Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2020

Article
Automated Detection and Classification of Defective

and Abnormal Dies in Wafer Images

Hsiang-Chieh Chen *

I Department of Electrical Engineering, National United University, Miaoli 36063, Taiwan; chc@nuu.edu.tw
* Correspondence: chc@nuu.edu.tw

Featured Application: This study presents a fully automated scheme for wafer inspection of
which is using scanning acoustic tomography images. Differing from traditional template-
matching based methods, the proposed method involves a template extraction algorithm and a
deep learning-based classification. This benefits the inspection process much convenient and
accurate.

Abstract: This article presents an automated vision-based algorithm for the die-scale inspection of
wafer images captured using scanning acoustic tomography (SAT). This algorithm can find
defective and abnormal die-scale patterns, and produce a wafer map to visualize the distribution of
defects and anomalies on the wafer. The main procedures include standard template extraction, die
detection through template matching, pattern candidate prediction through clustering, and pattern
classification through deep learning. To conduct the template matching, we first introduce a two-
step method to obtain a standard template from the original SAT image. Subsequently, a majority
of the die patterns are detected through template matching. Thereafter, the columns and rows
arranged from the detected dies are predicted using a clustering method; thus, an initial wafer map
is produced. This map is composed of detected die patterns and predicted pattern candidates. In
the final phase of the proposed algorithm, we implement a deep learning-based model to determine
defective and abnormal patterns in the wafer map. The experimental results verified the
effectiveness and efficiency of our proposed algorithm. In conclusion, the proposed method
performs well in identifying defective and abnormal die patterns, and produces a wafer map that
presents important information for solving wafer fabrication issues.

Keywords: automated visual inspection; convolutional neural network; deep learning; pattern
classification; semiconductor inspection; wafer map

1. Introduction

An automated visual inspection (AVI) is a challenging domain in the automation industry and
is widely applied to production lines for quality control. Systems used in the AVI typically involve
fields such as mechanical and electrical engineering, optics, mathematics, and computer science.
Image analytics plays an important role in the success of a visual inspection system. During the past
few decades, numerous vision-based approaches and related techniques have been presented for
solving problems in the semiconductor industry, and have been widely employed for detecting
defects and anomalies in major semiconductor materials and products, such as wafers and chips. A
large number of studies have been conducted, including vision algorithms, performance
improvements, and hardware and software development. In this study, we focus on the defective
pattern detection of wafers.

Various optical inspection approaches were reviewed in [1]; these approaches were categorized
based on the inspection techniques and inspected products. The semiconductor fabrication process
is typically divided into three main phases requiring different inspection algorithms. During the first
phase, wafers are manufactured from raw materials using crystal growth, slicing, polishing, lapping,
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etching, and other steps. An integrated circuit (IC) pattern is then projected onto the wafer surface.
During the second phase, a wafer acceptance test is applied to verify the effectiveness of all the
individual ICs (also known as a die). Finally, the wafer is cut into chips, and the manufacturing
process is completed through the packaging stage. A visual inspection is always applied during the
defect detection for every die pattern prior to the IC packaging.

There has been a significant increase in the complexity of IC structures in recent years; this has
increased the difficulty of die-scale wafer inspection. A template-based vision system for the
inspection of a wafer die surface was presented in [2]. Schulze et al. [3] introduced an inspection
technology based on digital holography, which records the amplitude and phase of the wavefront
from the target object directly to a single image acquired via a CCD camera. The technology was also
proven to be effective for identifying defects on wafers. In [4], Kim and Oh proposed a method using
component tree representations of scanning electron microscopy (SEM) images. However, their
method has only been evaluated qualitatively. To conduct a quantitative assessment, a large dataset
must be prepared by domain experts. A method employing a two-dimensional wavelet transform
approach was developed to detect visual defects, such as particles, contamination, and scratches on
wafers [5]. Magneto-optic imaging, which involves inducing eddy current into the target wafer, is
used to inspect semiconductor wafers [6]. Moreover, an algorithm comprising noise reduction, image
enhancement, watershed-based segmentation, and clustering strategy was presented.

Over the past decades, scanning acoustic microscopes (SAMs) have been extensively utilized in
the inspection of semiconductor products [7]. They are commonly used in non-destructive
evaluations through a process called scanning acoustic tomography (SAT) [8] to capture the internal
features of wafers or microelectronic components. In addition, methods for enhancing the resolution
and contrast of SAT images are introduced in [9] and [10]. In general, a wafer has large numbers of
repeated dies on its surface. These dies are nearly duplicated in an SAT image because they have the
same structure and circuit pattern. However, the defective (abnormal) dies need to be filtered out if
they differ from the non-defective (normal) dies. In previous studies, visual testing and thresholding
approaches have been frequently adopted for defect detection from SAT images. Traditionally, the
most popular method is to apply template matching die by die. However, such template-matching-
based approaches often suffer from a lack of robustness [11]. Small perturbations of the translation,
rotation, scale, and even noise significantly affect the calculation of the similarity scores. Moreover,
traditional methods sometimes lead to poor results owing to the increased complexity of
microelectronic structures. For this reason, the problem of identifying abnormal dies is no longer a
binary thresholding problem. Accordingly, it is regarded as a classification task in the present work.

In recent years, deep learning techniques have been extensively adopted in image classification
applications. Deep architectures such as convolutional neural networks (CNNs) have verified their
superiority over other existing methods. These deep architectures are currently the most popular
approach for classification tasks. CNN-based models can be trained through end-to-end learning
without specifying task-related feature extractors. The VGG-16 and VGG-19 models proposed in [12]
are extremely popular and significantly improve AlexNet [13] by enlarging the filters and adding
more convolution layers. However, deeper neural networks often become more difficult to train. He
et al. [14] presented a residual learning framework to simplify the training of a deep network. Their
proposed residual networks (ResNets) are easy to optimize and can obtain a high level of accuracy
from a remarkably increased depth of a network. The series of Inception networks presented in [15-
17], is a significant milestone in the development of CNN-based classifiers. Unlike the majority of
previous networks that stack more layers for better performance, Inception networks use certain
tricks to improve the speed and accuracy, such as operation of multi-sized filters at the same level,
employing an Inception module with reduced dimensions, factorization of a 5x5 filter into two 3x3
filters to decrease the time consumed, regularization through label smoothing to prevent overfitting,
and utilization of a hybrid Inception module inspired by ResNets. Thus far, the use of ResNets and
Inception models has been a dominant trend when facing image classification problems. In [18], the
concern regarding increased computation efficiency was addressed, and a class of efficient models
called MobileNets was presented.
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The goal of this study is to inspect all die patterns on a wafer and then identify defective dies or
anomalies. The main contributions and innovations of our study are briefly described below.

e  We propose an automatic procedure for extracting a standard template which is then utilized
for detecting the die patterns from the original SAT image of a wafer.

e  From the detected die patterns and their spatial properties, we present a simple method to
predict the locations of pattern candidates that possibly contain certain predefined patterns.

e  We design and implement a deep CNN-based classifier to identify all detected patterns and
predicted pattern candidates. This classifier can categorize them into the background, alignment
mark, normal, and abnormal classes.

e Finally, the proposed method uses the obtained patterns with the spatial properties and
classification results to produce a wafer map. This map provides important information to
engineers in their analysis regarding the root cause of die-scale failures [19].

The remainder of this paper is organized as follows. Section 2 introduces the main algorithm of
the proposed method. The implementation details and experimental results are described in Section
3. Finally, some concluding remarks are presented in Section 4.

2. The Proposed Method

In this section, we introduce the main phases of our proposed method for detecting defective
and abnormal die patterns from a target wafer. For a simpler description, we consider the SAT image
demonstrated in Figure 1 as an example for presenting the proposed method. Assuming that the
original SAT image has a pixel resolution of wgjg X horig. It is evident that there are a large number
of similar dies that regularly repeat on the wafer. In this study, every die is a minimum unit that
needs to be analyzed. In general, the wafer is well aligned during the SAT imaging process. Template
matching methods can be used for finding all dies if a reliable template is obtained in advance.
Consequently, we first introduce an algorithm for automatically extracting a standard template.
Thereafter, the die patterns need to be detected and classified successively. Therefore, the proposed
method is divided into three main phases: 1) automatic template extraction, 2) die pattern detection
and clustering, and 3) die pattern classification.

Figure 1. Original SAT image: Example wafer.

2.1. Automatic Template Extraction
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The first phase of our method is to seek a reliable template. In this subsection, we describe the
design of a two-step algorithm, including a template size estimation and standard template extraction,
to obtain this template.

2.1.1. Template Size Estimation

Because the sizes of the die patterns are almost identical, an accurate template size helps find a
reliable template. The main procedures for estimating the template size are briefly addressed as
follows.

1. Initialize parameters: The original SAT image has a pixel resolution of wg,ig X hoyig, patchimage
has a pixel resolution of wp X hp, and template has an initial pixel resolution of wrp X Ay, with
a similarity threshold of Tgpy. These will be determined and discussed in Subsection 3.1.

