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Featured Application: This study presents a fully automated scheme for wafer inspection of 

which is using scanning acoustic tomography images. Differing from traditional template-

matching based methods, the proposed method involves a template extraction algorithm and a 

deep learning-based classification. This benefits the inspection process much convenient and 

accurate.  

Abstract: This article presents an automated vision-based algorithm for the die-scale inspection of 

wafer images captured using scanning acoustic tomography (SAT). This algorithm can find 

defective and abnormal die-scale patterns, and produce a wafer map to visualize the distribution of 

defects and anomalies on the wafer. The main procedures include standard template extraction, die 

detection through template matching, pattern candidate prediction through clustering, and pattern 

classification through deep learning. To conduct the template matching, we first introduce a two-

step method to obtain a standard template from the original SAT image. Subsequently, a majority 

of the die patterns are detected through template matching. Thereafter, the columns and rows 

arranged from the detected dies are predicted using a clustering method; thus, an initial wafer map 

is produced. This map is composed of detected die patterns and predicted pattern candidates. In 

the final phase of the proposed algorithm, we implement a deep learning-based model to determine 

defective and abnormal patterns in the wafer map. The experimental results verified the 

effectiveness and efficiency of our proposed algorithm. In conclusion, the proposed method 

performs well in identifying defective and abnormal die patterns, and produces a wafer map that 

presents important information for solving wafer fabrication issues. 

Keywords: automated visual inspection; convolutional neural network; deep learning; pattern 

classification; semiconductor inspection; wafer map 

 

1. Introduction 

An automated visual inspection (AVI) is a challenging domain in the automation industry and 

is widely applied to production lines for quality control. Systems used in the AVI typically involve 

fields such as mechanical and electrical engineering, optics, mathematics, and computer science. 

Image analytics plays an important role in the success of a visual inspection system. During the past 

few decades, numerous vision-based approaches and related techniques have been presented for 

solving problems in the semiconductor industry, and have been widely employed for detecting 

defects and anomalies in major semiconductor materials and products, such as wafers and chips. A 

large number of studies have been conducted, including vision algorithms, performance 

improvements, and hardware and software development. In this study, we focus on the defective 

pattern detection of wafers. 

Various optical inspection approaches were reviewed in [1]; these approaches were categorized 

based on the inspection techniques and inspected products. The semiconductor fabrication process 

is typically divided into three main phases requiring different inspection algorithms. During the first 

phase, wafers are manufactured from raw materials using crystal growth, slicing, polishing, lapping, 
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etching, and other steps. An integrated circuit (IC) pattern is then projected onto the wafer surface. 

During the second phase, a wafer acceptance test is applied to verify the effectiveness of all the 

individual ICs (also known as a die). Finally, the wafer is cut into chips, and the manufacturing 

process is completed through the packaging stage. A visual inspection is always applied during the 

defect detection for every die pattern prior to the IC packaging. 

There has been a significant increase in the complexity of IC structures in recent years; this has 

increased the difficulty of die-scale wafer inspection. A template-based vision system for the 

inspection of a wafer die surface was presented in [2]. Schulze et al. [3] introduced an inspection 

technology based on digital holography, which records the amplitude and phase of the wavefront 

from the target object directly to a single image acquired via a CCD camera. The technology was also 

proven to be effective for identifying defects on wafers. In [4], Kim and Oh proposed a method using 

component tree representations of scanning electron microscopy (SEM) images. However, their 

method has only been evaluated qualitatively. To conduct a quantitative assessment, a large dataset 

must be prepared by domain experts. A method employing a two-dimensional wavelet transform 

approach was developed to detect visual defects, such as particles, contamination, and scratches on 

wafers [5]. Magneto-optic imaging, which involves inducing eddy current into the target wafer, is 

used to inspect semiconductor wafers [6]. Moreover, an algorithm comprising noise reduction, image 

enhancement, watershed-based segmentation, and clustering strategy was presented. 

