The work is devoted to the study of a family of linear initial value problems of partial differential equations in the complex domain, dealing with two complex time variables. The use of a truncated Laplace-like transformation in the construction of the analytic solution allows to overcome a small divisor phenomenon arising from the geometry of the problem and represents an alternative approach to the one proposed in a recent work by the first two authors. The result leans on the application of a fixed point argument and the classical Ramis-Sibuya theorem.
Keywords:
Subject: Computer Science and Mathematics - Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.