2. The original image is converted into a grayscale image.

3. Animage patch Ip with a pixel resolution of wp X hp is randomly cropped near the central area
from the grayscale SAT image. If the original image is not too large, it can be considered an
image patch; thus, this step can be skipped.

4. Histogram equalization is applied to enhance the contrast on this cropped patch. Hence, for
different imaging settings of the SAT, consistent performance is maintained when conducting
the following steps. Figure 2 shows the results of the cropped patch before and after histogram
equalization.

(b)

Figure 2. Cropped patch from Figure 1: (a) before and (b) after histogram equalization.

5. Aninitial template I, with a size of wry X hrp, is randomly cropped from the patch Ip, as
shown in Figure 3. If step 3 is skipped, we crop this initial template from the grayscale SAT
image.
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Figure 3. Initial template.
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6. An ordinary template matching process is conducted to find the parts of image Ip that are
similar to template Irp. This step simply slides the initial template image over the patch asin a
two-dimensional convolution and calculates the following metric for comparing the template
Itp against the local region of the patch I,

Tyt (Frpt e 9) * Tuoc G + 2,y + 31)

\/Z""y’ I (X', y")% - Xy Ioe(x + X',y + )2

R(x,y) =

M

where (x',¥') indicates one of the pixels covered by the template for 0 < x’ < wrp, and 0 <
y' < hrpi, Iioc is the local region [x,x + prl) X [y,y + thl) of patch Ip, and R(x,y) is the
normalized cross-correlation between two evaluated images Ir, and I,.. Hence, the pixel
R(x,y) forms a correlation map R for 0 <x <wp —wrgy, and 0 <y < hp — hyp,. Figure 4
shows the results of map R obtained from the patches shown in Figures 2(b) and 3. Notably,
the bright pixels indicate that a high similarity occurs at these locations.

Figure 4. Correlation map from the patches in Figures 2(b) and 3.

7. Abinary thresholding process is applied on this map to obtain a binary map Rp as follows:

1,if R(x,y) = Tsim;

Rp(x,y) = { 0, otherwise

2)

This step sets the pixels that correspond with the relatively high correlation values to one and sets
others to zero.

8. A morphological opening operation is conducted to reduce small noise in map Rg. Figure 5
shows the results of this step. As observed from the enlarged region depicted on the right, each
presented bright dot is an object that is formed with connected bright pixels.

Figure 5. Results of binary-thresholding followed by the opening from the correlation map.
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9. The connected component method is applied to label all bright objects in map Rg, and then
calculate the centroid of every object. Here, ¢; = (x;,y;) denotes the center of the i-th object, and
1 < i < Nop,; for atotal of Ngyp,; objects obtained from Rg.

10. A set of displacement tuples is found by considering every possible pair of (i,j), for 1 <j <
Nop; and j < i < Nop,;.

D={dij=(lxi~xl||yi—»])Ivi>j} 3)

Here, we only count under the condition satisfying i > j because d;; is equal to d;.
11. Every displacement vector d;; contributes to a voting space V(p,q) as follows:

V(|xi = x| [y = i) « V(% = %] [y —wi]) +1 4)

Similar to the voting technique used in Hough transform, we accumulate all displacement
vectors in the voting space V to determine the parameters (width and height) of the template.

12. Similar to steps 7-9, the centroid of every local peak is found in this voting space, and the
centroid ¢* = (p*,q") thatis nearest to the origin of V is then localized. Therefore, the template
size is estimated as follows:

wip =p* and hy, =q". (5)

2.1.2. Standard Template Extraction

We now want to find regularly repeated regions inside the initial template (as shown in Figure

3). The process of finding such a region is described in detail as follows.

1. The initial template is first smoothed using a two-dimensional Gaussian filter with a kernel size
of 5x5 pixels. Because the weights are effectively zero out of a 5x5 filter when approximating to
Gaussian function with a standard deviation o = 1.0, we select this kernel size in this study.

2. Thresholding is applied to the filtered template, where the threshold is determined using Otsu’s
well-known method [20]. Figure 6 shows the results of this step.

3. After labeling all bright objects, the largest one is found and its centroid (xy,y.) is recorded.

4. A patch centered at (xy,y1) is cropped to a size of (wﬁ)l, h%pl) pixels from the initial template.
This cropped image can be considered the standard template. In Figure 7, the green rectangle in
subplot (a) shows the extracted template and (b) shows its close-up.

This extracted template is used to detect the die patterns in the initial template to check whether
the number of detected die patterns is sufficient. If the number of patterns is insufficient, the
algorithm of automatic template extraction is re-conducted.

Figure 6. Binarized image of the initial template in Figure 3.
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Figure 7. Patches: (a) extracted from the initial template; (b) used as a standard template.

2.2. Die Pattern Detection and Clustering

Die patterns that are similar to the standard template are expected to be detected from the
original SAT image. Following steps 6-9 described in the template size estimation of Subsection 2.1,
regions that are highly similar to the template are obtainable. The yellow dot in Figure 8 indicates
that there is a die pattern found at that location, that is, a region similar to the template exists. Notably,
some die patterns are not detected because their similarity is insufficiently high. They possibly result
from imaging anomalies, wafer fabrication defects, and belonging to other pattern types such as
alignment marks. From Figure 8, it is evident that the detected die patterns are arranged in rows and
columns, and the mis-detected die patterns (dark holes inside the wafer) are possibly retrieved from
their neighboring dies. Therefore, this subsection presents a clustering method for obtaining the
columns and rows in the arrangement by using the detected die patterns and predicting the
coordinates of these rows and columns. Eventually, the positions of these mis-detected patterns can
be obtained via interpolation or extrapolation approaches.

Figure 8. Die detection result of original SAT image.

Let P, be the k-th detected die pattern and (x{“ yi") be its top-left corner for 1 < k < Np,
where Nj is the total number of detected patterns. In general, the wafer is well aligned during the
SAT imaging process; consequently, die patterns are neatly arranged in rows and columns. The die
patterns in the same column (or row) possess almost the same horizontal (or vertical) location x;"“
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(or yi¥). Hence, a simple clustering method using a distance metric is used for grouping {x;" | k =

1,2,...,Np} along the horizontal direction, and then find the number of columns. The criterion is to

produce clusters with short intra-cluster distances and long inter-cluster distances. Let us first define

a distance threshold as Ty = W{ip] /2, the index set of which is X = {1,2, ..., Np}, the selected set § is

empty, and the cluster set C is empty. The proposed algorithm for clustering {x;"} is briefly

introduced as follows.

1. Let the first coordinate point x{“ be taken as the first cluster center ;. Let the selected set be
§ = {1}, and the cluster set C = {c,}.

2. Select the next point from {x/™ |l € X\S§}, and compute the distance d.(x/") for every c € C.
Apply index [ into set §.

3. Compare this distance d.(x[") with the threshold Ty. If d.(x[") < T, then set x“ belonging
to cluster c¢. Next, update center u, by averaging all coordinate points belonging to cluster c.
In contrast, let x" become a new prototype point, and add a new cluster cyc)+1 with its center
Luey+1 = X/ . Here, #(C) denotes the number of clusters in C.

4. Repeat steps 2-3 until all coordinate points belong to their corresponding clusters.

The four steps above form an iteration obtaining the clusters with centers. Based on these clusters,
a new iteration is created to assign all coordinate points {x{“} to their nearest cluster in the same
manner. This clustering algorithm will terminate when the clustered results of two consecutive
iterations are the same. Consequently, the number and coordinates of the columns from all detected
die patterns can be obtained.

Similarly, the coordinate points {yg L | k =1,2,..Np} are clustered in the same manner. Thus,
every row and its representative coordinate are obtained. Thus far, the number of columns and rows
from the detected die patterns can be obtained. Assuming that the detected patterns arrange in N
columns and M rows. Let (xi, y4") be the top-left corner of an arbitrary die pattern in the original
SAT image, where the subscript n € {1,2,..,N'} denotes the n-th column and subscript m €
{1,2,.., M} denotes the m-th row. Using these corners and the estimated size of the standard
template, all patterns, including the die patterns and predicted pattern candidates, in the wafer image
can be obtained.

[xat xnt + wig) X [yt vt + hip) ©)

indicates the two-dimensional region of the pattern located on the n-th column and m-th row.
Figure 9 shows all patterns, in which the yellow and blue dots denote the locations of the detected
and predicted patterns, respectively. Every pattern will be further categorized into normal, abnormal,
or other predefined classes. At this point, the initial wafer map is produced; however, the patterns
need to be identified later.

