

1 Article

2 Path and Control Planning for Autonomous Vehicles 3 in Restricted Space and Low Speed

4 Maksym Diachuk^{1,‡}, Said M. Easa^{1,†,‡*} and Joel Bannis¹

5 ¹ Ryerson University, Department of Civil Engineering

6 * Correspondence: seasa@ryerson.ca; Tel.: +1-416-979-5000 (ext. 7868)

7 [†] Current address: 350 Victoria Street, Toronto, Canada M5B2K3

8 [‡] These authors contributed equally to this work.

9

10 **Abstract:** The paper presents models of path and control planning for parking, docking, and
11 movement of autonomous vehicles at low speeds considering space constraints. Given the low
12 speed of motion, and in order to test and approve the proposed algorithms, vehicle kinematic
13 models are used. Recent works on the development of parking algorithms for autonomous vehicles
14 are reviewed. Bicycle kinematic models for vehicle motion are considered for three basic types of
15 vehicles: passenger car, long wheelbase truck, and articulated vehicles with and without steered
16 semitrailer axes. Mathematical descriptions of systems of differential equations in matrix form and
17 expressions for determining the linearization elements of nonlinear motion equations that increase
18 the speed of finding the optimal solution are presented. Options are proposed for describing the
19 interaction of vehicle overall dimensions with the space boundaries, within which a maneuver
20 should be performed. An original algorithm that considers numerous constraints is developed for
21 determining vehicle permissible positions within the closed boundaries of the parking area, which
22 are directly used in the iterative process of searching for the optimal plan solution using nonlinear
23 model predictive control (NMPC). The process of using NMPC to find the best trajectories and
24 control laws while moving in a semi-limited space of constant curvature (turnabouts, roundabouts)
25 are described. Simulation tests were used to validate the proposed models for both constrained and
26 unconstrained conditions and the output (state-space) and control parameters' dependencies are
27 shown. The proposed models represent an initial effort to model the movement of autonomous
28 vehicles for parking and has the potential for other highway applications.

29 **Keywords:** Autonomous vehicles; parking; path planning; space restrictions; optimization

30

31 1. Introduction

32 Automated parking within the framework of the general task of autonomous vehicles aims at
33 eliminating the influence of human factors, improving the quality and accuracy of control, and
34 reducing the time and quantity of maneuvers by optimizing vehicle path in restricted parking zones
35 [1–3]. The advantages of autonomous parking are not only eliminating routine driver actions, often
36 requiring increased attention and responsibility, but also achieving significant economic benefits,
37 especially for closed areas. Automation of vehicle parking allows reducing the lateral distances
38 between parking spaces since there is no more need for opening car doors exactly on a parking spot
39 (a car moves to a parking place autonomously without passengers). A narrow space contributes not
40 only to an increase in parking places but also to a reduction in the unit cost for a parking spot during
41 the construction of parking lots in buildings. The latter is especially relevant due to the promising
42 technologies of vehicle to anything technology which provides communication between a vehicle
43 and a building through data exchange to find a loose place, to generate the route, and to retain

44 support while moving to a destination. For large-sized trucks, the exceptional importance lies in
45 predicting stable and safe passing on road curved sections, forecasting precise control for docking,
46 followed by discharging and minimizing total control in the case of multiple parameters.

47 Numerous approaches that consider different control strategies, sensory means, and prediction
48 algorithms have been developed regarding automated parking. Those approaches demonstrate
49 certain similarity in parking modeling. The study by Pérez-Morales et al. [4] is dedicated to
50 perpendicular automated parking with a sensor-based control and weighted control scheme,
51 positioning itself as one of the first attempts in this area. The research included real experiments using
52 the Velodyne VLP-16 compact Lidar, and one part of the study was devoted to the data extraction
53 with followed by determining the loose parking space. The two control methods were considered for
54 kinematic vehicle model: geometric path planning and sensor-based control with evaluating the
55 weighting factors. Despite the fact of using a Lidar and real-world data, some results were unclear,
56 showing the duration of quite simple maneuver about 40 s and the use of steered wheels' turning
57 without vehicle motion. There was also a pretty big difference between the planned speed and the
58 actual one according to the experiment. Lee et al. [2] proposed using the extended Kalman filter (EKF)
59 with simultaneous localization and mapping (SLAM) algorithm and occupancy grid mapping
60 method for the automated backward perpendicular parking. Authors assert this approach may
61 increase the accuracy for estimating the radar positioning to form a grid map. An algorithm reducing
62 the computational complexity by thresholding the landmark recognition and adaptive changing the
63 state vector length is considered. The scattering extraction using the orthogonal matching pursuit
64 from electric field data is utilized for making realistic simulation of car model's radar measurements.
65 Authors remark the real-time efficiency of proposed algorithm improvements.

66 The study by Lee et al. [1] considers automated parking algorithms for self-driving cars
67 equipped with a lidar such as HDL-32E. Based on 3D point cloud extraction, a parking zone is
68 proposed to be preprocessed for defining the minimum parking space. The path prognosis is based
69 on vehicle dynamics and collision constraints. The fuzzy-logic controller is proposed to be used for
70 controlling the brakes and throttle to sustain stable vehicle speed. The test results obtained by
71 engaging a self-driving car showed the feasibility and efficiency of proposed system for parallel and
72 perpendicular variants of parking. Luca et al. [5] investigated the environment mapping for the case
73 of robotic car parking. The laser scanner SICK LD1000 and ultrasonic sensors perform reliable data
74 for map generation. Implementing evolutive algorithms, the data are being converted into lines
75 denoting the edges of surrounding objects to simplify the parking zone environment. Due to the
76 map's dynamic evolution while vehicle moving, the data are being checked on merging and fitting
77 by applying a shape correlation, followed by correction. The Embedded Matlab/Simulink Software
78 and the PC104 system are used for testing the navigation and path determination in real-time.

79 The study by Zhou et al. [6] distinguishes the problem of parking spots' detection reliability in
80 semi-filled parking lots. The parking zone is supposed to be estimated using onboard laser scanner.
81 The proposed approach aims identifying vehicle bumpers using a supervised learning technique. The
82 classifier is to be trained for recognizing data segments as car bumpers. The developed algorithm
83 creates a topological graph interpreting the parking space to be analyzed. Authors state the algorithm
84 performance proved by a series of experimental tests. Heinen et al. [7] described a system for
85 implementing the intelligent control for autonomous vehicles. The developed system allegedly can
86 drive a vehicle providing a robust control for parallel automated parking. The sonar sensors are being
87 read for processing the data by a neural network giving steering and accelerating signals. Authors
88 state the proposed controller is perfectly working to park a vehicle in different situations.

89 Kiss and Tevesz [8] presented a combined approximate method for solving the path planning
90 problem in narrow environments. The approach consists of a global planner that generates a
91 preliminary path consisting of straight and turning-in-place primitives and a local planner that is
92 used to make the preliminary path feasible to car-like vehicles. Lin and Zhu [3] developed a path
93 planner based on a novel four-phase algorithm. By using some switching control laws to drive two
94 virtual cars to a target line, the forward and reverse paths were obtained. Then, the two paths are
95 connected along the target line. The proposed path planning algorithm was fast, highly autonomous,

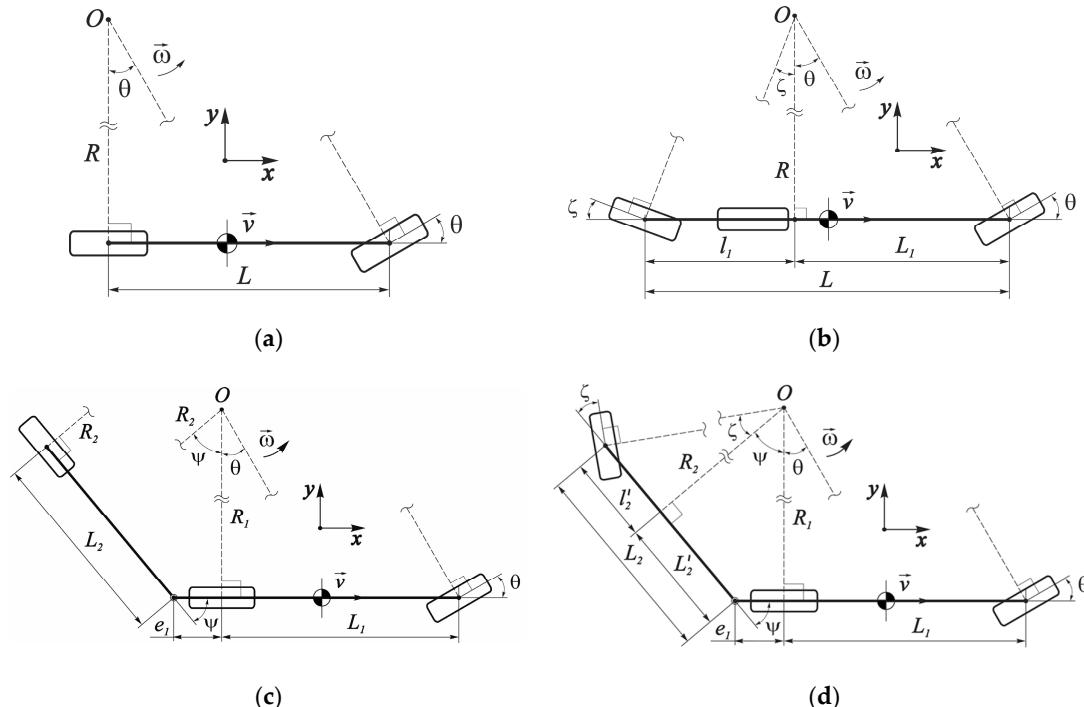
96 sufficiently general, and could be used in tight environments. Wang et al. [9] proposed a two-stage
 97 rapid random-tree (RRT) algorithm to improve computational efficiency. First, the proposed
 98 algorithm performs space exploration and establishes prior knowledge represented as waypoints,
 99 using cheap computation. Second, a waypoint-guided RRT algorithm, with a sampling scheme
 100 biased by the waypoints, constructs a kinematic tree connecting the initial and goal configurations.
 101 Other researchers also made substantial contributions to the development of parking algorithms.
 102 Several ideas considering parking control can be found in such articles as Ballinas et al. [10], Petrov
 103 and Nashshibi [11], Gupta et al. [12], Tazaki et al. [13], and Suhr and Jung [14].

104 Most of the preceding studies are devoted to the identification of parking zone space and the
 105 use of geometric, fuzzy, neural, and other algorithms for predicting vehicle parking path. Many of
 106 the studies were accompanied by experiments based on small-scale models or real vehicles. However,
 107 most often, for completing a maneuver, the vehicle initial position is preset. Thus, clearly there is a
 108 lack of research in this field related to vehicle path and control optimization from any current position
 109 in restricted space. The purpose of this paper is to develop and test algorithms for parking and
 110 docking based on kinematic vehicle models and nonlinear optimization within limited and unlimited
 111 spaces. Composing the unique technique for developing the nonlinear constraints of restricted
 112 parking was the main task for applying nonlinear model predictive control (NMPC) in this research.

113 The next section presents the modelling of autonomous motions of single and articulated
 114 vehicles. The following section presents the proposed optimization model, including the basic model
 115 and operational, and physical constraints. The implementation of the optimization model is then
 116 illustrated using Simulation, followed by the conclusions.

117 2. Kinematic Models of Autonomous Motion

118 Kinematic vehicle models (Figure 1) are used in this study instead of dynamic models. Kinematic
 119 models assume that no slip occurs between the wheels and the road. This assumption is accurate for
 120 vehicles moving at low speeds which is the case for the parking cases developed in this paper. In
 121 addition, although dynamic models are generally more accurate, they involve many degrees of
 122 freedom that make the model more complex.



123 **Figure 1.** Kinematics of curvilinear motion for different types of vehicle design: (a) Passenger car; (b)
 124 Single truck with steered rear axle; (c) Conventional TSV; (d) TSV-SSA.

125 2.1. Single vehicle

126 The motion of a single vehicle can be represented as a superposition of elementary rotations
 127 around the instantaneous center of velocities. In this case, the vectors of wheels' translational speeds
 128 will be strictly placed in the planes of their rotation. The minimum turning radius for a passenger car
 129 model (Figure 1a) passes through the rotational axis of rear wheels and its place is fixated. Thus, the
 130 position of the center O is determined only by turning the front steered wheel. This, in turn, affects
 131 the excessive sensitivity of the angular velocity ω to the turning angle of the steered wheel and
 132 vehicle's speed. In the case of an additional controlled axis (Figure 1b), the center O is obtained by
 133 crossing the perpendiculars to the steered wheels, the ratio of which angles may be different, and
 134 therefore the position of minimum turning radius R is not fixed and constantly changes the projection
 135 point on the vehicle longitudinal axis. In this regard, the maximum longitudinal base L is constantly
 136 divided into variable components L_1 and l_1 .