Over the past decades, scanning acoustic microscopes (SAMs) have been extensively utilized in 

the inspection of semiconductor products [7]. They are commonly used in non-destructive 

evaluations through a process called scanning acoustic tomography (SAT) [8] to capture the internal 

features of wafers or microelectronic components. In addition, methods for enhancing the resolution 

and contrast of SAT images are introduced in [9] and [10]. In general, a wafer has large numbers of 

repeated dies on its surface. These dies are nearly duplicated in an SAT image because they have the 

same structure and circuit pattern. However, the defective (abnormal) dies need to be filtered out if 

they differ from the non-defective (normal) dies. In previous studies, visual testing and thresholding 

approaches have been frequently adopted for defect detection from SAT images. Traditionally, the 

most popular method is to apply template matching die by die. However, such template-matching-

based approaches often suffer from a lack of robustness [11]. Small perturbations of the translation, 

rotation, scale, and even noise significantly affect the calculation of the similarity scores. Moreover, 

traditional methods sometimes lead to poor results owing to the increased complexity of 

microelectronic structures. For this reason, the problem of identifying abnormal dies is no longer a 

binary thresholding problem. Accordingly, it is regarded as a classification task in the present work. 

In recent years, deep learning techniques have been extensively adopted in image classification 

applications. Deep architectures such as convolutional neural networks (CNNs) have verified their 

superiority over other existing methods. These deep architectures are currently the most popular 

approach for classification tasks. CNN-based models can be trained through end-to-end learning 

without specifying task-related feature extractors. The VGG-16 and VGG-19 models proposed in [12] 

are extremely popular and significantly improve AlexNet [13] by enlarging the filters and adding 

more convolution layers. However, deeper neural networks often become more difficult to train. He 

et al. [14] presented a residual learning framework to simplify the training of a deep network. Their 

proposed residual networks (ResNets) are easy to optimize and can obtain a high level of accuracy 

from a remarkably increased depth of a network. The series of Inception networks presented in [15–

17], is a significant milestone in the development of CNN-based classifiers. Unlike the majority of 

previous networks that stack more layers for better performance, Inception networks use certain 

tricks to improve the speed and accuracy, such as operation of multi-sized filters at the same level, 

employing an Inception module with reduced dimensions, factorization of a 5×5 filter into two 3×3 

filters to decrease the time consumed, regularization through label smoothing to prevent overfitting, 

and utilization of a hybrid Inception module inspired by ResNets. Thus far, the use of ResNets and 

Inception models has been a dominant trend when facing image classification problems. In [18], the 

concern regarding increased computation efficiency was addressed, and a class of efficient models 

called MobileNets was presented. 
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The goal of this study is to inspect all die patterns on a wafer and then identify defective dies or 

anomalies. The main contributions and innovations of our study are briefly described below. 

• We propose an automatic procedure for extracting a standard template which is then utilized 

for detecting the die patterns from the original SAT image of a wafer. 

• From the detected die patterns and their spatial properties, we present a simple method to 

predict the locations of pattern candidates that possibly contain certain predefined patterns. 

• We design and implement a deep CNN-based classifier to identify all detected patterns and 

predicted pattern candidates. This classifier can categorize them into the background, alignment 

mark, normal, and abnormal classes.  

• Finally, the proposed method uses the obtained patterns with the spatial properties and 

classification results to produce a wafer map. This map provides important information to 

engineers in their analysis regarding the root cause of die-scale failures [19]. 

The remainder of this paper is organized as follows. Section 2 introduces the main algorithm of 

the proposed method. The implementation details and experimental results are described in Section 

3. Finally, some concluding remarks are presented in Section 4. 

2. The Proposed Method 

In this section, we introduce the main phases of our proposed method for detecting defective 

and abnormal die patterns from a target wafer. For a simpler description, we consider the SAT image 

demonstrated in Figure 1 as an example for presenting the proposed method. Assuming that the 

original SAT image has a pixel resolution of 𝑤Orig × ℎOrig. It is evident that there are a large number 

of similar dies that regularly repeat on the wafer. In this study, every die is a minimum unit that 

needs to be analyzed. In general, the wafer is well aligned during the SAT imaging process. Template 

matching methods can be used for finding all dies if a reliable template is obtained in advance. 

Consequently, we first introduce an algorithm for automatically extracting a standard template. 

Thereafter, the die patterns need to be detected and classified successively. Therefore, the proposed 

method is divided into three main phases: 1) automatic template extraction, 2) die pattern detection 

and clustering, and 3) die pattern classification. 

 

Figure 1. Original SAT image: Example wafer. 

2.1. Automatic Template Extraction 
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The first phase of our method is to seek a reliable template. In this subsection, we describe the 

design of a two-step algorithm, including a template size estimation and standard template extraction, 

to obtain this template. 

2.1.1. Template Size Estimation 

Because the sizes of the die patterns are almost identical, an accurate template size helps find a 

reliable template. The main procedures for estimating the template size are briefly addressed as 

follows. 

1. Initialize parameters: The original SAT image has a pixel resolution of 𝑤Orig × ℎOrig, patch image 

has a pixel resolution of 𝑤P × ℎP, and template has an initial pixel resolution of 𝑤Tpl × ℎTpl, with 

a similarity threshold of 𝑇SIM. These will be determined and discussed in Subsection 3.1. 

2. The original image is converted into a grayscale image. 

3. An image patch 𝐼P with a pixel resolution of 𝑤P × ℎP is randomly cropped near the central area 

from the grayscale SAT image. If the original image is not too large, it can be considered an 

image patch; thus, this step can be skipped. 

4. Histogram equalization is applied to enhance the contrast on this cropped patch. Hence, for 

different imaging settings of the SAT, consistent performance is maintained when conducting 

the following steps. Figure 2 shows the results of the cropped patch before and after histogram 

equalization. 

 
(a) 

 
(b) 

Figure 2. Cropped patch from Figure 1: (a) before and (b) after histogram equalization. 

5. An initial template 𝐼Tpl with a size of 𝑤Tpl × ℎTpl is randomly cropped from the patch 𝐼P, as 

shown in Figure 3. If step 3 is skipped, we crop this initial template from the grayscale SAT 

image. 

 

Figure 3. Initial template. 
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6. An ordinary template matching process is conducted to find the parts of image 𝐼P  that are 

similar to template 𝐼Tpl. This step simply slides the initial template image over the patch as in a 

two-dimensional convolution and calculates the following metric for comparing the template 

𝐼Tpl against the local region of the patch 𝐼Loc. 

𝑅(𝑥, 𝑦) =
∑ (𝐼Tpl(𝑥′, 𝑦′) ∙ 𝐼Loc(𝑥 + 𝑥′, 𝑦 + 𝑦′))𝑥′,𝑦′

√∑ 𝐼Tpl(𝑥′, 𝑦′)2
𝑥′,𝑦′ ∙ ∑ 𝐼Loc(𝑥 + 𝑥′, 𝑦 + 𝑦′)2

𝑥′,𝑦′

, (1) 

where (𝑥′, 𝑦′) indicates one of the pixels covered by the template for 0 ≤ 𝑥′ < 𝑤Tpl and 0 ≤

𝑦′ < ℎTpl , 𝐼Loc  is the local region [𝑥, 𝑥 + 𝑤Tpl) × [𝑦, 𝑦 + ℎTpl) of patch 𝐼P , and 𝑅(𝑥, 𝑦)  is the 

normalized cross-correlation between two evaluated images 𝐼Tpl  and 𝐼Loc . Hence, the pixel 

𝑅(𝑥, 𝑦)  forms a correlation map 𝑅  for 0 ≤ 𝑥 ≤ 𝑤P − 𝑤Tpl  and 0 ≤ 𝑦 ≤ ℎP − ℎTpl . Figure 4 

shows the results of map 𝑅 obtained from the patches shown in Figures 2(b) and 3. Notably, 

the bright pixels indicate that a high similarity occurs at these locations. 

 

Figure 4. Correlation map from the patches in Figures 2(b) and 3. 

7. A binary thresholding process is applied on this map to obtain a binary map 𝑅B as follows: 

𝑅B(𝑥, 𝑦) = {
1, if 𝑅(𝑥, 𝑦) ≥ 𝑇SIM; 

0, otherwise       
 (2) 

This step sets the pixels that correspond with the relatively high correlation values to one and sets 

others to zero. 

8. A morphological opening operation is conducted to reduce small noise in map 𝑅B. Figure 5 

shows the results of this step. As observed from the enlarged region depicted on the right, each 

presented bright dot is an object that is formed with connected bright pixels. 

 

Figure 5. Results of binary-thresholding followed by the opening from the correlation map. 
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9. The connected component method is applied to label all bright objects in map 𝑅B, and then 

calculate the centroid of every object. Here, 𝑐𝑖 = (𝑥𝑖 , 𝑦𝑖) denotes the center of the 𝑖-th object, and 

1 ≤ 𝑖 ≤ 𝑁Obj for a total of 𝑁Obj objects obtained from 𝑅B. 

10. A set of displacement tuples is found by considering every possible pair of (𝑖, 𝑗), for 1 ≤ 𝑗 ≤

𝑁Obj and 𝑗 < 𝑖 ≤ 𝑁Obj. 

𝒟 = { 𝑑𝑖,𝑗 = (|𝑥𝑖 − 𝑥𝑗|, |𝑦𝑖 − 𝑦𝑗|) | ∀ 𝑖 > 𝑗 } (3) 

Here, we only count under the condition satisfying 𝑖 > 𝑗 because 𝑑𝑖,𝑗 is equal to 𝑑𝑗,𝑖. 

11. Every displacement vector 𝑑𝑖,𝑗 contributes to a voting space 𝒱(𝑝, 𝑞) as follows: 

𝒱(|𝑥𝑖 − 𝑥𝑗|, |𝑦𝑖 − 𝑦𝑗|) ← 𝒱(|𝑥𝑖 − 𝑥𝑗|, |𝑦𝑖 − 𝑦𝑗|) + 1 (4) 

Similar to the voting technique used in Hough transform, we accumulate all displacement 

vectors in the voting space 𝒱 to determine the parameters (width and height) of the template. 

12. Similar to steps 7–9, the centroid of every local peak is found in this voting space, and the 

centroid 𝑐∗ = (𝑝∗, 𝑞∗) that is nearest to the origin of 𝒱 is then localized. Therefore, the template 

size is estimated as follows: 

𝑤Tpl
∗ = 𝑝∗ and ℎTpl

∗ = 𝑞∗. (5) 

2.1.2. Standard Template Extraction 

We now want to find regularly repeated regions inside the initial template (as shown in Figure 

3). The process of finding such a region is described in detail as follows. 

1. The initial template is first smoothed using a two-dimensional Gaussian filter with a kernel size 

of 5×5 pixels. Because the weights are effectively zero out of a 5×5 filter when approximating to 

Gaussian function with a standard deviation 𝜎 = 1.0, we select this kernel size in this study. 

2. Thresholding is applied to the filtered template, where the threshold is determined using Otsu’s 

well-known method [20]. Figure 6 shows the results of this step. 

3. After labeling all bright objects, the largest one is found and its centroid (𝑥L, 𝑦L) is recorded. 

4. A patch centered at (𝑥L, 𝑦L) is cropped to a size of (𝑤Tpl
∗ , ℎTpl

∗ ) pixels from the initial template. 

This cropped image can be considered the standard template. In Figure 7, the green rectangle in 

subplot (a) shows the extracted template and (b) shows its close-up. 

This extracted template is used to detect the die patterns in the initial template to check whether 

the number of detected die patterns is sufficient. If the number of patterns is insufficient, the 

algorithm of automatic template extraction is re-conducted. 

 

Figure 6. Binarized image of the initial template in Figure 3. 
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(a) 

 
(b) 

Figure 7. Patches: (a) extracted from the initial template; (b) used as a standard template. 

2.2. Die Pattern Detection and Clustering 

Die patterns that are similar to the standard template are expected to be detected from the 

original SAT image. Following steps 6–9 described in the template size estimation of Subsection 2.1, 

regions that are highly similar to the template are obtainable. The yellow dot in Figure 8 indicates 

that there is a die pattern found at that location, that is, a region similar to the template exists. Notably, 

some die patterns are not detected because their similarity is insufficiently high. They possibly result 

from imaging anomalies, wafer fabrication defects, and belonging to other pattern types such as 

alignment marks. From Figure 8, it is evident that the detected die patterns are arranged in rows and 

columns, and the mis-detected die patterns (dark holes inside the wafer) are possibly retrieved from 

their neighboring dies. Therefore, this subsection presents a clustering method for obtaining the 

columns and rows in the arrangement by using the detected die patterns and predicting the 

coordinates of these rows and columns. Eventually, the positions of these mis-detected patterns can 

be obtained via interpolation or extrapolation approaches. 

 

Figure 8. Die detection result of original SAT image. 

Let 𝑃𝑘  be the 𝑘-th detected die pattern and (𝑥𝑘
TL, 𝑦𝑘

TL) be its top-left corner for 1 ≤ 𝑘 ≤ 𝑁D , 

where 𝑁D is the total number of detected patterns. In general, the wafer is well aligned during the 

SAT imaging process; consequently, die patterns are neatly arranged in rows and columns. The die 

patterns in the same column (or row) possess almost the same horizontal (or vertical) location 𝑥𝑘
TL 
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(or 𝑦𝑘
TL). Hence, a simple clustering method using a distance metric is used for grouping {𝑥𝑘

TL | 𝑘 =

1,2, … , 𝑁D} along the horizontal direction, and then find the number of columns. The criterion is to 

produce clusters with short intra-cluster distances and long inter-cluster distances. Let us first define 

a distance threshold as 𝑇d = 𝑤Tpl
∗ /2, the index set of which is 𝒦 = {1,2, … , 𝑁D}, the selected set 𝒮 is 

empty, and the cluster set 𝒞  is empty. The proposed algorithm for clustering {𝑥𝑘
TL}  is briefly 

introduced as follows. 

1. Let the first coordinate point 𝑥1
TL be taken as the first cluster center 𝜇1. Let the selected set be 

𝒮 = {1}, and the cluster set 𝒞 = {𝑐1}. 

2. Select the next point from {𝑥𝑙
TL | 𝑙 ∈ 𝒦\𝒮}, and compute the distance 𝑑𝑐(𝑥𝑙

TL) for every 𝑐 ∈ 𝒞. 

Apply index 𝑙 into set 𝒮. 

3. Compare this distance 𝑑𝑐(𝑥𝑙
TL) with the threshold 𝑇d. If 𝑑𝑐(𝑥𝑙

TL) < 𝑇d, then set 𝑥𝑙
TL belonging 

to cluster 𝑐. Next, update center 𝜇𝑐 by averaging all coordinate points belonging to cluster 𝑐. 

In contrast, let 𝑥𝑙
TL become a new prototype point, and add a new cluster 𝑐#(𝒞)+1 with its center 

𝜇#(𝒞)+1 = 𝑥𝑙
TL. Here, #(𝒞) denotes the number of clusters in 𝒞. 

4. Repeat steps 2–3 until all coordinate points belong to their corresponding clusters. 

The four steps above form an iteration obtaining the clusters with centers. Based on these clusters, 

a new iteration is created to assign all coordinate points {𝑥𝑘
TL} to their nearest cluster in the same 

manner. This clustering algorithm will terminate when the clustered results of two consecutive 

iterations are the same. Consequently, the number and coordinates of the columns from all detected 

die patterns can be obtained. 

Similarly, the coordinate points {𝑦𝑘
TL | 𝑘 = 1,2, … 𝑁D} are clustered in the same manner. Thus, 

every row and its representative coordinate are obtained. Thus far, the number of columns and rows 

from the detected die patterns can be obtained. Assuming that the detected patterns arrange in 𝒩 

columns and ℳ rows. Let (𝑥𝑛
TL, 𝑦𝑚

TL) be the top-left corner of an arbitrary die pattern in the original 

SAT image, where the subscript 𝑛 ∈ {1,2, … , 𝒩}  denotes the 𝑛-th  column and subscript 𝑚 ∈

{1,2, … , ℳ}  denotes the 𝑚-th  row. Using these corners and the estimated size of the standard 

template, all patterns, including the die patterns and predicted pattern candidates, in the wafer image 

can be obtained. 

[𝑥𝑛
TL, 𝑥𝑛

TL + 𝑤Tpl
∗ ) × [𝑦𝑚

TL, 𝑦𝑚
TL + ℎTpl

∗ ) (6) 

indicates the two-dimensional region of the pattern located on the 𝑛-th column and 𝑚-th row. 

