Preprint
Article

Development of a Simplified Radiometric Calibration Framework for Water-Based and Rapid Deployment Unmanned Aerial System (UAS) Operations

Altmetrics

Downloads

545

Views

162

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

30 March 2020

Posted:

31 March 2020

You are already at the latest version

Alerts
Abstract
The current study sets out to develop an empirical line method (ELM) radiometric calibration framework for reducing atmospheric contributions in UAS imagery and for producing scaled remote sensing reflectance imagery. Using a MicaSense RedEdge camera flown on a custom-built octocopter, the research reported herein finds that atmospheric contributions have an important impact on UAS imagery. Data collected over the Lower Pearl River Estuary in Mississippi during five week-long missions covering a wide range of environmental conditions was used to develop and test a simplified ELM radiometric calibration framework designed specifically for the reduction of atmospheric contributions to UAS imagery in studies with limited site accessibility or data acquisition time constraints. The framework was effective in reducing atmospheric and other external contributions to UAS imagery. Unique to the proposed radiometric calibration framework is the radiance to reflectance conversion conducted externally from the calibration equations which allows for the normalization of illumination independent from the time of UAS image acquisition and from the time of calibration equations development. This paper presents the simplified ELM radiometric calibration framework that can be used as a time-effective calibration technique to reduce errors in the UAS imagery.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated