 o 
combo (4.4) 

66.7 17.2 
/during 
ICI 
period 

28.6 MVA high 
ab/immunot
herapy 
exposure 
ratio in 
whole ICI 
period 

8 
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Guo/ 
2019 

retrospective 49 
(esophageal
) 

anti-PD(L1) 
alone (61), 
combo (39) 

56.7 43/2 
mos 
prior or 
1 month 
after 

16.4 MVA PS, 
treatment, n° 
of metastatic 
sites, NLR, 
antibiotic 
use 

7 

Hakoza
ki/ 
2019 

retrospective 90 (NSCLC) NIVO (100) 68 14.4/1 
month 
prior 
start 

NR MVA driver 
mutations  
 

6 

Huemer
/ 
2018 

retrospective 30 (NSCLC) NIVO (83), 
PEMBRO (17) 

NR 37/1 
month 
before/af
ter start 

NR MVA sex, 
antibiotic 
use, ICI, 
EGFR/ALK 
mutations, 
line of tx, 
PDL1 status, 
immune-
related 
adverse 
events 

5 

Huemer
/ 
2019 

retrospective 142 
(NSCLC) 

NIVO, 
PEMBRO or 
ATEZO (100) 

66 44/1 
months 
prior or 
after 
start  

13.3 UVA NR 7 

Kaderb
hai/ 
2017 

retrospective  74 (NSCLC) NIVO (100) 67.5 20.3/3 
months 
prior or 
concurre
nt 

NR UVA 
(PFS) 

NR 5 

Krief/ 
2019 

prospective 
cohort 

72 (NSCLC) NIVO (100) 68.8 42/2 
months 
before 
or 1 
month 
after 
start  

16.6 MVA Ab use; 
KRAS 
mutations, 
gemmatimo
nadaceae 
on blood 
microbiome 
at baseline 

7 
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Pinato/ 
2019 

prospective 
cohort 

196 
(various) 

anti-PD(L)1 
(96) 

68 29/1 
month 
prior or 
concurre
nt 

NR MVA response to 
ICI, ab 0-30 
days before 
ICI 

6 

Sen/ 
2018  

retrospective 172 
(various) 

anti-CTLA4 
(61), anti-PD1 
(39) 

60 33/durin
g and up 
to 2 mos 
before 

NR UVA  NR 5 

Tinsley/ 
2019 

retrospective 291 
(melanoma, 
RCC, 
NSCLC) 

NR 66 32/2w 
before 
up to 6w 
after 
start 

NR MVA ab use, 
comorbilities
, metastatic 
sites > 3, 
PS > 0 

6 

Zhao/ 
2019 

retrospective 109 
(NSCLC) 

anti-PD1 
(52.3), anti-
PD1 + CT 
(30.3), anti-
PD1 + 
antiangiogeni
c (17.4) 

62 18.3/1 
mos 
prior or 
after 
start 

NR MVA ab use, PS 6 

*only immunotherapy without chemotherapy; °, all patients; ab: antibiotic; mos: months; RCC, renal cell carcinoma; NSCLC, non-small-
cell lung cancer; PD1, programmed death 1; PDL1, programmed death-ligand 1; ICI, immune checkpoint inhibitors; CT, chemotherapy; 
CTLA4, Cytotoxic T-lymphocyte antigen 4; BEVA, bevacizumab; NIVO, nivolumab; PEMBRO, pembrolizumab; IPI, ipilimumab; ATEZO, 
atezolizumab; MVA, multivariate analysis; UVA, univariate analysis; PFS, progression-free survival; IMDC, international metastatic RCC 
database consortium; PS ECOG, performance status; tx, therapy; NLR, neutrophile to lymphocyte ratio; NR, not reported 

 

 

 

The median age was 64 years. Antibiotics were assumed by 29% of patients.  

Progression-free survival was reduced in those who take antibiotics (HR = 1.53, 95% CI 

1.22–1.93; p <. 01; Fig. 2).  
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Fig.2 Forrest plot for progression-free survival in patients assuming antibiotics pre/during 

immunotherapy  

 

The analysis included nine studies, and due to high heterogeneity (I2 = 77%), a random 

effect model was adopted. 

In the primary analysis, use of antibiotics was associated with an increased risk of death 

(HR = 2.07, 95% CI 1.51–2.84; p < .01; Fig. 3).  
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Fig.3 Forrest plot for overall survival in patients assuming antibiotics pre/during 

immunotherapy  

 

The analysis included 14 studies, and due to high heterogeneity (I2 = 87%), a random 

effect model was adopted.  

Risk of bias through Begg’s funnel plot was not significant for the OS analysis (Fig. 4). 

Conversely, Egger’s test showed evidence of bias ( p < .01). 

 

 

 

Fig.4 Funnel plot for publication bias  

 

Discussion  

In the past years, it has been reported that changes in the gut microbiota of individuals 

with cancer who received antibiotics, may reduce outcome when treated with ICIs. We 

performed a systematic review and meta-analysis of observational evidence reporting the 
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outcome of patients treated with ICIs for advanced cancers according to AB exposure, and 

we found that use of ABs reduces OS and PFS.  