Figure 9 shows all patterns, in which the yellow and blue dots denote the locations of the detected 

and predicted patterns, respectively. Every pattern will be further categorized into normal, abnormal, 

or other predefined classes. At this point, the initial wafer map is produced; however, the patterns 

need to be identified later. 

2.3. Pattern Classification for Inspection 

As shown in Figure 9, a wafer map full of the detected (yellow) and predicted (blue) patterns 

was produced. In this subsection, we further categorize each of them into one of the following classes: 

1) background (outside the wafer), 2) alignment mark, 3) normal (non-defective die), or 4) abnormal 

(with some errors, such as cracks, defects, or imaging noise). Figure 10 shows typical examples of 

these four classes. In addition, more cases of different abnormal patterns are shown in Figure 11, 

which are caused by fabrication detects (subplots (a) to (d)), such as cracks, and imaging errors 

(subplots (c) to (d)). The next task is to perform our image classification method to analyze any 

patterns. Here, a learning-based method composed of image feature extraction and image 

classification was used in our study. Numerous networks possessing a deep architecture have 

verified the effectiveness of the image extraction. As mentioned in Section 1, we selected several 

popular image feature extraction models, including VGG-16 and VGG-19 [12], InceptionV3 [16], 

MobileNet [18], and ResNet-50 [14], for evaluation. ResNet-50 was finally chosen as the image 

extractor of our proposed method. The details of the performance comparison are described in 

Subsection 3.3. This image extractor is followed by a fully-connected neural network designed for 
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image classification. Thus, the entire architecture of our proposed method for pattern identification 

is as depicted in Figure 12. The details of its implementation are provided in Subsection 3.1. 

 

Figure 9. Initial wafer mapping result from detected and predicted die patterns. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Four different patterns: (a) background; (b) alignment mark; (c) normal; (d) abnormal pattern. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. More examples of abnormal patterns. 

3. Implementation, experimental results and discussion 

First, three SAT images captured from different wafers (in the same batch) were prepared for 

the following experiments. For convenience, we named them img01, img02, and img03. In this section, 

we focus on the explanation and implementation of 1) automatic template extraction, 2) the training 

and testing stages of our pattern classification method, and 3) a discussion on using different 

networks as the backbone of the image feature extractor. To meet the computational requirements 

when executing a deep CNN-based model, a GPU-accelerated computer equipped NVIDIA GeForce 

GTX-1060 was used to implement our proposed method. The entire algorithm is programmed in 

Python and uses OpenCV and TensorFlow. 
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Figure 12. Deep CNN for die pattern classification. 

 
(a) 

 
(b) 

 
(c) 

Figure 13. Results of template extraction for img01, img02, img03 SAT images. 

3.1. Experiments on Automatic Template Extraction and Die Detection 

The proposed method for template extraction was verified using images img01, img02, and img03. 

The parameters used in this experiment are as follows: 

• The size of the original SAT image is 𝑤Orig = 30,000 and ℎOrig = 30,000. 

• The size of the image patch: 𝑤P = 𝑤Orig/5 = 6,000  and ℎP = ℎOrig/5 = 6,000 . This size is 

determined to ensure that there are sufficient die patterns in this image patch. If template 

extraction fails, this size can be increased by 𝑤P = 𝑤Orig/4 = 7,500, ℎP = ℎOrig/4 = 7,500, and 

so on. 

• The size of the initial template 𝑤Tpl = 𝑤P/3 = 2,000 and ℎTpl = ℎP/3 = 2,000. The criterion for 

determining this size is to ensure that there exists one (or more) whole die pattern in this initial 

template. Generally, this size is big enough to detect and extract a standard template. 

• The similarity threshold is the 90th percentile value of the map 𝑅(𝑥, 𝑦) , that is, 𝑇SIM =

0.9 × max
𝑥,𝑦

{𝑅(𝑥, 𝑦)}. 

• The binarization thresholds are adaptively determined using Otsu’s method [20]. 

 

Table 1. Numerical results of die pattern detection. 