137 2.1.1. Passenger Car

138 In the kinematic bicycle model of a biaxial vehicle, it is assumed that the center of rotation is
 139 formed by the intersection of the perpendiculars drawn to the planes of wheels' rotation (Figure 1a).
 140 In this case, the angular velocity of rotation relative to the instantaneous center of velocities O :

141
$$\omega = v/R \quad (1)$$

142 The minimum turning radius R can be determined using the right triangle with the vertex O
 143 from the ratio of the steering wheel's rotation angle θ :

144
$$\tan(\theta) = L/R \quad (2)$$

145 when

146
$$\omega = v \cdot \tan(\theta)/L \quad (3)$$

147 Introduce model state parameters q : x = vehicle longitudinal displacement, y = vehicle lateral
 148 displacement, ϕ = vehicle yaw angle, θ = vehicle's front axle steering angle, v = ego vehicle velocity.
 149 Derivatives: v_x = ego vehicle longitudinal velocity along global x -coordinate, v_y = ego vehicle lateral
 150 velocity along global y -coordinate, ω_ϕ = ego vehicle yaw rate. Introduce also the control parameters
 151 u : ω_θ = vehicle's front axle steering rate, a = ego vehicle longitudinal acceleration. Thus, the control
 152 parameters are longitudinal acceleration and the angular velocity of the steered wheel rotation. Also
 153 input the vector of model parameters p ($p = L$), where L is the vehicle wheelbase. Then, in the vector
 154 form:

155
$$\mathbf{q} = \begin{pmatrix} x \\ y \\ \phi \\ \theta \\ v \end{pmatrix}, \dot{\mathbf{q}} = \begin{pmatrix} v_x \\ v_y \\ \omega_\phi \\ \dot{\theta} \\ \dot{v} \end{pmatrix}, \dot{\mathbf{q}} = \mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p}), \mathbf{u} = \begin{pmatrix} \omega_\theta \\ a \end{pmatrix}, \mathbf{f}(\mathbf{q}, \mathbf{u}, \mathbf{p}) = \begin{pmatrix} v \cdot \cos(\phi) \\ v \cdot \sin(\phi) \\ v \cdot \tan(\theta)/L \\ \omega_\theta \\ a \end{pmatrix} \quad (4)$$

156 Reduce the nonlinear function $\mathbf{f}(\mathbf{q}, \mathbf{u}, \mathbf{p})$ to a more convenient form, separating states and controls:

157
$$\mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p}) = \mathbf{f}(\mathbf{q}, \mathbf{u}, \mathbf{p}) = \boldsymbol{\varphi}(\mathbf{q}, \mathbf{p}) + B \cdot \mathbf{u} \quad (5)$$

158 where

159
$$\boldsymbol{\varphi}(\mathbf{q}, \mathbf{p}) = v \cdot \begin{pmatrix} \cos(\phi) \\ \sin(\phi) \\ \tan(\theta)/L \\ 0 \\ 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

160 Thus,

161
$$\dot{\mathbf{q}} = \boldsymbol{\varphi}(\mathbf{q}, \mathbf{p}) + B \cdot \mathbf{u} \quad (6)$$

162 or

$$163 \quad \begin{pmatrix} \frac{d}{dt} \begin{pmatrix} x \\ y \\ \phi \\ \theta \\ v \end{pmatrix} \end{pmatrix} = v \cdot \begin{pmatrix} \cos(\phi) \\ \sin(\phi) \\ \tan(\theta)/L \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \omega_\theta \\ a \end{pmatrix} \quad (7)$$

164 To speed up the search for the optimal solution, as well as for the possibility of using adaptive
 165 MPC, consider the linearization of Eq. (6) through the expansion in a Taylor series with the first linear
 166 terms in the vicinity of point 0. Then, in vector form

$$167 \quad \dot{\mathbf{q}}_0(t) + \Delta \dot{\mathbf{q}}(t) = \mathbf{f}(\mathbf{q}_0(t), \mathbf{u}_0(t), \mathbf{p}) + \frac{\partial \mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p})}{\partial \mathbf{q}} \Big|_{\substack{\mathbf{q}_0 \\ \mathbf{u}_0}} \cdot \Delta \mathbf{q}(t) + \frac{\partial \mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p})}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{q}_0 \\ \mathbf{u}_0}} \cdot \Delta \mathbf{u}(t) + O^2 \quad (8)$$

168 where

$$169 \quad \dot{\mathbf{q}}_0(t) = \mathbf{f}(\mathbf{q}_0(t), \mathbf{u}_0(t), \mathbf{p}) \quad (9)$$

170 Obtain,

$$171 \quad \Delta \dot{\mathbf{q}}(t) = \frac{\partial \mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p})}{\partial \mathbf{q}} \Big|_{\substack{\mathbf{q}_0 \\ \mathbf{u}_0}} \cdot \Delta \mathbf{q}(t) + \frac{\partial \mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p})}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{q}_0 \\ \mathbf{u}_0}} \cdot \Delta \mathbf{u}(t) \quad (10)$$

172 where

$$173 \quad A(t) = \frac{\partial \mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p})}{\partial \mathbf{q}} \Big|_{\substack{\mathbf{q}_0 \\ \mathbf{u}_0}}, \quad B(t) = \frac{\partial \mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p})}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{q}_0 \\ \mathbf{u}_0}} \quad (11)$$

174 Then, the linearized equation in increments is given by

$$175 \quad \Delta \dot{\mathbf{q}} = A \cdot \Delta \mathbf{q} + B \cdot \Delta \mathbf{u} \quad (12)$$

176 The matrix A is the Jacobian, which is given by

$$177 \quad J = \begin{pmatrix} \frac{\partial f_1}{\partial q_1} & \dots & \frac{\partial f_1}{\partial q_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial q_1} & \dots & \frac{\partial f_n}{\partial q_n} \end{pmatrix} \quad (13)$$

178 Substituting Eq. (3.4) into Eq. (3.13) yields

$$179 \quad A = \begin{pmatrix} 0 & 0 & -v \cdot \sin(\phi) & 0 & \cos(\phi) \\ 0 & 0 & v \cdot \cos(\phi) & 0 & \sin(\phi) \\ 0 & 0 & 0 & \frac{v \cdot (\tan^2(\theta) + 1)}{L} & \frac{tg(\theta)}{L} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (14)$$

180

181 2.1.2. Long Truck with Steered Rear Axle

182 Unlike the kinematic bicycle model of a biaxial vehicle, it is assumed that in the case of auxiliary
 183 rear steered axle the perpendicular dropped from the center O to the vehicle's longitudinal axis and
 184 containing the minimum turning radius is floating relative to an intersection point and depends on
 185 the ratio of rotation angles of the front and rear axles' steered wheels (Figure 1b). The angular velocity
 186 of rotation relative to the instantaneous center O is determined according to the expression (1). The
 187 minimum turning radius R can be determined in two ways via right angle triangles with a vertex O .
 188 From the ratio of the steering angle θ of the front steered wheel:

$$189 \quad \tan(\theta) = L_1/R \quad (15)$$

190 From the ratio of the steering angle ζ of the rear steered wheel:

$$191 \quad \tan(\zeta) = l_1/R \quad (16)$$

192 Then

193 $L_1 = R \cdot \tan(\theta), \quad l_1 = R \cdot \tan(\zeta), \quad L_1 - l_1 = R \cdot (\tan(\theta) - \tan(\zeta)) \quad (17)$

194 Given that the coordinate l_1 is negative with respect to the intersection point of radius R , then

195 $L_1 - l_1 = L_1 - (-|l_1|) = L_1 + l_1 = L \quad (18)$

196 Thus,

197 $R = \frac{L}{(\tan(\theta) - \tan(\zeta))} \quad (19)$

198 The expression for the angular velocity is written as

199 $\omega = \frac{v}{R} = \frac{v \cdot (\tan(\theta) - \tan(\zeta))}{L} \quad (20)$

200 Based on the described and established parameters in Eq. (4) for a passenger car, one state ζ
 201 (vehicle's rear axle steering angle) and one control parameter ω_c (vehicle's rear axle steering rate)
 202 should be included to develop the state-space vector for a long single truck:

203 $\mathbf{q} = \begin{pmatrix} x \\ y \\ \phi \\ \theta \\ \zeta \\ v \end{pmatrix}, \quad \dot{\mathbf{q}} = \begin{pmatrix} v_x \\ v_y \\ \omega_\phi \\ \dot{\theta} \\ \dot{\zeta} \\ \dot{v} \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} \omega_\theta \\ \omega_\zeta \\ a \end{pmatrix}, \quad \dot{\mathbf{q}} = \mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p}) \quad (21)$

204 According to Eq. (5),

205 $\mathbf{\varphi}(\mathbf{q}, \mathbf{p}) = v \cdot \begin{pmatrix} \cos(\phi) \\ \sin(\phi) \\ \frac{(\tan(\theta) - \tan(\zeta))}{L} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (22)$

206 Thus,

207 $\frac{d}{dt} \begin{pmatrix} x \\ y \\ \phi \\ \theta \\ \zeta \\ v \end{pmatrix} = v \cdot \begin{pmatrix} \cos(\phi) \\ \sin(\phi) \\ \frac{(\tan(\theta) - \tan(\zeta))}{L} \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \omega_\theta \\ \omega_\zeta \\ a \end{pmatrix} \quad (23)$

208 To obtain the Jacobian, denote,

209 $c_\phi = \cos(\phi), \quad s_\phi = \sin(\phi), \quad t_\theta = \tan(\theta), \quad t_\zeta = \tan(\zeta) \quad (24)$

210 Then, the matrix A (6×6) has the following nonzero elements:

211 $A_{1,3} = -v \cdot s_\phi, \quad A_{2,3} = v \cdot c_\phi, \quad A_{3,4} = \frac{v \cdot (t_\theta^2 + 1)}{L},$
 212 $A_{3,5} = \frac{-v \cdot (t_\zeta^2 + 1)}{L}, \quad A_{1,6} = c_\phi, \quad A_{2,6} = s_\phi, \quad A_{3,6} = \frac{(t_\theta - t_\zeta)}{L} \quad (25)$

213 The matrix B remains unchanged.

214 *2.2. Articulated Vehicles*

215 In the case of a conventional articulated vehicle (CAV), by analogy described in the previous
 216 paragraph, two links are being considered whose minimum radii R_1 and R_2 are crossing in the center
 217 of O . Moreover, in the same way, the radius R_2 passes through the semitrailer's conditional middle

218 axle (if 2 axles, then between them). The coupling point is shifted relative to the tractor's rear axle on
 219 the offset e_1 . Since ψ is the articulation angle, R_1 and R_2 will also be located at the angle ψ to each
 220 other.

221 While controlling the semitrailer axles, as in the case of a long-base single lorry, the position of
 222 the floating point of intersection of the radius R_2 and the longitudinal axis of the semitrailer is
 223 determined by dividing the base L_2 onto L'_2 and l'_2 .

224 2.2.1. Conventional Tractor-Semitrailer Vehicle

225 Consider the kinematic bicycle model of a tractor-semitrailer vehicle (TSV). The rotation center
 226 is assumed to be formed by the intersection of perpendiculars drawn to the rotational planes of the
 227 wheels (Figure 1c). In this case, the angular velocity of tractor's rotation relative to the instantaneous
 228 center of velocities O will be ω_1 , and the angular velocity of the semitrailer ω_2 :

$$229 \quad \omega_1 = v_1/R_1, \quad \omega_2 = v_2/R_2 \quad (26)$$

230 Introduce model state parameters \mathbf{q} : x = tractor longitudinal displacement, y = tractor lateral
 231 displacement, ϕ = tractor yaw angle, ψ = vehicle articulation angle, θ = vehicle's front axle steering
 232 angle, v = tractor velocity. Derivatives: v_x = tractor longitudinal velocity along global x -coordinate, v_y
 233 = tractor lateral velocity along global y -coordinate, ω_ϕ = tractor yaw rate, ω_ψ = vehicle articulation rate.
 234 Input also control parameters \mathbf{u} : ω_θ = tractor's front axle steering rate, a = tractor longitudinal
 235 acceleration. Thus, the control parameters are longitudinal acceleration and the angular velocity of
 236 the front axle's steered wheel. Parameters \mathbf{p} : L_1 = tractor wheelbase, e_1 = fifth wheel offset relative to
 237 the tractor's rear axle (positive if within wheelbase, negative if shifted behind the rear axle), L_2 =
 238 semitrailer wheelbase, which is the distance from the coupling center (kingpin) - to the conditional
 239 middle axle. Considering that $\psi = \phi_1 - \phi_2$, $d\psi/dt = \omega_1 - \omega_2$, in vector form yield:

$$240 \quad \mathbf{q} = \begin{pmatrix} x \\ y \\ \phi \\ \psi \\ \theta \\ v \end{pmatrix}, \quad \mathbf{p} = \begin{pmatrix} L_1 \\ e_1 \\ L_2 \end{pmatrix}, \quad \dot{\mathbf{q}} = \begin{pmatrix} v_x \\ v_y \\ \omega_\phi \\ \dot{\psi} \\ \dot{\theta} \\ \dot{v} \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} \omega_\theta \\ a \end{pmatrix}, \quad \dot{\mathbf{q}} = \mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p}) \quad (27)$$

241 The angular velocity of the leading unit (tractor) is determined similarly Eq. (3) replacing L with
 242 L_1 . The semitrailer position could be written as

$$243 \quad \tan(\psi) = \frac{L_2 - e_1 / \cos(\psi)}{R_2} \quad (28)$$

244 Then,

$$245 \quad \omega_2 = \frac{v_2}{R_2} = \frac{v_2 \cdot \tan(\psi)}{L_2 - e_1 / \cos(\psi)} = \frac{v_1 \cdot \cos(\psi) \cdot \tan(\psi)}{L_2 - e_1 / \cos(\psi)} = \frac{v \cdot \sin(\psi)}{L_2 - e_1 / \cos(\psi)} \quad (29)$$

246 As a result, similarly to Eqs. (22-23),

$$247 \quad \frac{d}{dt} \underbrace{\begin{pmatrix} x \\ y \\ \phi \\ \psi \\ \theta \\ v \end{pmatrix}}_{\mathbf{q}} = v \cdot \underbrace{\begin{pmatrix} \cos(\phi) \\ \sin(\phi) \\ \tan(\theta)/L_1 \\ \frac{\tan(\theta)}{L_1} - \frac{\sin(\psi)}{L_2 - e_1 / \cos(\psi)} \\ 0 \\ 0 \end{pmatrix}}_{\mathbf{\varphi}(\mathbf{q}, \mathbf{p})} + \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}}_{\mathbf{B}} \cdot \underbrace{\begin{pmatrix} \omega_\theta \\ a \end{pmatrix}}_{\mathbf{u}} \quad (30)$$

248 To obtain the Jacobian, similar to Eqs. (8-13), the linearization of Eq. (30) is first obtained by
 249 letting

$$250 \quad c_\phi = \cos(\phi), \quad s_\phi = \sin(\phi), \quad c_\psi = \cos(\psi), \quad s_\psi = \sin(\psi), \quad t_\theta = \tan(\theta) \quad (31)$$

251 Then, the matrix A (6×6) has following nonzero elements:

252
$$A_{1,3} = -v \cdot s_\phi, \quad A_{2,3} = v \cdot c_\phi, \quad A_{3,5} = A_{4,5} = \frac{v \cdot (t_\theta^2 + 1)}{L_1}, \quad A_{1,6} = c_\phi, \quad A_{2,6} = s_\phi,$$

253
$$A_{4,4} = -v \cdot \left(\frac{c_\psi}{L_2 - \frac{e_1}{c_\psi}} + \frac{e_1 \cdot s_\psi^2}{c_\psi^2 \cdot \left(L_2 - \frac{e_1}{c_\psi} \right)^2} \right), \quad A_{3,6} = \frac{t_\theta}{L_1}, \quad A_{4,6} = \frac{t_\theta}{L_1} - \frac{s_\psi}{\left(L_2 - \frac{e_1}{c_\psi} \right)} \quad (32)$$

254 The matrix B remains unchanged.

255 2.2.1. Tractor-Semitrailer Vehicle with Semitrailer's Steered Axles

256 The case of tractor-semitrailer vehicle with semitrailer's steered axles (TSV-SSA) is similar to the
257 previous case of TSV, except that two parameters are added: the state parameter ζ - (semitrailer's
258 middle axle steering angle) and control parameter ω_ζ (semitrailer's middle axle steering rate), as
259 shown in Figure 1d. Considering Eq. (27), The state-space components are given by

260
$$\mathbf{q} = \begin{pmatrix} x \\ y \\ \phi \\ \psi \\ \theta \\ \zeta \\ v \end{pmatrix}, \quad \mathbf{p} = \begin{pmatrix} L_1 \\ e_1 \\ L_2 \end{pmatrix}, \quad \dot{\mathbf{q}} = \begin{pmatrix} v_x \\ v_y \\ \omega_\phi \\ \dot{\psi} \\ \dot{\theta} \\ \dot{\zeta} \\ \dot{v} \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} \omega_\theta \\ \omega_\zeta \\ a \end{pmatrix}, \quad \dot{\mathbf{q}} = \mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p}) = \boldsymbol{\varphi}(\mathbf{q}, \mathbf{p}) + B \cdot \mathbf{u} \quad (33)$$

261 The radius R_2 may be determined from two conditions, considering Eq. (28) and the case of a
262 long single truck:

263
$$l'_2 = R_2 \cdot \tan(\zeta), \quad L'_2 - e_1 / \cos(\psi) = R_2 \cdot \tan(\psi) \quad (34)$$

264 Then

265
$$L'_2 - l'_2 - e_1 / \cos(\psi) = R_2 \cdot (\tan(\psi) - \tan(\zeta)) \quad (35)$$

266 Considering the coordinate l'_2 is negative relative to a cross point of radius R_2 :

267
$$L'_2 - l'_2 = L'_2 - (-|l'_2|) = L'_2 + l'_2 = L_2 \quad (36)$$

268 Thus,

269
$$R_2 = \frac{L_2 - e_1 / \cos(\psi)}{\tan(\psi) - \tan(\zeta)} \quad (37)$$

270 The expression for angular velocity ω_2 may be derived in a view:

271
$$\omega_2 = \frac{u_2}{R_2} = \frac{v_1 \cdot \cos(\psi)}{R_2} = \frac{v \cdot \cos(\psi) \cdot (\tan(\psi) - \tan(\zeta))}{L_2 - e_1 / \cos(\psi)} = \frac{v \cdot \sin(\psi - \zeta)}{(L_2 - e_1 / \cos(\psi)) \cdot \cos(\zeta)} \quad (38)$$

272 As a result, similarly to Eqs. (22-23),

273
$$\frac{d}{dt} \underbrace{\begin{pmatrix} x \\ y \\ \phi \\ \psi \\ \theta \\ \zeta \\ v \end{pmatrix}}_{\mathbf{q}} = v \cdot \underbrace{\begin{pmatrix} \cos(\phi) \\ \sin(\phi) \\ \tan(\theta) / L_1 \\ \frac{\tan(\theta)}{L_1} - \frac{\cos(\psi) \cdot (\tan(\psi) - \tan(\zeta))}{L_2 - e_1 / \cos(\psi)} \\ 0 \\ 0 \\ 0 \end{pmatrix}}_{\boldsymbol{\varphi}(\mathbf{q}, \mathbf{p})} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{B} \cdot \underbrace{\begin{pmatrix} \omega_\theta \\ \omega_\zeta \\ a \end{pmatrix}}_{\mathbf{u}} \quad (39)$$

274 To obtain the Jacobian, similar to Eqs. (8-13), the linearization of Eq. (39) is first obtained by
275 letting,

276
$$c_\phi = \cos(\phi), \quad s_\phi = \sin(\phi), \quad c_\psi = \cos(\psi), \quad s_\psi = \sin(\psi), \quad t_\theta = \tan(\theta), \quad t_\psi = \tan(\psi), \quad t_\zeta = \tan(\zeta) \quad (40)$$

277 Then, the matrix A (7×7) has the following nonzero elements:

278
$$A_{1,3} = -v \cdot s_\phi, A_{2,3} = v \cdot c_\phi, A_{1,7} = c_\phi, A_{2,7} = s_\phi, A_{3,7} = t_\theta/L_1,$$

279
$$A_{4,4} = -v \cdot \frac{\frac{L_2 \cdot \cos(3 \cdot \psi - \zeta)}{4} + e_1 \cdot \cos(2 \cdot \psi - \zeta) + \frac{L_2 \cdot \cos(\psi + \zeta)}{4} + \frac{L_2 \cdot \cos(\psi - \zeta)}{2}}{c_\zeta \cdot (e_1 - L_2 \cdot c_\psi)},$$

280
$$A_{3,5} = A_{4,5} = \frac{v \cdot (t_\theta^2 + 1)}{L_1}, \quad A_{4,6} = \frac{v \cdot c_\psi^2}{c_\zeta^2 \cdot (L_2 \cdot c_\psi - e_1)}, \quad A_{4,7} = \frac{t_\theta}{L_1} - \frac{c_\psi \cdot (t_\psi - t_\zeta)}{L_2 - \frac{e_1}{c_\psi}} \quad (41)$$

281 The matrix B remains unchanged.

282 **3. Optimization Model**

283 *3.1. Basic Model*

284 In the general case, for a continuous system, the search condition for optimal control over a finite
285 time interval $[t_0, t_f]$ can be written as:

286
$$\min_u J(\mathbf{u}) = \rho_\varepsilon \cdot \varepsilon^2 + \int_0^{t_f} (\mathbf{q}^T \cdot W_q \cdot \mathbf{q} + \mathbf{u}^T \cdot W_u \cdot \mathbf{u} + \Delta \mathbf{u}^T \cdot W_{\Delta u} \cdot \Delta \mathbf{u}) \cdot dt \quad (42)$$

287 Subject to:

288
$$\dot{\mathbf{q}} = \mathbf{f}(\mathbf{q}(t), \mathbf{u}(t), \mathbf{p}), \quad t \in [t_0, t_f]$$

289 The function Eq. (42) can be represented in discrete form as

290
$$\min_u J(\mathbf{z}_p) = \rho_\varepsilon \cdot \varepsilon_p^2 + \sum_{i=1}^{p-1} (\mathbf{q}_i^T \cdot W_q \cdot \mathbf{q}_i + \mathbf{u}_i^T \cdot W_u \cdot \mathbf{u}_i + \Delta \mathbf{u}_i^T \cdot W_{\Delta u} \cdot \Delta \mathbf{u}_i) \quad (43)$$

291 where \mathbf{q}_i = vector of state-space parameters at the i th prediction horizon step, $W_q, W_u, W_{\Delta u}$ = matrices
292 of weighting factors, \mathbf{u}_i = control signals at the i th prediction horizon step, $\mathbf{z}_p = (u^{T_0}, u^{T_{i+1}}, \dots, u^{T_{p-1}}, \varepsilon_p)$ –
293 solution, ε = scalar dimensionless slack variable used for constraint softening, ρ_ε = constraint violation
294 penalty weight, I = current control interval, and p = prediction horizon (number of intervals).

295

296 The system of constraints is written as:

297
$$\begin{cases} q_{j,\min(i)} - \varepsilon \cdot h_{j,\min(i)}^{(q)} \leq q_{j,i} \leq q_{j,\max(i)} + \varepsilon \cdot h_{j,\max(i)}^{(q)}, & i = 1 \dots p, \quad j = 1 \dots n_q \\ u_{j,\min(i)} - \varepsilon \cdot h_{j,\min(i)}^{(u)} \leq u_{j,i-1} \leq u_{j,\max(i)} + \varepsilon \cdot h_{j,\max(i)}^{(u)}, & i = 1 \dots p, \quad j = 1 \dots n_u \\ \Delta u_{j,\min(i)} - \varepsilon \cdot h_{j,\min(i)}^{(\Delta u)} \leq \Delta u_{j,i-1} \leq \Delta u_{j,\max(i)} + \varepsilon \cdot h_{j,\max(i)}^{(\Delta u)}, & i = 1 \dots p, \quad j = 1 \dots n_{\Delta u} \end{cases} \quad (44)$$

298 where $q_{j,\min(i)}, q_{j,\max(i)}$ = minimum and maximum values of j th output at the i th prediction horizon step,
299 respectively, $u_{j,\min(i)}, u_{j,\max(i)}$ = minimum and maximum values of j th input at the i th prediction horizon
300 step, respectively, $\Delta u_{j,\min(i)}, \Delta u_{j,\max(i)}$ = minimum and maximum values of j th input rate at the i th
301 prediction horizon step, respectively, $h_{j,\min(i)}^{(q)}, h_{j,\max(i)}^{(q)}$ = minimum and maximum values of j th
302 output's hard constraints at the i th prediction horizon step, respectively, $h_{j,\min(i)}^{(u)}, h_{j,\max(i)}^{(u)}$ = minimum
303 and maximum values of j th input's hard constraints at the i th prediction horizon step, respectively,
304 $h_{j,\min(i)}^{(\Delta u)}, h_{j,\max(i)}^{(\Delta u)}$ = minimum and maximum values of j th input rates' hard constraints at the i th
305 prediction horizon step, respectively, n_q = number of output parameters, n_u = number of input
306 parameters, and $n_{\Delta u}$ = number of input rate parameters.

307 *3.2. Operational and Physical Constraints*

308 *3.2.1. Case 1: Vehicle Yaw Rate*

309 As noted, a clear drawback of the kinematic models' operation at low speeds is the fact that for
310 obtaining the vehicle's yaw rate ω the product of the longitudinal speed v and the steering angle θ
311 function is used. This may lead to the case when, if insufficient longitudinal speed, the angular speed
312 is compensated by the intensive changing the turning velocity of steered wheels. This is quite stable

313 from a mathematical point of view but does not correspond to the real nature of the vehicle
 314 movement. In turn, it is impossible to directly impose restrictions on the angular rotation velocity in
 315 a region of low translational speeds. In this regard, it is assumed that the best solution is to limit the
 316 product between the longitudinal speed v and the turning angular velocity of steered wheels ω_θ :

$$317 \quad |v \cdot \omega_\theta| \leq f_{cr} \quad (45)$$

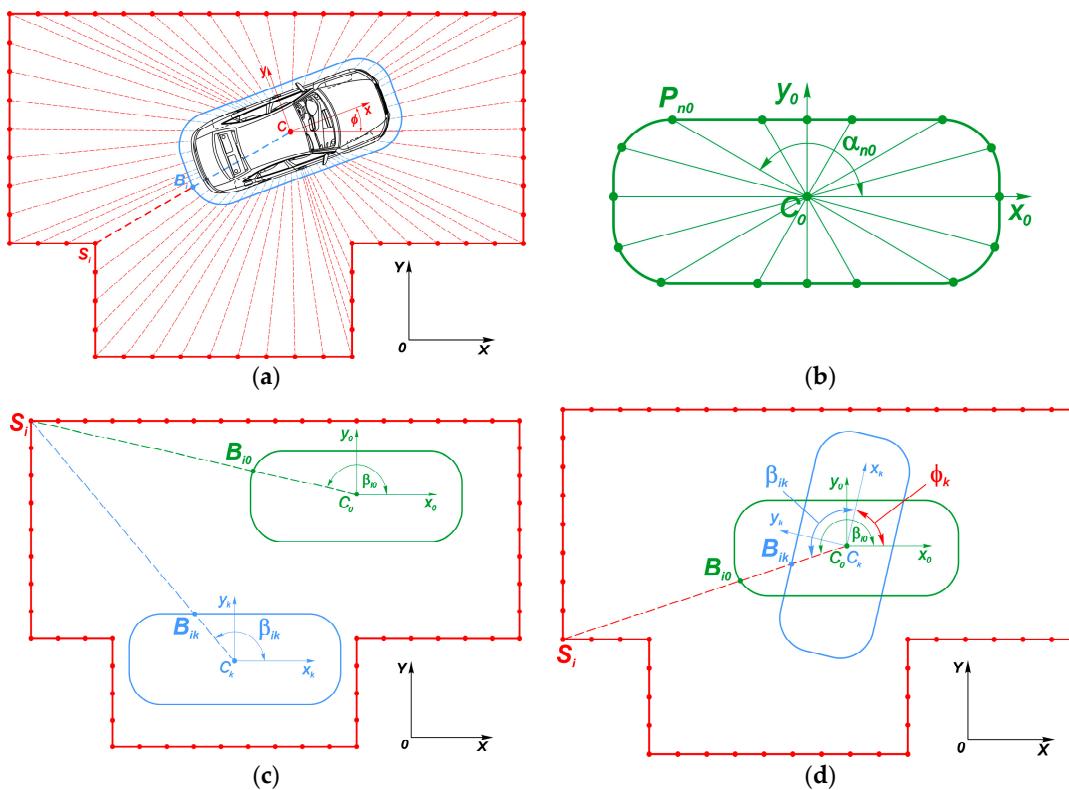
318 where f_{cr} = factor's critical value.

319

320 In this case, at high speeds the steered wheels' abrupt turns are absent, and at low values of the
 321 vehicle's longitudinal speed, the wheels' control turning velocities are limited, which normalizes the
 322 nature of the vehicle model movement, especially if vehicle's longitudinal speed is nearby to zero
 323 while changing the movement direction.

324 3.2.2. Case 2: Parking in Restricted Space

325 Consider the scheme in Figure 2a illustrating a general approach of determining the permissible
 326 boundaries between an enclosed space and a passenger car safety contour. In this article, the question
 327 of the boundary contour obtaining is omitted but, note, it may be identified by using the SLAM and
 328 sensor fusion technologies. As a car moves in an area of potential parking, the surrounding space is
 329 scanned by in-vehicle sensors, according to measurements of which a parking loose space shape may
 330 be evaluated relative to the vehicle local coordinate system. At the initial position prior to predicting
 331 the maneuver, the part of a space that is supposed to be used may be limited by appending the virtual
 332 boundaries, which will focus the search for state-space and reduce the optimization time.



333 **Figure 2.** Determining mutual disposition between vehicle safe contour and parking area boundary:
 334 (a) Scheme of the general idea; (b) Vehicle's safe contour control points; (c) Control points due to
 335 vehicle translational motion; (d) Control points due to vehicle rotation.

336 Suppose that a car is pre-oriented relative to the desirable final position. Then, a closed perimeter
 337 may be virtually represented by a discrete grid with a necessary step along the border (Figure 2a). Note, it's more expedient the grid density be variable according to the space priority, concentrating
 338

339 near the destination. Each node S_i of the local space boundaries may be tied by a virtual connection
 340 with the vehicle body's conditional geometric center C in such a way that a segment CS_i by means of
 341 a safety contour's control point B_i is being divided into two components: CB_i (associated with the
 342 vehicle orientation relative to the initial position) and S_iB_i (which according to the conditions of
 343 maneuver's safety and accuracy should always remain positive). Thus, for each I at each predicted
 344 moment t_k , the condition must meet:

$$345 \quad CS_i - CB_i = S_iB_i \geq \quad (46)$$

346 However, the use of all S_iB_i values in the nonlinear optimization algorithm is optional, since most of
 347 them will certainly be greater than zero, and at each iteration, the S_iB_i combinations will be different.
 348 Therefore, within one iteration of the optimization search, it can be requested that only the minimum
 349 S_iB_i value does not exceed zero. That is,

$$350 \quad \min_i S_iB_i \geq 0 \quad (47)$$

351 Now, consider the actual S_iB_i calculations. The main goal is to determine CB_i , since the vehicle
 352 contour changes its orientation relative to the initial one (Figure 2c-d). Even though CS_i segments
 353 converging in the center C (Figure 2c) do not ensure the perpendicularity to the vehicle's safety
 354 contour, this drawback, however, may be compensated by increasing the grid density, considering
 355 that point that any violation of vehicle's safety contour is fully sufficient for determining the
 356 constraints. Moreover, as approaching the most distinctive ledges of the parking zone perimeter, the
 357 CS_i distances are reduced and their directions become more and more similar to perpendiculars
 358 passing through the safety contour.

359 The virtual security points of vehicle contour can be also set in discrete form. Any form that
 360 outlines the overall vehicle dimensions along its perimeter with some safety margin may be
 361 represented in polar coordinates (Figure 2b) in such a way that for any n an unambiguous
 362 determination in the vehicle's initial position is established between an angle α_{n0} and a point P_{n0} . In
 363 this case, the internal points within the nodes can be determined using an interpolation (linear or
 364 spline depending on priorities).

365 Because of plane representation (bird's-eye view) of the vehicle movement in a parking lot, the
 366 safe contour's motion relative to the absolute XOY system can be divided into translational and
 367 rotational (Figure 2c-d).

368 In the case of translational motion (Figure 2c), the point S_i of the parking space perimeter relative
 369 to the car contour's initial position $x_0C_0y_0$ forms the point B_{i0} on the angle β_{i0} , and in the state $x_kC_ky_k$
 370 the point migrates to the position B_{ik} on the angle β_{ik} . If consider this situation from the car's local
 371 coordinate system xCy , all the segments CS_i will rotate relative to the safe contour. Therefore, using
 372 the interpolation approach in accordance with the prepared basis (Figure 2b), it's possible
 373 recalculating the points' B_{ik} positions by the known angles β_{ik} , which, in turn, are obtained based on
 374 the known coordinates of S_i and C_k .

375 In the case of the car contour's rotational movement (Figure 2d), the segment C_0S_i is identical to
 376 the segment C_kS_i , but due to the vehicle's turn to an angle ϕ_k , the new angular position β_{ik} will be
 377 defined as:

$$378 \quad \beta_{ik} = \beta_{0k} - \phi_k \quad (48)$$

379 Considering that the state-space parameters q are iterative during the optimization process, their
 380 current values are known, and thus, the segments' C_kS_i current angular directions relative to the local
 381 coordinate system $x_0C_0y_0$ can be determined by the superposition of the parking boundary's relative
 382 displacement and rotation. Thus, at each iterative step k , the S_i nodes' coordinates due to translation
 383 in the vehicle's coordinate system $x_0C_0y_0$:

$$384 \quad x_{Sk} = x_{S0} - x_{Ck}, \quad y_{Sk} = y_{S0} - y_{Ck} \quad (49)$$

385 where x_{Sk} , y_{Sk} = vectors of zone contour nodes' coordinates in the coordinate system $x_0C_0y_0$, x_{S0} , y_{S0} =
 386 vectors of zone contour nodes' coordinates in the global coordinate system XOY , and x_{Ck} , y_{Ck} =
 387 displacements of the safe contour's center C_k in the global coordinate system XOY .

388

389 The distances r_{Sik} from the nodes S_{ik} to the center C_k and the angles β_{ik} at time interval k in the
390 coordinate system $x_k C_k y_k$:

391
$$r_{Sik} = \sqrt{x_{Sik}^2 + y_{Sik}^2}, \quad \beta_{ik} = \arctan\left(\frac{y_{Sik}}{x_{Sik}}\right) - \phi_k \quad (50)$$

392 Then, knowing the new angles β_{ik} and the base angles α_{n0} with the corresponding x_{n0} , y_{n0} , the
393 coordinates of points B_{ik} can be obtained:

394
$$x_{Bk} = f_x(\alpha_0, x_0, \beta_k), \quad y_{Bk} = f_y(\alpha_0, y_0, \beta_k) \quad (51)$$

395 where x_{Bk} , y_{Bk} = vectors of safety contour points' coordinates at time step k , f_x , f_y = parametric
396 interpolation functions for x_k and y_k coordinates, respectively, α_0 = vector of segments' CoS_i angles at
397 initial state, x_0 , y_0 = vectors of contour control points' coordinates at initial state, and β_k = vector of
398 current segments' $C_k S_i$ angles, Eq. (46).

399

400 Distances from the center C_k to the points B_{ik} in the coordinate system $x_0 C_0 y_0$ at time interval k :

401
$$r_{Bik} = \sqrt{x_{Bik}^2 + y_{Bik}^2} \quad (52)$$

402 Then, the condition for the car safety contour's violation absence at time interval k can be expressed
403 as:

404
$$d_k = \min (r_{Sik} - r_{Bik}) \geq 0 \quad (53)$$

405 The last condition is added to the vector of inequality constraints of optimization conditions.

406 3.2.3. Case 3: Circular Motion

407 The idea of constraints with constant curvature is that the trajectories of the vehicle contour's n
408 given points must lay within the considered boundaries. Each such a B_n point (like Figure 2b) is
409 distanced by a radius r_{Bn} from the contour's center and compose an angle α_{Bn} with the vehicle local
410 coordinate system's longitudinal axis. Thus, in the global coordinate system XOY , the B_n points'
411 coordinates X_{Bnk} , Y_{Bnk} for k th prediction horizon step yield:

412
$$X_{Bnk} = x_{Ck} + r_{Bn} \cdot \cos(\alpha_{Bn} + \phi_i), \quad Y_{Bnk} = y_{Ck} + r_{Bn} \cdot \sin(\alpha_{Bn} + \phi_i) \quad (54)$$

413 Correspondingly, the radii of controlling points in the global coordinate system XOY :

414
$$R_{Bnk} = \sqrt{X_{Bnk}^2 + Y_{Bnk}^2} \quad (55)$$

415 Then, the condition of nonlinear restrictions for each k th prediction horizon step is:

416
$$R_{in} \leq R_{Bnk} \leq R_{out} \quad (56)$$

417 where R_{in} and R_{out} = inner and outer radii of a roundabout, respectively.

418 4. Simulation

419 There are various schemes of the model predictive control method that provide optimal
420 solutions for guaranteeing the robustness under conditions of complex restrictions, see Garcia et al.
421 [15] and Lu and Arkun [16]. Basically, for each horizon interval, the scheme solves an optimization
422 problem with respect to the constraints. The NMPC provided by MATLAB software [17] was used
423 for predicting vehicle behavior and control on a finite-time interval. To plan optimal trajectories, the
424 NMPC controllers solve an open loop constrained nonlinear optimization problem using the SQP
425 algorithm. For each design vehicle an NMPC object combining model-based prediction and
426 constrained optimization was created. Accordingly, all vehicle models, equality and inequality
427 constraints are nonlinear. The cost function may not be necessarily a quadratic function, which gives
428 more flexibility in finding an appropriate solution. Restrictions may be imposed on inputs (control),
429 outputs, and states. Three types of design vehicles were simulated: passenger car, long single truck
430 with steered rear axle, and articulated vehicles (conventional AV and AV with steered axle of

431 semitrailer). The restrictions and initial conditions for various types of motions are shown in Table 1
 432 for passenger car and long single trucks and in Table 2 for articulated vehicles. For simplicity, all the
 433 weighting factors of the objective functions were set equal to 1.

434 **Table 1.** Restrictions and initial conditions for simulating passenger car and long single trucks.

Vehicle	Type of Motion	Restrictions ¹	Initial Conditions
Passenger car	Parallel reverse parking	$-40^\circ \leq \theta \leq 40^\circ$; $-2 \text{ m/s} \leq v \leq 2 \text{ m/s}$; $-34^\circ/\text{s} \leq \omega_\theta \leq 34^\circ/\text{s}$; $-1 \text{ m/s}^2 \leq a \leq 1 \text{ m/s}^2$	$T_s = 1 \text{ s}; p = 14$; $q_0 = (0, 0, 0, 0, 0)^T$; $q_f = (-7.65, -5, 0, 0, 0)^T$
	Perpendicular reverse parking	$-40^\circ \leq \theta \leq 40^\circ$; $-2 \text{ m/s} \leq v \leq 2 \text{ m/s}$; $-34^\circ/\text{s} \leq \omega_\theta \leq 34^\circ/\text{s}$; $-1 \text{ m/s}^2 \leq a \leq 1 \text{ m/s}^2$	$T_s = 0.5 \text{ s}; p = 14$; $q_0 = (0, 0, 0, 0, 0)^T$; $q_f = (-5.5, -6.8, \pi/2, 0, 0)^T$
	Perpendicular forward parking	$-40^\circ \leq \theta \leq 40^\circ$; $-2 \text{ m/s} \leq v \leq 2 \text{ m/s}$; $-34^\circ/\text{s} \leq \omega_\theta \leq 34^\circ/\text{s}$; $-1 \text{ m/s}^2 \leq a \leq 1 \text{ m/s}^2$	$T_s = 1 \text{ s}; p = 16$; $q_0 = (0, 0, 0, 0, 0)^T$; $q_f = (-5.5, -6.8, -\pi/2, 0, 0)^T$
	Circular motion ²	$-40^\circ \leq \theta \leq 40^\circ$; $0.95 \cdot v_{des} \text{ m/s} \leq v \leq 1.25 \cdot v_{des} \text{ m/s}$; $R_{out} = 10 \text{ m}, H = 2.3 \text{ m}$; $R_{in} = R_{out} - H$; $-28^\circ/\text{s} \leq \omega_\theta \leq 28^\circ/\text{s}$; $-2 \text{ m/s}^2 \leq a \leq 2.5 \text{ m/s}^2$	$T_s = 1 \text{ s}; p = 16; \beta_{co} = -\pi \cdot 7/9$; $\beta_{cf} = \pi \cdot 5/6$; $q_0 = (R_{av} \cdot \cos(\beta_{co}), R_{av} \cdot \sin(\beta_{co}), \pi/2 + \beta_{co}, \arctan(2 \cdot L/R_{av}), v_{des})^T$; $q_f = (R_{av} \cdot \cos(\beta_{cf}), R_{av} \cdot \sin(\beta_{cf}), \pi/2 + \beta_{cf}, \arctan(2 \cdot L/R_{av}), v_{des})^T$
Long Single Truck	Perpendicular reverse parking	$-40^\circ \leq \theta \leq 40^\circ$; $-30^\circ \leq \zeta \leq 30^\circ$; $-2 \text{ m/s} \leq v \leq 2 \text{ m/s}$; $-6^\circ/\text{s} \leq \omega_\theta \leq 6^\circ/\text{s}$; $-6^\circ/\text{s} \leq \omega_\zeta \leq 6^\circ/\text{s}$; $-0.7 \text{ m/s}^2 \leq a \leq 0.7 \text{ m/s}^2$	$T_s = 3 \text{ s}$; $p = 6$; $q_0 = (0, 0, 0, 0, 0, 0)^T$; $q_f = (-18, -15, \pi/2, 0, 0, 0)^T$
	Parking with changing position on the spot	$-40^\circ \leq \theta \leq 40^\circ$; $-30^\circ \leq \zeta \leq 30^\circ$; $-2 \text{ m/s} \leq v \leq 2 \text{ m/s}$; $-28^\circ/\text{s} \leq \omega_\theta \leq 28^\circ/\text{s}$; $-28^\circ/\text{s} \leq \omega_\zeta \leq 28^\circ/\text{s}$; $-1.5 \text{ m/s}^2 \leq a \leq 1.5 \text{ m/s}^2$	$T_s = 1 \text{ s}$; $p = 18$; $q_0 = (0, 0, 0, 0, 0, 0)^T$; $q_f = (0, 0, \pi/2, 0, 0, 0)^T$
	Circular motion ³	$-40^\circ \leq \theta \leq 40^\circ$; $-30^\circ \leq \zeta \leq 30^\circ$; $0.95 \cdot v_{des} \text{ m/s} \leq v \leq 1.25 \cdot v_{des} \text{ m/s}$; $R_{out} = 15 \text{ m}, H = 4.5 \text{ m}$; $R_{in} = R_{out} - H$; $-28^\circ/\text{s} \leq \omega_\theta \leq 28^\circ/\text{s}$; $-28^\circ/\text{s} \leq \omega_\zeta \leq 28^\circ/\text{s}$; $-2 \text{ m/s}^2 \leq a \leq 2.0 \text{ m/s}^2$	$T_s = 1 \text{ s}; p = 13$; $\beta_{co} = -135^\circ; \beta_{cf} = 140^\circ$; $q_0 = (R_{av} \cdot \cos(\beta_{co}), R_{av} \cdot \sin(\beta_{co}), \pi/2 + \beta_{co}, \arctan(2 \cdot L_{10}/R_{av}), -\arctan(2 \cdot l_{10}/R_{av}), v_{des})^T$; $q_f = (R_{av} \cdot \cos(\beta_{cf}), R_{av} \cdot \sin(\beta_{cf}), \pi/2 + \beta_{cf}, \arctan(2 \cdot L_{10}/R_{av}), -\arctan(2 \cdot l_{10}/R_{av}), v_{des})^T$

435 ¹ $v_{des} = 5 \text{ m/s}$ (desirable circulating speed). ² $\underline{R}_{av} = (R_{out} + R_{in})/2$. ³ $\overline{R}_{av} = (R_{out} + R_{in})/k$, where $k = 2.15$.

436

437

438

439

Table 2. Restrictions and initial conditions for simulating articulated vehicles.

Type of AV	Type of Motion	Restrictions ¹	Initial Conditions
Conventional TSV	Docking (unconstrained space)	$-90^\circ \leq \psi \leq 90^\circ;$ $-45^\circ \leq \theta \leq 45^\circ;$ $-4 \text{ m/s} \leq v \leq 4 \text{ m/s};$ $-34^\circ/\text{s} \leq \omega_\theta \leq 34^\circ/\text{s};$ $-2.0 \text{ m/s}^2 \leq a \leq 2.5 \text{ m/s}^2$	$T_s = 1 \text{ s}; p = 12;$ $q_0 = (0, 0, \pi/2, 0, 0, 0, 0)^T;$ $q_f = (-5, -35, \pi, 0, 0, 0, 0)^T$
	Circular Motion ²	Inequality constraint of Eq. (56); $R_{out} = 15 \text{ m}, H = 5 \text{ m};$ $R_{in} = R_{out} - H;$ $-40^\circ \leq \psi \leq 40^\circ;$ $-45^\circ \leq \theta \leq 45^\circ;$ $0.95 \cdot v_{des} \text{ m/s} \leq v \leq 1.25 \cdot v_{des} \text{ m/s};$ $-34^\circ/\text{s} \leq \omega_\theta \leq 34^\circ/\text{s};$ $-0.5 \text{ m/s}^2 \leq a \leq 0.5 \text{ m/s}^2$	$T_s = 1 \text{ s}; p = 9; \beta_{co} = -160^\circ; \beta_{cf} = 140^\circ;$ $q_0 = (R_{av} \cdot \cos(\beta_{co}), R_{av} \cdot \sin(\beta_{co}), \pi/2 + \beta_{co}, \pi \cdot 11/60, \arctan(2 \cdot L_1 / R_{av}), v_{des})^T;$ $q_f = (R_{av} \cdot \cos(\beta_{cf}), R_{av} \cdot \sin(\beta_{cf}), \pi/2 + \beta_{cf}, \pi \cdot 11/60, \arctan(2 \cdot L_1 / R_{av}), v_{des})^T$
TSV-SSA	Docking (unconstrained space)	$-90^\circ \leq \psi \leq 90^\circ;$ $-40^\circ \leq \theta \leq 40^\circ;$ $-35^\circ \leq \zeta \leq 35^\circ;$ $-4 \text{ m/s} \leq v \leq 4 \text{ m/s};$ $-34^\circ/\text{s} \leq \omega_\theta \leq 34^\circ/\text{s};$ $-34^\circ/\text{s} \leq \omega_\zeta \leq 34^\circ/\text{s};$ $-2.0 \text{ m/s}^2 \leq a \leq 2.5 \text{ m/s}^2$	$T_s = 1 \text{ s};$ $p = 12;$ $q_0 = (0, 0, \pi/2, 0, 0, 0, 0)^T;$ $q_f = (-5, -35, \pi, 0, 0, 0, 0)^T$
	Circular motion ³	Inequality constraint of Eq. (56); $R_{out} = 15 \text{ m}, H = 4 \text{ m};$ $R_{in} = R_{out} - H;$ $30^\circ \leq \psi \leq 35^\circ;$ $15^\circ \leq \theta \leq 20^\circ;$ $-15^\circ \leq \zeta \leq -10^\circ;$ $0.95 \cdot v_{des} \text{ m/s} \leq v \leq 1.05 \cdot v_{des} \text{ m/s};$ $-34^\circ/\text{s} \leq \omega_\theta \leq 34^\circ/\text{s};$ $-28^\circ/\text{s} \leq \omega_\zeta \leq 28^\circ/\text{s};$ $-0.5 \text{ m/s}^2 \leq a \leq 0.5 \text{ m/s}^2$	$T_s = 1 \text{ s}; p = 9; \beta_{co} = -100^\circ; \beta_{cf} = 200^\circ;$ $q_0 = (R_{av} \cdot \cos(\beta_{co}), R_{av} \cdot \sin(\beta_{co}), \pi/2 + \beta_{co}, \pi/6, \arctan(2 \cdot L_1 / R_{av}), -\arctan(2 \cdot L_1 / R_{av}), v_{des})^T;$ $q_f = (R_{av} \cdot \cos(\beta_{cf}), R_{av} \cdot \sin(\beta_{cf}), \pi/2 + \beta_{cf}, \pi/6, \arctan(2 \cdot L_1 / R_{av}), -\arctan(2 \cdot L_1 / R_{av}), v_{des})^T$

440 ¹ $v_{des} = 8 \text{ m/s}$ (desirable circulating speed). ² $R_{av} = (R_{out} + R_{in})/k$, where $k = 1.95$. ³ $R_{av} = (R_{out} + R_{in})/k$,
441 where $k = 2.025$.

442 4.1. Simulation of Passenger Car

443 For a passenger car, the only parameter is the longitudinal wheelbase L which equals 2.8 m. Eqs.
444 (7-14) are used for model prediction. For the *parking maneuver* (Figure 3, 4a, b), the quadratic linear
445 form of the cost function works well while optimizing without restrictions when the minimum of a
446 cost function is absolute. Moreover, due to the quadraticity, the results give the smoothest functions
447 of the state parameters, which rarely change their sign within the prediction horizon. However, the
448 imposition of restrictions narrows the area of optimum search and complicates the task, where
449 conditional optimality may also be acceptable. In the case of parking, the priority is not so much the
450 optimality of solution as the maneuver accuracy with the possibility of arbitrary using the space and
451 directions of movement (forward and backward). In view of the latter, it is proposed to use a linear
452 function as the target one that relaxes the search and reduces the time of iterations. The inequality
453 constraints are based on Eq. (53).

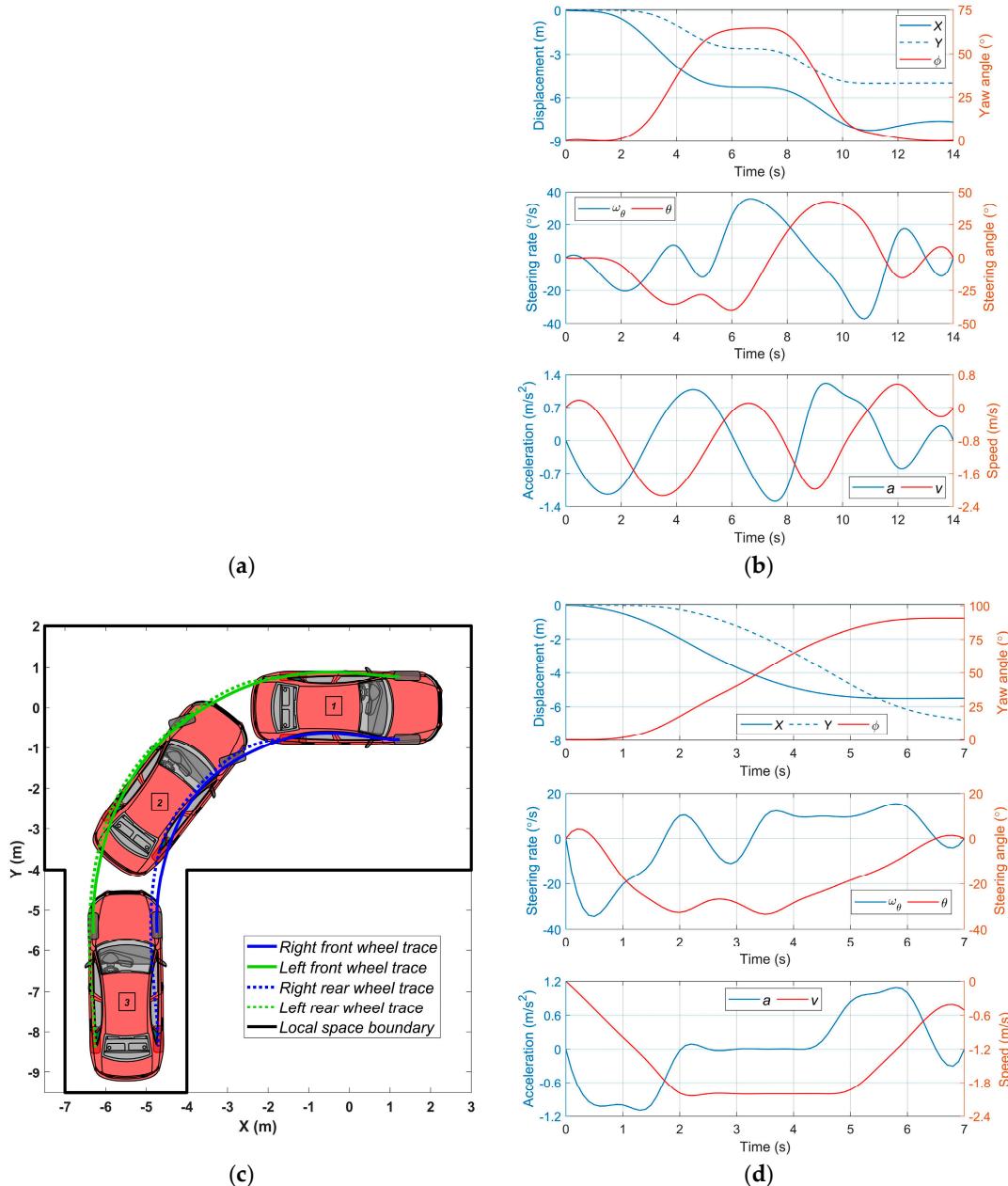
454
$$\min_u J(z_p) = \sum_{i=1}^{p-1} (q_i^T \cdot W_q \cdot e_q + u_i^T \cdot W_u \cdot e_u) \quad (57)$$

455 where e_q, e_u = unit vectors of the same dimension as q and u , respectively, W_q, W_u = weighting factors,
 456 and z_p = solution vector.

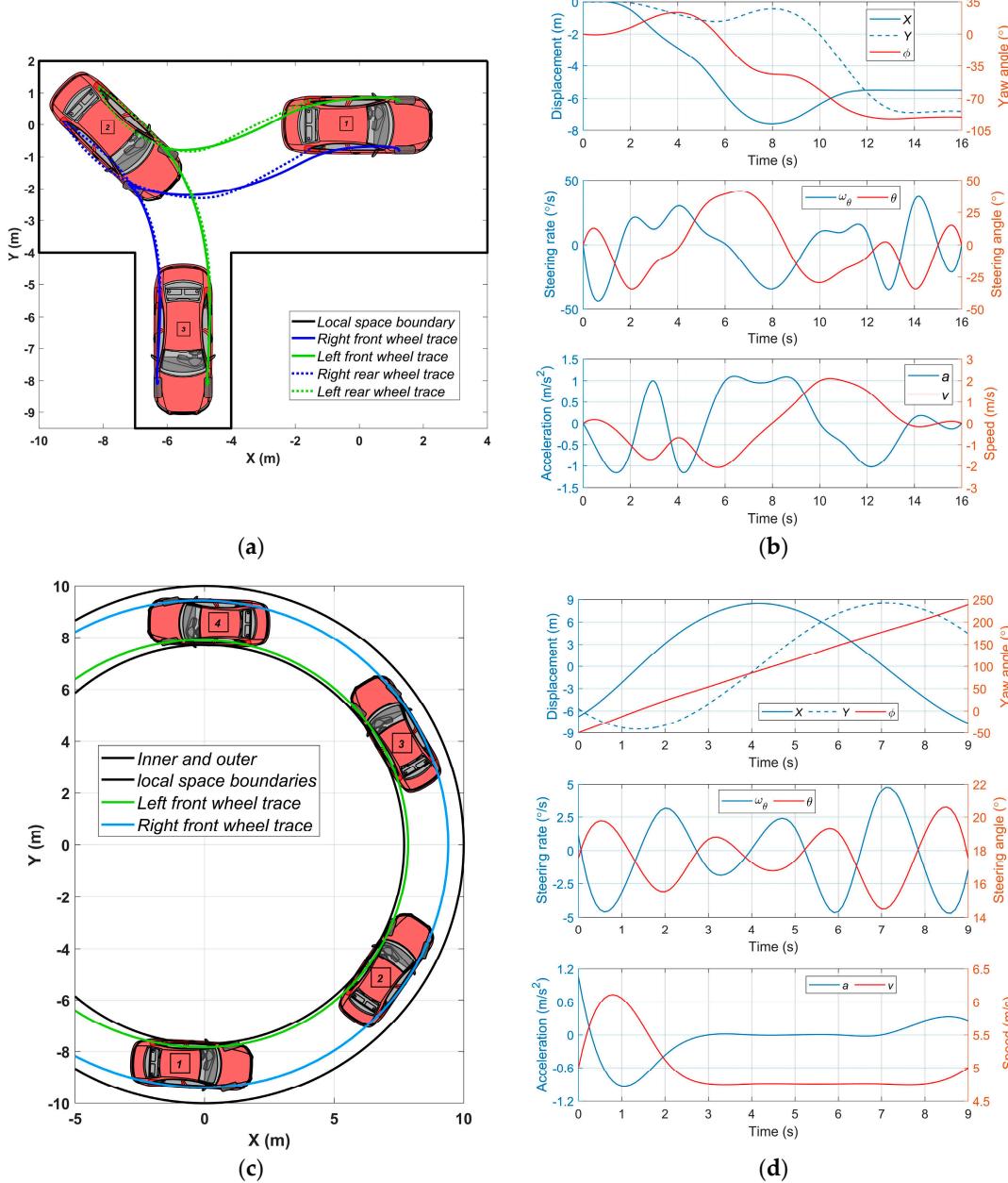
457 For the *circular motion* (Figure 4b, c), control is a priori the simplest due to retaining the steering
 458 angle θ value of a narrow range. Cost function gets the form:

459
$$\min_u J(z_p) = \sum_{i=1}^{p-1} \theta_i^2 \quad (58)$$

460 Inequality constraints correspond to Eq. (56).



461
 462
 463 **Figure 3.** Simulation results for reverse parking of a passenger car: (a) Position and trajectory (parallel
 463 reverse); (b) Basic parameters (parallel reverse); (c) Position and trajectory (perpendicular reverse);
 (d) Basic parameters (perpendicular reverse).



464
 465
 466
 467
Figure 4. Simulation results for perpendicular forward parking and circular motion of a passenger
 car: (a) Position and trajectory (perpendicular forward); (b) Basic parameters (perpendicular
 forward); (c) Car positions and planned trajectories (circular); (d) Car's output and control parameters
 (circular).

468 4.2. *Simulation of Long Single Truck with Steered Rear Axle*

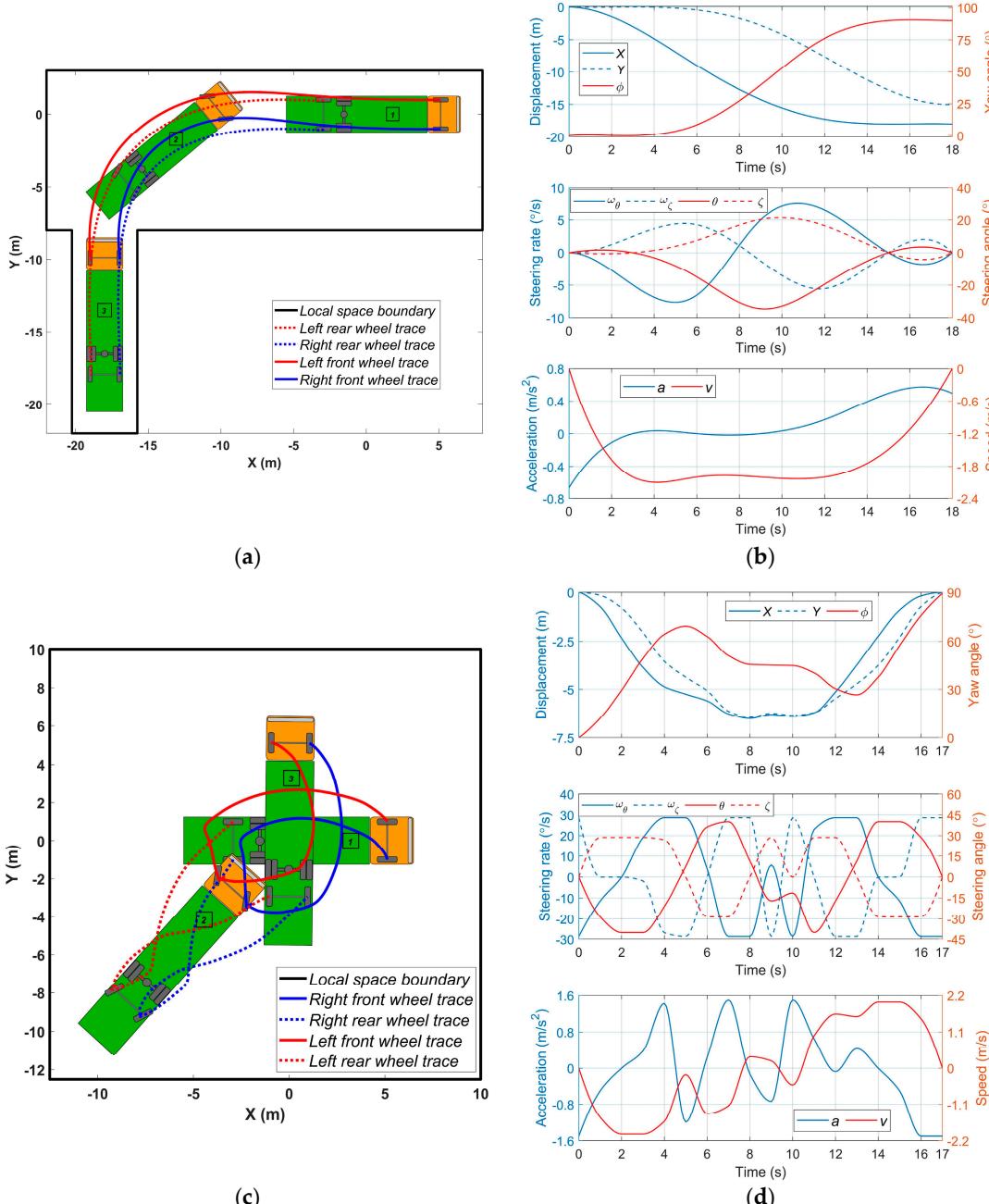
469 The parameter for this model is the full wheelbase $L = L_{10} + l_{10}$ consisting of longitudinal
 470 wheelbase $L_{10} = 6.65$ m between steering and driving axles and spread axles' wheelbase $l_{10} = 1.4$ m.
 471 Eqs. (23-25) are used for model prediction.

472 Consider first the *parking maneuver* (Figure 5a, b). In the case of perpendicular reverse parking,
 473 the following objectives are set for optimizing the maneuver: reducing the use of space, ensuring the
 474 smoothness of the control functions, and redistributing the control between vehicle's steered axles to
 475 provide the minimal total steering control. In particular, the vehicle maneuver is better to be oriented
 476 in a way that there are the perpendicular and the parallel phases resembling the letter L relative to a

477 loose parking place. In this regard, it is expedient to minimize the use of corresponding x and y
 478 coordinates. Then, considering constraints set in Eq. (53), the cost function can be derived as a
 479 combination:

480
$$\min_u J(z_p) = \sum_{i=1}^{p-1} (x_i + y_i + u_i^T \cdot W_u \cdot u_i + \theta_i \cdot W_{\theta\zeta} \cdot \zeta_i) \quad (59)$$

481 where W_u = control weighting factor, and $W_{\theta\zeta}$ = weighting factor of mutual influence between θ and
 482 ζ .



483 **Figure 5.** Single truck automated maneuvering simulation in a parking area with restricted space: (a)
 484 Vehicle positions and planned trajectories for perpendicular reverse parking; (b) Basic output and
 485 control parameters for perpendicular reverse parking; (c) Vehicle positions and planned trajectories
 486 for changing position on the spot; (d) Basic output and control parameters for changing position on
 487 the spot.

488

489 In the case of *changing position on the spot* (Figure 5c, d), the task is complicated with the fact that
 490 the initial and final coordinates of the vehicle's mass center are coincident. To realize the maneuver,
 491 the cost function needs to be relaxed by allowing the controller searching for a solution in both
 492 positive and negative zones. The linear cost function can be represented by the sum of Cartesian
 493 coordinates x and y , Eq. (21):

494

$$\min_u J(z_p) = \sum_{i=1}^{p-1} (x_i + y_i) \quad (60)$$

495

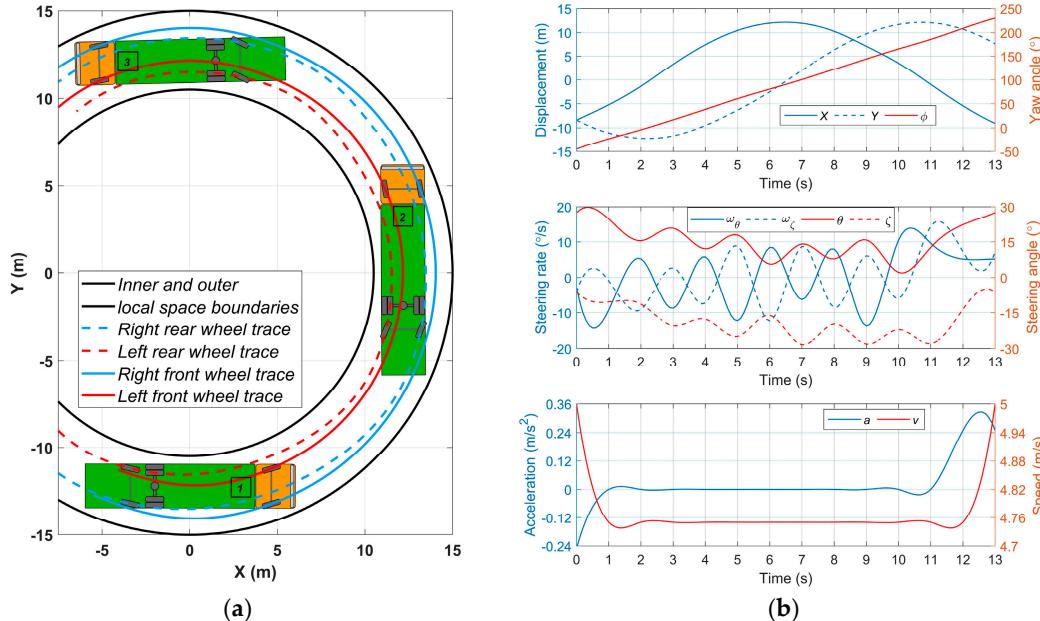
496 For the *circular motion* (Figure 6), on the one hand, there is a need for softening the inequality
 497 constraints set in Eq. (56) within the boundaries of a roundabout's lane width. On the other hand, it
 498 is desirable to ensure the minimum space occupied by the vehicle with the smooth and minimal total
 steering control. Thus, a combination of linear and non-linear cost function's elements may be used:

499

$$\min_u J(z_p) = \sum_{i=1}^{p-1} (q_i^T \cdot W_q \cdot e_q + u_i^T \cdot W_u \cdot e_u + \theta_i \cdot W_{\theta\zeta} \cdot \zeta_i) \quad (61)$$

500

501 where $W_q = \text{diag}(1, 1, 1, 0, 0, 1)$ = diagonal matrix of states' weighting factors, e_q = unit vectors of the same
 502 dimension as q , e_u = unit vectors of the same dimension as u , W_u = control weighting factor, $W_{\theta\zeta}$ =
 weighting factor of mutual influence between θ and ζ .



503

504

Figure 6. Simulation results for the single truck circular motion: (a) Truck positions and planned trajectories; (b) Truck output and control parameters.

505

4.3. Simulation of Articulated Vehicles

506

507 According to the designation in Figure 1c-d, the models are characterized by three parameters:
 508 $L_1 = 3.8$ m, $L_2 = 7.57$ m, $e_1 = 0.47$ m. Eqs. (27, 30, 32, 33, 39, 41) are used for model-based prediction, and
 all the symbols correspond to those ones in figures.

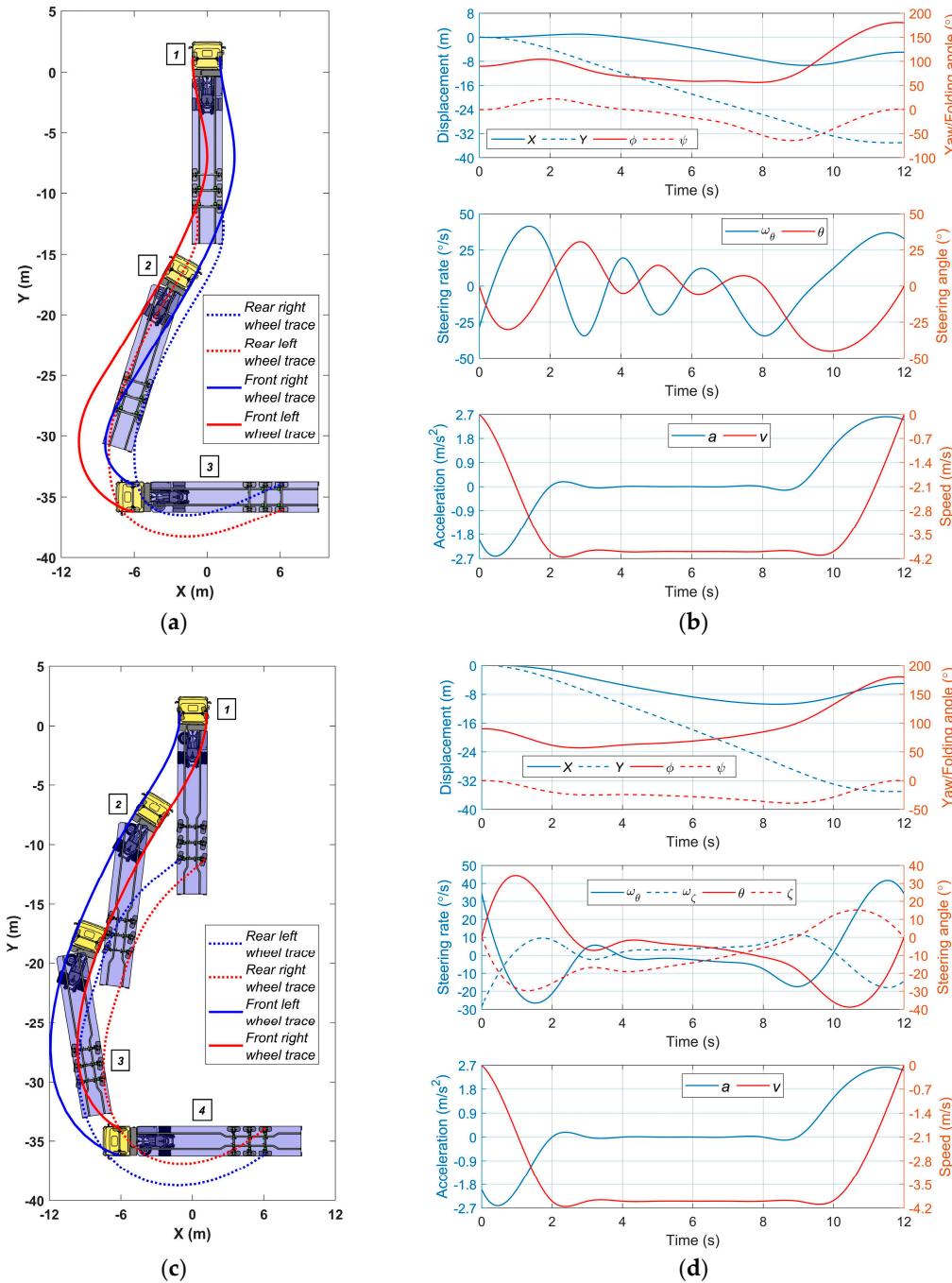
509

510 Consider first *docking at unconstrained space* (Figure 7). Usually the loading and unloading of
 511 articulated vehicles are carried out from the side of the warehouses' docks where there is a lot of
 512 space for the maneuvering of long vehicles. In this regard, the spatial restrictions may be omitted. In
 513 the case of conventional TSV (Figure 7a, b), considering the space between initial and final positions
 514 is not being restricted, a relatively symmetric distribution of coordinates, speed, and control may be
 515 satisfactory, which mitigate the search with a linear cost function, avoiding the redundant
 smoothness. Hence, it may be presented as:

516

$$\min_u J(z_p) = \sum_{i=1}^{p-1} (q_i^T \cdot W_q \cdot e_q + u_i^T \cdot W_u \cdot e_u) \quad (62)$$

517 where $W_q = \text{diag}(1, 1, 1, 1, 0, 1)$ = diagonal matrix of states' weighting factors, e_q = unit vectors of the
 518 same dimension as q , e_u = unit vectors of the same dimension as u , and W_u = control weighting factor.



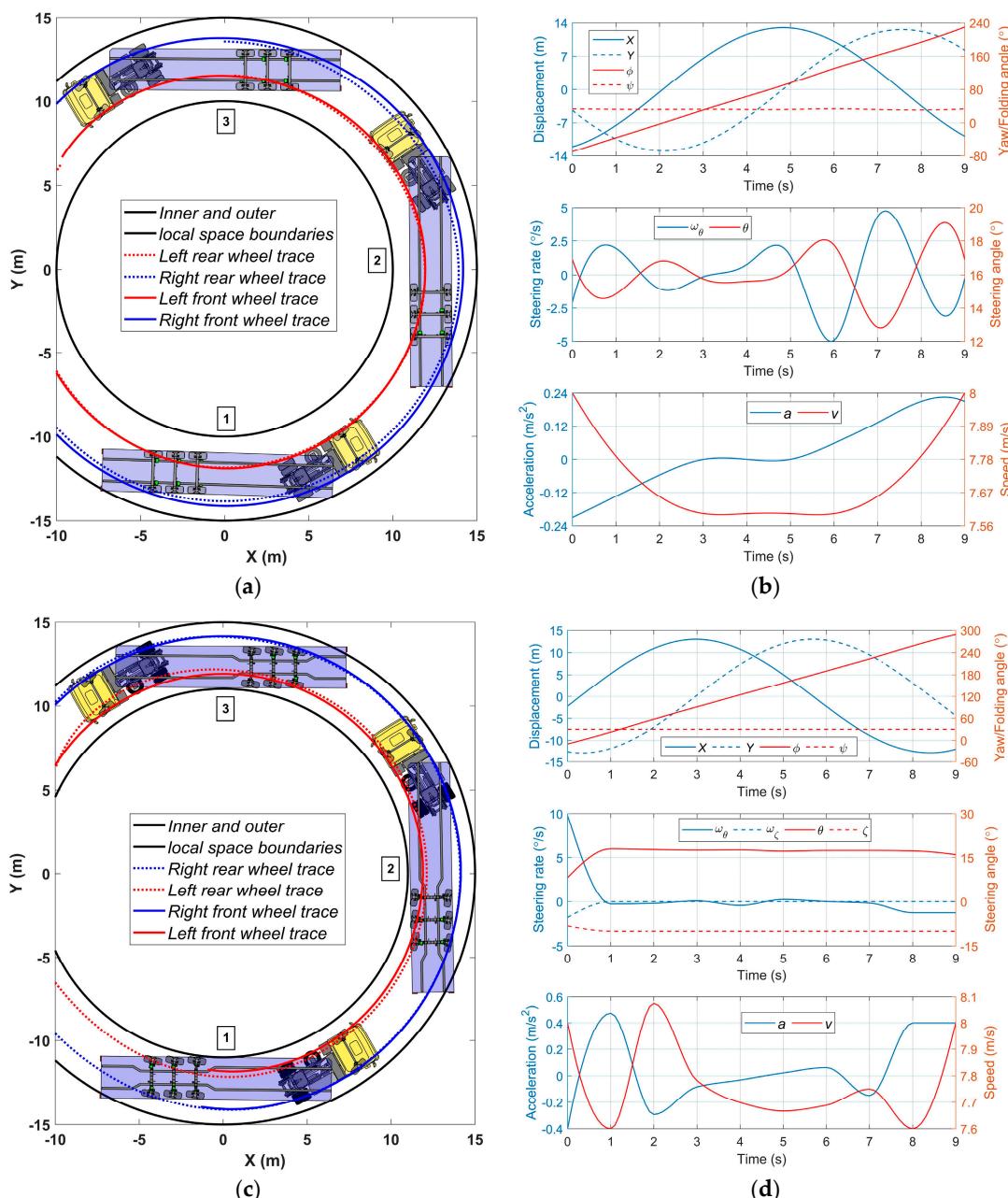
519 **Figure 7.** Simulation results for the docking of articulated vehicles: (a) Position and trajectory
 520 (conventional TSV); (b) Basic parameters (conventional TSV); (c) Position and trajectory (TSV-SSA);
 521 (d) Basic parameters (TSV-SSA).

522 In the case of TSV-SSA (Figure 7c, d), the vehicle may occupy the as much space as needed for
 523 the maneuver. As the vehicle is charged and in order to prevent significant tires' sideslip, it's
 524 undesirable its links be folded on a big angle. Meanwhile, there is no strict necessity that the tractor
 525 center's trajectory be highly smoothed. Thus, a linear function of tractor's translational and rotational
 526 states would be enough. The control must provide smooth motion in general and total steering action
 527 should be reduced as well. Consequently, the cost function may be written in a form:

528
$$\min_u J(z_p) = \sum_{i=1}^{p-1} (q_i^T \cdot W_q \cdot e_q + u_i^T \cdot W_u \cdot u_i + \theta_i \cdot W_{\theta\zeta} \cdot \zeta_i) \quad (63)$$

529 where $W_q = \text{diag}(1, 1, 1, 0, 0, 0)$ = diagonal matrix of states' weighting factors, e_q = unit vectors of the
 530 same dimension as q , and $W_{\theta\zeta}$ = weighting factors of mutual influence between θ and ζ .

531
 532 For the *circular motion*, in the case of conventional TSV (Figure 8a, b), the controlling of the
 533 vehicle links' mutual orientation (articulation angle ψ) is possible only by the tractor's steered wheels.
 534 However, according to the tractor movement conditions relative to the center of a roundabout, the
 535 wheels' position θ is determined in a narrow range.



536
 537 **Figure 8.** Simulation results for circular motion of articulated vehicles: (a) Position and trajectory
 538 (conventional TSV); (b) Basic parameters (conventional TSV); (c) Position and trajectory (TSV-SSA);
 (d) Basic parameters (TSV-SSA).

539 Within the specified lane width H , the certain control is possible ensuring the minimum possible
 540 articulation angle. Then, considering Eq. (30), the cost function can be written in the linear-quadratic
 541 form:

$$542 \min_u J(z_p) = \sum_{i=1}^{p-1} (\psi_i^2 + u_i^T \cdot W_u \cdot u_i) \quad (64)$$

543 In the case of TSV-SSA (Figure 8c, d), the idea is that the vehicle should occupy the minimum
 544 space at a roundabout, which corresponds to keeping the articulation angle ψ in the region of the
 545 smallest possible value for a given circle with the narrowest corridor H . In addition, it is desirable
 546 that the control signals be as smoothed as possible, and the total control of tractor's θ and semitrailer's
 547 ζ wheels is synchronized and minimal as well. Thus, considering Eq. (33), the cost functional can be
 548 written as:

$$549 \min_u J(z_p) = \sum_{i=1}^{p-1} (\psi_i^2 + u_i^T \cdot W_u \cdot u_i + \theta_i \cdot W_{\theta\zeta} \cdot \zeta_i) \quad (65)$$

550 where $W_{\theta\zeta}$ = weighting factor of mutual influence.

551 *4.4. Results and Discussion*

552 Based on the optimized paths for the vehicles' motion plans, the visualizations of predicted
 553 trajectories are depicted, as well as graphs of the main output parameters (linear, angular
 554 displacements, ego speeds, and steering angles) and control laws (accelerations and steered wheels'
 555 angular speeds). The technique presented in paragraph 4, in general, has shown its effectiveness,
 556 allowing to plan successful maneuvers with various combinations of initial and final conditions on a
 557 finite prediction horizon. The obvious advantage of the optimization approach is that the steering
 558 angles evolve with a change in vehicle speed, i.e., in fact, there is no wheel turn on the spot. The aim
 559 of forecasting the circular motion is to work out the restrictions for any type of curvilinear motion
 560 with variable road curvature, for cases of assigning a lane to an articulated vehicle, as well as when
 561 narrowing the space allocated to a vehicle. The hard restrictions lead to some fluctuations in
 562 solutions. To have smooth gentle output curves, it is necessary to narrow the range of constraints of
 563 state parameters within the framework of vehicle kinematic models.

564 The simulation results for the *car parallel reverse parking* are presented in Figure 3a-b. The initial
 565 conditions are given in the Table 1. In this example, the task consists of predicting the maneuver and
 566 the control factors for placing a car in a parking spot from the parallel initial position in a finite time.
 567 In fact, the car initial position relative to the parking pocket can be specified by an arbitrary initial
 568 vector q_0 , however, it's more expedient to choose a position at which the distance to the destination
 569 is minimal and the complexity of the maneuver is quite high. Due to the linear form of the objective
 570 function Eq. (57) the car speed v (Figure 3b) may change a sign, which corresponds to shifting vehicle
 571 direction for better adapting to local space. When approaching a sharp edge of the pocket (Figure 3a)
 572 at 6th second, the speed module value decreases. The graph of the steering angle θ shows an intensive
 573 adaptation of the vehicle angular position using the full range of steering angle. Nevertheless, the
 574 resulting output parameters of the car angular and linear displacements X , Y , ϕ show smooth
 575 properties (Figure 3b), which in general can characterize the parking process as stable.

576 The results for *car perpendicular reverse parking* are presented in Figure 3c-d. This maneuver is the
 577 simplest in terms of control. In some works, the necessary trajectory is determined geometrically by
 578 an arc of constant radius. However, this is acceptable if the initial position of the vehicle is determined
 579 in the vicinity of an acute angle of parking pocket. In the case of an arbitrary position, it is important
 580 to orient the vehicle in phase 2 as coaxially as possible to the pocket axis when a car may maintain an
 581 approximately permanent value of ego velocity v . In this regard, at the initial moment, the steered
 582 wheels have a positive angle of rotation θ , which first leads the car's rear to the outer boundary. It is
 583 noteworthy that the rotation angle and speed signals are of a general tendency but not synchronous.
 584 The results for *car perpendicular forward parking* are presented in Figure 4. Such a maneuver is possible
 585 with sufficient space outside a parking pocket. It consists of two phases: partial reverse turn (1-2) and
 586 forward turning (2-3). The maneuver is quite long, 16 seconds, however, NMPC successfully built
 587 the forecast for it. The control parameters a and ω begin and end with zero values, the values of the

588 steering angle θ are used in the full range, which indicates the need for a high degree of
589 maneuverability in the given constraint conditions. It can be noted that the final phase is
590 characterized by almost constant values of the yaw angle and the X coordinate, and the speed v
591 decreases to the utmost, which indicates a stable and safe car movement relative to the destination
592 and the parking spot borders.