In a seminal paper published in Science in 2018, Routy et al. [19] showed that AB 

consumption is associated with reduced response to anti-PD-(L)1 blockade. Samples 

attained from patients with lung and kidney cancer showed that non-responding patients 

had low levels of the bacterium Akkermansia muciniphila. Oral bacterium supplementation 

in antibiotic-treated mice instead, restored the response to immunotherapy. 

Gopalakrishnan et al. and Matson et al. [20,21] evaluated fecal samples from melanoma 

patients receiving anti-PD-(L)1 blockade and found that those who failed immunotherapy 

had an imbalance in commensal bacteria composition, which was linked with impaired 

activity of immune cells. Other authors found that fecal Bifidobacterium was associated 

with the antitumor effects of ICIs3. Oral administration of Bifidobacterium alone also 

improved tumor control to the same magnitude as anti-PD-(L)1 therapy, and combination 

treatment nearly abolished tumor outgrowth. Increased dendritic cell function with a 

consensual enhanced cluster of differentiation 8 (CD8)+ T cell priming/accumulation in the 

tumor microenvironment mediated the observed effect. Similarly, even the antitumor effect 

of Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) blockade seems to depend on distinct 

Bacteroides species, as found in mouse models by Vétizou et al. [22] Lack of response 

was overcome by B. fragilis, by immunization with B. fragilis polysaccharides, or by 

adoptive transfer of B. fragilis-specific T cells; conversely, ABs-treated mice did not 

respond to CTLA-4 blockade.  

In clinical settings, several authors reported a possible detrimental association between 

timing of/exposure to ABs and survival with ICIs. Particularly, Galli et al.5 found that an 

elevated ratio between days of antibiotics and days of immunotherapy is more harmful 

than the use of ABs itself. In a similar study, Tinsley et al. [23] observed that a single 

course of ABs is associated with a better OS than that observed with multiple/prolonged 
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courses of ABs. Although these observations are consistent with a possible detrimental 

effect of ABs, it cannot be excluded that AB use may identify a group of patients with poor 

prognosis due to concomitant severe infections or comorbidities, rather than ABs 

themselves affecting the outcome of patients treated with ICIs.  

Our meta-analysis has some limitations. First, this is a meta-analysis of retrospective 

series with heterogeneous populations and obvious diversity in tumor stages/types and 

patient characteristics. Also, AB type and duration, as well as the indication of AB use, 

were only partially reported. Finally, patients treated with anticancer therapy other than 

ICIs were not included. However, this pooled analysis of real-life experiences seems to 

confirm the hypothesis that AB-associated dysbiosis might be detrimental in patients 

treated with ICIs. A recent published paper by Huang and colleagues had the same goal of 

the present meta-analysis, but has a less updated literature search, and included about 

half of papers as congress abstract forms, come to a similar conclusions [24].   

 

Material and Methods  

Search strategy and inclusion criteria 

The present review was conducted according to Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) guidelines and recommendations[25]. Electronic 

searches were performed using Embase, PubMed, SCOPUS, and the Cochrane Library. 

The studies were searched up to September 2019, using the terms antibiotics AND (PD-1 

or PD-L1 or “immune checkpoint inhibitors” or CTLA-4) AND survival. All the identified 

articles were then systematically and independently assessed for inclusion and exclusion 

criteria by two investigators (Alessandro Inno and Fausto Petrelli). 

The inclusion criteria used to screen articles were: 1) adult patients with solid tumors and 

treated with ICIs, 2) evaluation of survival (OS and/or PFS) according to intake of ABs (yes 

versus no), 3) a hazard ratio (HR) statistic accompanied by 95% confidence interval (CI) 
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from univariate or adjusted Cox multivariate analysis, and 4) cohorts of adult patients. The 

exclusion criteria were: 1) phase I studies and 2) patients treated with ICIs and other (non-

immunotherapy) drugs. When institutions published duplicate studies involving overlapping 

patients or increased lengths of follow-up, the most updated reports were included for 

quantitative assessment. Only studies involving human subjects and published in English 

were considered.  

Data extraction  

Two investigators (Alessandro Inno and Fausto Petrelli) independently extracted data of 

interest (author and year of publication, number of patients, type of study, treatment 

received, timing of AB therapy, median follow-up, and type of analysis). The quality of the 

included studies was assessed using the Newcastle–Ottawa Scale (NOS)[26].  

Statistical analysis  

The outcome of interest was the prognostic effect of AB intake and reported as HR and its 

respective 95% CI. Overall survival was the primary endpoint, and PFS was the secondary 

endpoint. The HRs of each selected study were pooled together to provide the overall 

estimate. I2 statistic was used to estimate the percentage of total variation across studies, 

owing to heterogeneity rather than chance, with values greater than 50% considered as 

substantial heterogeneity. A random-effect model was tested, and in the case of I2 < 50%, 

a fixed-effect model was also considered [27]. Publication bias was assessed through the 

generation of funnel plots for OS and analyzed for asymmetry using Begg’s and Egger’s 

test. All p values were two-sided with significance set at p < 0.05. Statistical analyses were 

conducted with the Review Manager computer program, Version 5.3 (Copenhagen: The 

Nordic Cochrane Centre, The Cochrane Collaboration, 2014). 
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Conclusions 

An intact gut microbiota is needed to elicit the immune system and provide ICI benefits to 

cancer patients. Strategies to modulate the microbiome with the aim to improve ICI 

efficacy should be actively investigated. 
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