Image Template 
Template size 

(unit: pixels) 

# of detected die 

patterns 

# of predicted 

regions 

img01 13(a) 300 × 320 6,745 1,718 

img02 13(b) 306 × 318 6,756 1,889 

img03 13(c) 302 × 320 6,763 1,882 

 

Figure 13 shows the extracted templates, in which subplots (a), (b), and (c) correspond to img01, 

img02, and img03, respectively, and the estimated template size can be found in Table 1. These are 

very similar because their original SAT images are from the same batch of wafer products. Next, we 

apply template matching followed by clustering to obtain an initial wafer map that contains the 
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detected die patterns (marked by the yellow dots) and predicted pattern candidates (marked by the 

blue dots). Figure 14 shows the results of the initial wafer maps for images img01, img02, and img03. 

These wafer maps need to be further analyzed by conducting our proposed classification model for 

every pattern. 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Results of die pattern detection for img01, img02, img03 SAT images. 

3.2. Implementation of Die Pattern Classification 

In this subsection, the proposed pattern classification model trained using our own dataset is 

described. The standard network, as depicted in Figure 12, contains over 25 million trainable 

parameters. The first half of the network is a ResNet-50 feature extractor, the input of which is a 

normalized pattern image with a size of 224×224 pixels and a feature vector output of 2,048×1. The 

complete compositions of ResNet-50 are shown in Table 2. The second half is a fully-connected neural 

network applied to conduct four-class classification, the thorough architecture of which is tabulated 

in Table 3. 

 

Table 2. Architecture of feature extractor in our pattern classification model. 

Feature Extractor: ResNet-50 Encoder 

Layer name Kernel size Stride Channels Repeat times 

Conv 1 7×7 2 3→64 1 

Pool 1 3×3 2  1 

Resblock 1 [
1×1
3×3
1×1

] 1 64→256 3 

Resblock 2 [
1×1
3×3
1×1

] 1 256→512 4 

Resblock 3 [
1×1
3×3
1×1

] 1 512→1024 6 

Resblock 4 [
1×1
3×3
1×1

] 1 1024→2048 3 
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Table 3. Architecture of fully-connected network in our pattern classification model. 

Classifier: Fully-connected neural network 

Layer name Input dimension Output dimension 

FC-1 1 2048 1000 

FC-2 1 1000 100 

FC-3 1 100 4 

Softmax 2 4 4 

1 FC = Fully-connected layer.  

2 Softmax is used to map the output of a neural network to a probability distribution over 

the predicted output classes. This ensures that the sum of all output elements equals 1. 

 

During this experiment, we collected a total of 2,150 samples to form our training dataset, and 

manually identified them into four categories: 1) background, 2) alignment mark, 3) normal, and 4) 

abnormal. This dataset is also divided into training and validation sets, the data distribution of which 

is listed in Table 4. There were 1,780 samples used for learning the model and 370 samples applied 

for validation. Some commonly-used data augmentation techniques are applied in the present work, 

including shifting and flipping, rotation, and brightness shifts. We set the hyper-parameters as 

follows: rotation range of [−5°, 5°], spatial shifts of [0.2𝑤Tpl
∗ , 0.2ℎTpl

∗ ], brightness shifts of [1,10], a 

random zoom range of [0.8,1.2], dropout probability of 0.5, batch size of 8, maximum epochs of 15, 

optimized using Adam with commonly-used settings of 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8, and the 

learning rate 𝜂 of 10−5. Figure 15 shows the per-epoch trend of training and validation accuracy. 

Note that we terminated the training process after eight epochs because the training and validation 

accuracy converged to 89.13% and 99.46%, respectively. As shown in the figure, the training accuracy 

is less than the validation accuracy; this situation can be attributed to several reasons: 1) The 

regularization mechanisms, such as the dropout and L1/L2 weight regularization, were turned on 

during training. 2) When using the Keras library in the TensorFlow, the training accuracy for an epoch 

is the averaged accuracy over each batch of the training data. Because the model was changing over 

time, the accuracy over the first batch was lower than that over the last batch. On the contrary, the 

validation accuracy for an epoch is computed using the model as it is at the end of the epoch, resulting 

in a higher accuracy. 3) The techniques of data augmentation used during training probably 

produced certain samples that were difficult to identify. Finally, we used 370 additional test data for 

evaluating the learned model, the results of which are summarized in Table 5 as a confusion matrix. 