593 The results for *car circular motion* are presented in Figure 6a-b. When planning a circular motion,
594 it should be considered that the closer values of vectors of initial and final conditions, especially the
595 coordinates in the restrictions of tight boundaries, the more the solution instability. The space of a
596 road curved section defined by lidar or camera locks up on the prediction horizon. Therefore, the
597 planning makes sense only within the framework of an arc defined by the values of initial and final
598 angular coordinates β_{c0} , β_{cf} in Table 1. In this example, there is no hard restriction on the desired
599 speed value and therefore the speed v varies in the range of 5-6 m/s with practically zero acceleration
600 a. The average value of the steering angle is kept at the level of 18°, and the fluctuations are stipulated
601 by the deterministic tie with a speed change. Nevertheless, the output characteristic of the yaw angle
602 is almost linear, which demonstrates the stability and constancy of the yaw rate. The results for *truck*
603 *perpendicular reverse parking* are presented in Figure 5a-b. This maneuver is modeled for the case when
604 the same type long wheelbase vehicles are placed in a row and there is a free spot. The use of an
605 auxiliary steered axle allows increasing vehicle maneuverability and ensuring the best control
606 accuracy and space use. The truck has zero initial data in the initial position. The approach of
607 describing the space represented in Figure 2. As can be seen, the output and control parameters are
608 smooth curves clearly reflecting the maneuver phases. The angular velocities ω_θ , ω_ζ of steering
609 wheels, as well as their turning angles θ and ζ , are in antiphase within a wide range of admissible
610 values.

611 The results for *changing truck position* on the spot are presented in Figure 5c-d. The maneuver
612 corresponds to the case of the most limited space if there is a need for changing the truck position.
613 The linear form of the objective function Eq. (60) is focused on the minimum use of coordinates, which
614 is enhanced by the simultaneous control of two axles with the maximum ranges of steering angles θ
615 and ζ . First, the vehicle moves backward from state 1 to state 2, and then forward to the final position
616 3. The vehicle speed module does not exceed 2 m/s, and the whole process takes about 17 s. The graph
617 of accelerations clearly shows the number of sign changes of longitudinal accelerations, which
618 indicates the nature of the acceleration-deceleration control. As can be seen from the graphs, the
619 initial and final values of linear displacements coincide, and the angular coordinates have a difference
620 of 90°. The results for *truck circular motion* are presented in Figure 6c-d. The need for such a maneuver
621 is explained by the emerging need for accurate prediction of curvilinear motion in conditions of
622 minimal swept path. The output yaw angle demonstrates an almost linear increase. Some fluctuations
623 in the steering rates ω_θ , ω_ζ and the steering angles θ and ζ are explained by the influence of the truck
624 long wheelbase and by the simultaneous control of two axles, which brings an oversteer tendency to
625 the kinematic model. Nevertheless, the output linear displacements X , Y , ϕ are stable and represented
626 by smooth curves without any ambiguity in curvature changes.

627 The results for *Articulated vehicle docking at unconstrained space* for TSV and TSV-SSA docking are
628 presented in Figure 7. The purpose of the maneuver is to obtain the simplest control while minimizing
629 the use of space and state parameters. However, there are no restrictions on the use of space. The task
630 is to perform a maneuver in reverse with a turn on 90 degrees to the place of supposed unloading.
631 As can be seen in Figure 7b, d, the distribution of acceleration and speed over time is almost identical
632 for the TSV and TSV-SSA, however, for the control signals of the steering rates and, as a consequence,
633 the steering angles – there is a significant difference. When using the TSV-SSA, the required control
634 is both more stable and smaller in range due to oversteer. Moreover, TSV-SSA has a much lesser
635 range of articulation angle. The results for *Articulated vehicle circular motion* for TSV and TSV-SSA are
636 presented in Figure 8. The maneuver purpose is to optimize the disposition of an articulated vehicle
637 in conditions of movement along a lane of a roundabout (turnabout) or other arched road sections
638 with a small curvature radius. Since the acceleration a of TSV in Figure 8b is variable, the control
639 signal of the steering rate ω_θ fluctuates, however, the average value of steered wheels' angle is about

640 $\theta = 16^\circ$, and the output linear and angular displacements X, Y, ϕ are represented by smooth curves,
641 including a stable folding angle ψ close to a constant value. In the case of TSV-SSA, the situation is
642 tougher. The vehicle is situated in a very narrow corridor to be accommodated. The swept path
643 should be minimal. As seen in Figure 8d, in this case, all the control parameters $\omega_\theta, \omega_\zeta$ and the states
644 θ, ζ , and ψ are practically invariable within the prediction horizon.

645 5. Conclusions

646 This paper has presented nonlinear kinematic models for vehicle path and control forecasting
647 using open-loop optimization technique for predicting vehicle behavior in the low-speed range and
648 space-limited areas. The study has proposed a parking algorithm and has evaluated the
649 implementation of NMPC for such objectives in general and for the possible use in the closed-loop
650 tracking combined with dynamic vehicle models. In addition, the study has revealed the modeling
651 nuances, advantages, and disadvantages of applying kinematic models. Based on this study, the
652 following comments are offered:

- 653 1. Based on the positive results in all the simulations, the use of kinematic models' trajectories for
654 the tracking is quite suitable for low speeds, when the trajectories are supposed to be represented
655 by smooth curves. However, the shape of control signals reflects to a greater measure the
656 disadvantages of kinematic models' indirect control (by acceleration) and to a lesser measure
657 reflects the direct control parameter (throttle position and power).
- 658 2. The presented original algorithms consider the indirect parameter – the intrusion into a vehicle
659 safety contour (or the excess of a preset level by control points) to model the inequality
660 constraints. The proposed idea has shown the adequacy accuracy in assessing the inadmissible
661 distances to a vehicle body. The simplicity and versatility can be marked as proposed method's
662 advantages, as well as that fact it is a part of optimization process and not just a geometric
663 technique. The proposed technique can also be easily used for simulating the avoidance of
664 moving and stationary obstacles.
- 665 3. The cost function form significantly affects the forecast, depending on the accepted optimality
666 criteria. The advantage of the specified NMPC is the ability to use any functions both linear and
667 non-linear, and their combinations. Unlike the lane change at high speeds, where the smoothness
668 is required and quadratic forms are frequently used, the linear functions and quasi-optimal
669 solutions are often quite adequate at low speeds. Thus, it was revealed that the cost function's
670 linear components work better where changes of vehicle model speed's signs are expected, and
671 a shorter maneuvering path is needed. Quadratic forms provide more smoothed control and
672 allow better coordination of combined control (the case of several steered axles).
- 673 4. This project may be considered as a test phase of a comprehensive study of parking/docking
674 algorithms for autonomous vehicles. The results have argued the applicability of kinematic
675 models and the quality of forecast in general. Within the expansion of elaborating the automated
676 parking algorithms, it is planned to include the following issues: mapping the parking space
677 using the SLAM methods, improving the constraint evaluation algorithm to an adaptive level,
678 creating and testing the alternative algorithms for constraints, developing dynamic vehicle
679 models with real-world control parameters, implementing nonlinear and adaptive MPC methods
680 for the tracking task, combining the parking computing techniques into one automated option
681 for HIL-testing.

682 References

- 683 1. Lee, B.; Wei, Y.; Guo, I. Y. Automatic parking of self-driving car based on Lidar. *International Archives of the*
684 *Photogrammetry, Remote Sensing and Spatial Information Sciences*, **2017**, XLII-2/W7, 241–246.
- 685 2. Lee, H.; Chun, J.; Jeon, K. Autonomous back-in parking based on occupancy grid map and EKF SLAM with
686 W-band radar. *International Conference on Radar*, Brisbane, Australia, **2018**, 1–4.
- 687 3. Lin, L.; Zhu, J. J. Path planning for autonomous car parking. Proc., *ASME Dynamic Systems and Control*
688 *Conference*, Atlanta, Georgia, USA, **2018**, Volume 3.

689 4. Pérez-Morales, D.; Domínguez-Quijada, S.; Kermorgant, O.; Martinet, P. Autonomous parking using a
690 sensor-based approach. *8th Workshop on Planning, Perception and Navigation for Intelligent Vehicles at IEEE,*
691 *International Conference on Intelligent Transportation Systems, IEEE*, Rio de Janeiro, Brazil, **2016**.
692 5. Luca, R.; Troester, F.; Gall, R.; Simion, C. Environment mapping for autonomous driving into parking lots.
693 *IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR) 3*, Cluj-Napoca, Romania,
694 **2010**, 1-6.
695 6. Zhou, J.; Navarro-Serment, L. E.; Hebert, M. Detection of parking spots using 2D range data. *IEEE*
696 *International Conference on Intelligent Transportation Systems*, Anchorage, Alaska, USA, **2012**, 1280-1287.
697 7. Heinen, M. R.; Osorio, F. S.; Heinen, F. J.; Kelber, C. SEVA3D: Using artificial neural networks to
698 autonomous vehicle parking control. *IEEE International Joint Conference on Neural Network*, Vancouver,
699 Canada, 2006, 4704-4711.
700 8. Kiss, D.; Tevesz, G. Autonomous path planning for road vehicles in narrow environments: An efficient
701 continuous curvature approach. *Journal of Advanced Transportation, Intelligent Autonomous Transport Systems*
702 *Design and Simulation*, **2017**, Volume 2017.
703 9. Wang, Y.; Jha, D. K.; Akemi, Y. A two-stage RRT path planner for automated parking. *IEEE Conference on*
704 *Automation Science and Engineering*, Xi'an, China, **2017**, 496-502.
705 10. Ballinas, E.; Montiel, O.; Castillo, O.; Rubio, Y.; Aguilar, L.T. Automatic parallel parking algorithm for a
706 car-like robot using fuzzy PD+1 control. *Engineering Letters*, **2018**, 447-454.
707 11. Petrov, P.; Fawzi, N. Automatic vehicle perpendicular parking design using saturated control. *IEEE Jordan*
708 *Conference on Applied Electrical Engineering and Computing Technologies*, **2015**, 1-6.
709 12. Gupta, A.; Rohan, D.; Mohit, A. Autonomous parallel parking system for Ackerman steering four wheelers.
710 *IEEE International Conference on Computational Intelligence and Computing Research*, **2010**, 1-6.
711 13. Tazaki, Y.; Okuda, H.; Suzuki, T. Parking Trajectory Planning Using Multiresolution State Roadmaps. *IEEE*
712 *Transactions on Intelligent Vehicles*, **2017**, 2(4), 298-307.
713 14. Suhr, J. K.; Jung, H. G. Automatic parking space detection and tracking for underground and indoor
714 environments. *IEEE Transactions on Industrial Electronics*, **2016**, 63(9), 5687-5698.
715 15. Garcia, C. E.; Prett, D. M.; Morari, M. Model predictive control: Theory and practice - A survey. *Automatica*,
716 **1989**, 25(3), 335-348.
717 16. Lu, Y.; Arkun, Y. Quasi-Min-Max MPC algorithms for LPV systems. *Automatica*. **2000**, 36(4), 527-540.
718 17. MathWorks. Available online: www.mathworks.com (access on August 1, 2019).

719 **Supplementary Materials:** The following videos are available online at:

720 <https://www.youtube.com/watch?v=a2f6GhJu9fY> - Parking car in autonomous mode;
721 <https://www.youtube.com/watch?v=4xwu-7NP46I> - Parking car 2;
722 https://www.youtube.com/watch?v=b_7oArICy_c - Parking car 3;
723 <https://www.youtube.com/watch?v=K40ticZKaSI> - Parking car 4;
724 https://www.youtube.com/watch?v=mW_o0xVVurQ - Truck parking 2;
725 <https://www.youtube.com/watch?v=qfggF6RU0k4> - Autonomous driving planning with Nonlinear MPC for an
726 articulated vehicle;
727 https://www.youtube.com/watch?v=A_VQEUV5Btd8 - Roundabout in autonomous mode.

728 **Author Contributions:** Conceptualization, Maksym Diachuk and Said M. Easa; methodology, Maksym
729 Diachuk; software, Maksym Diachuk; validation, Joel Bannis; formal analysis, Joel Bannis; investigation,
730 Maksym Diachuk; resources, Said M. Easa; data curation, Joel Bannis; writing-original draft preparation,
731 Maksym Diachuk, Joel Bannis; writing-review and editing, Said M. Easa; visualization, Maksym Diachuk;
732 supervision, Said M. Easa; project administration, Said M. Easa; funding acquisition, Said M. Easa.

733 **Funding:** This research was sponsored by the Natural Sciences and Engineering Research Council of Canada
734 (NSERC)

735 **Acknowledgments:** In this section you can acknowledge any support given which is not covered by the author
736 contribution or funding sections. This may include administrative and technical support, or donations in kind
737 (e.g., materials used for experiments).

738 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
739 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
740 publish the results.

741 **Abbreviations**

742 The following abbreviations are used in this manuscript:

743 AV Autonomous Vehicle

744 CAV Conventional Articulated Vehicle

745 EKF Extended Kalman Filter

746 HIL Hardware-In-the-Loop

747 NMPC Nonlinear Model Predictive Control

748 SLAM Simultaneous Localization and Mapping

749 SQP Sequential quadratic programming

750 TSV Tractor-Semitrailer Vehicle

751 TSV-SSA Tractor-Semitrailer Vehicle with Semitrailer's Steered Axles