Only two normal samples were incorrectly identified as an abnormal class. The overall accuracy was 

greater than 99%, and the accuracy for the normal samples was 98.57%. 

 
Figure 15. Training and validation accuracy. 
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Table 4. Distribution of data in our training dataset. 

Class label # of training samples # of validation samples 

Background 417 83 

Alignment mark 386 64 

Normal 560 140 

Abnormal 417 83 

 

Table 5. Confusion matrix for test dataset. 

 
Predicted  

True  
Background 

Alignment 

mark 
Normal Abnormal 

Accuracy 

(%) 

Background 83 0 0 0 100 

Alignment mark 0 64 0 0 100 

Normal 0 0 138 2 98.57 

Abnormal 0 0 0 83 100 

 

Table 6. Comparison of different models for image feature extraction. 

Extractor 
Time (unit: ms) 

Number of parameters 
Min. Max. Avg. 

VGG-16 30.25 35.63 31.02 14,714,688 

VGG-19 36.75 39.63 37.19 20,024,384 

InceptionV3 33.38 45.88 35.02 21,802,784 

MobileNet 24 30.63 25.03 3,228,864 

ResNet-50 31 42 32.58 23,587,712 

 

3.3. Comparison among Feature Extractors 

When designing the architecture of our deep model, several CNN-based models that are 

frequently used in image featuring were evaluated. In this subsection, five popular backbones, 

namely, VGG-16, VGG-19, InceptionV3, MobileNet, and ResNet-50, were chosen for comparison. For 

fairness, their inputs were normalized to an identical size and followed by the same classifier. Their 

training and validation accuracy are presented separately in Figures 16 and 17. It can be seen that 

ResNet-50 outperformed other approaches after six epochs. Moreover, it is evident that the validation 

accuracy of ResNet-50 is consistently high. A computational comparison between these backbones is 

listed in Table 6. Here, the minimum, maximum, and average computational times for a pattern 

image and the total number of parameters of different backbones are summarized. Although ResNet-

50 has the maximum number of parameters, its computational time is still acceptable for wafer 

inspection, and it was chosen as a standard subnetwork for the image feature extractor applied in our 

proposed method. 
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Figure 16. Training accuracy for different CNN-based networks. 

 
Figure 17. Validation accuracy for different CNN-based networks. 

3.4. Wafer Map Generation for Inspection Visualization 

The final result of our proposed method is a multi-class wafer map, the classes of which can be 

manually defined by users. In this paper, four classes are applied: background, alignment mark, and 

normal and abnormal patterns. Let the original SAT image be the input; thereafter, automatic 

template extraction, pattern detection, and prediction steps, followed by pattern classification, are 

conducted. All patterns are found, and the information of each pattern, including the location, width, 

height, and its class is also obtained. Figure 18 shows the final results corresponding to images img01, 

img02, and img03. The patterns belonging to the background, alignment mark, and normal and 

abnormal pattern classes are plotted in gray, white, green, and red, respectively. The analyzed wafer 

maps are useful for visualizing defects and finding potential fabrication issues. 

 
(a) 

 
(b) 

 
(c) 

Figure 18. Results of our proposed inspection method for img01, img02, img03 SAT images. 
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4. Conclusions 

In this study, we proposed a vision-based method for detecting and recognizing dies on a wafer. 

The main contributions of our method include an automatic scheme of a standard template extraction, 

clustering based on the distance to produce a wafer map, and a deep learning-based pattern 

classification model. An ordinary template matching was employed to detect regularly repeated die 

patterns. Thus, we proposed a template extraction algorithm that provides a reliable template for 

finding such patterns. Furthermore, a clustering technique applying the distance criterion was 

introduced to predict the locations of the pattern candidates. For the pattern classification phase, we 

designed a deep CNN-based model composed of an image feature extractor and a classifier to 

identify patterns as different classes. The effectiveness and efficiency of our proposed method were 

evaluated experimentally. Furthermore, qualitative and quantitative evaluations were also 

conducted. By applying the proposed visual inspection method, SAT images from wafers can be 

completely analyzed and used to form wafer maps. These wafer maps can provide important 

information for finding and analyzing wafer manufacturing problems in the semiconductor industry. 
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