2.3. Pattern Classification for Inspection

As shown in Figure 9, a wafer map full of the detected (yellow) and predicted (blue) patterns
was produced. In this subsection, we further categorize each of them into one of the following classes:
1) background (outside the wafer), 2) alignment mark, 3) normal (non-defective die), or 4) abnormal
(with some errors, such as cracks, defects, or imaging noise). Figure 10 shows typical examples of
these four classes. In addition, more cases of different abnormal patterns are shown in Figure 11,
which are caused by fabrication detects (subplots (a) to (d)), such as cracks, and imaging errors
(subplots (c) to (d)). The next task is to perform our image classification method to analyze any
patterns. Here, a learning-based method composed of image feature extraction and image
classification was used in our study. Numerous networks possessing a deep architecture have
verified the effectiveness of the image extraction. As mentioned in Section 1, we selected several
popular image feature extraction models, including VGG-16 and VGG-19 [12], InceptionV3 [16],
MobileNet [18], and ResNet-50 [14], for evaluation. ResNet-50 was finally chosen as the image
extractor of our proposed method. The details of the performance comparison are described in
Subsection 3.3. This image extractor is followed by a fully-connected neural network designed for
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image classification. Thus, the entire architecture of our proposed method for pattern identification
is as depicted in Figure 12. The details of its implementation are provided in Subsection 3.1.

Figure 9. Initial wafer mapping result from detected and predicted die patterns.

(a) (b) (d)

Figure 10. Four different patterns: (a) background; (b) alignment mark; (c) normal; (d) abnormal pattern.

(b)

Figure 11. More examples of abnormal patterns.

3. Implementation, experimental results and discussion

First, three SAT images captured from different wafers (in the same batch) were prepared for
the following experiments. For convenience, we named them img01, img02, and img03. In this section,
we focus on the explanation and implementation of 1) automatic template extraction, 2) the training
and testing stages of our pattern classification method, and 3) a discussion on using different
networks as the backbone of the image feature extractor. To meet the computational requirements
when executing a deep CNN-based model, a GPU-accelerated computer equipped NVIDIA GeForce
GTX-1060 was used to implement our proposed method. The entire algorithm is programmed in
Python and uses OpenCV and TensorFlow.
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Figure 12. Deep CNN for die pattern classification.

(b)

Figure 13. Results of template extraction for img01, img02, img03 SAT images.

3.1. Experiments on Automatic Template Extraction and Die Detection

The proposed method for template extraction was verified using images img01, img02, and img03.

The parameters used in this experiment are as follows:

e The size of the original SAT image is wqig = 30,000 and hgig = 30,000.

e The size of the image patch: wp = wq,4/5 = 6,000 and hp = hgyig/5 = 6,000. This size is
determined to ensure that there are sufficient die patterns in this image patch. If template
extraction fails, this size can be increased by wp = wgig/4 = 7,500, hp = hgyig/4 = 7,500, and
so on.

e The size of the initial template wrp = wp/3 = 2,000 and hrp = hp/3 = 2,000. The criterion for
determining this size is to ensure that there exists one (or more) whole die pattern in this initial
template. Generally, this size is big enough to detect and extract a standard template.

o  The similarity threshold is the 90th percentile value of the map R(x,y), that is, Ty =
0.9 x rgclz;x{R(x, )}

e  The binarization thresholds are adaptively determined using Otsu’s method [20].

Table 1. Numerical results of die pattern detection.

Template size # of detected die # of predicted

Image Template (unit: pixels) patterns regions
img01 13(a) 300 x 320 6,745 1,718
img02 13(b) 306 x 318 6,756 1,889
img03 13(c) 302 x 320 6,763 1,882

Figure 13 shows the extracted templates, in which subplots (a), (b), and (c) correspond to img01,
img02, and img03, respectively, and the estimated template size can be found in Table 1. These are
very similar because their original SAT images are from the same batch of wafer products. Next, we
apply template matching followed by clustering to obtain an initial wafer map that contains the
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detected die patterns (marked by the yellow dots) and predicted pattern candidates (marked by the
blue dots). Figure 14 shows the results of the initial wafer maps for images img01, img02, and img03.
These wafer maps need to be further analyzed by conducting our proposed classification model for
every pattern.

(a) (b) (©)

Figure 14. Results of die pattern detection for img01, img02, img03 SAT images.

3.2. Implementation of Die Pattern Classification

In this subsection, the proposed pattern classification model trained using our own dataset is
described. The standard network, as depicted in Figure 12, contains over 25 million trainable
parameters. The first half of the network is a ResNet-50 feature extractor, the input of which is a
normalized pattern image with a size of 224x224 pixels and a feature vector output of 2,048x1. The
complete compositions of ResNet-50 are shown in Table 2. The second half is a fully-connected neural
network applied to conduct four-class classification, the thorough architecture of which is tabulated
in Table 3.

Table 2. Architecture of feature extractor in our pattern classification model.

Feature Extractor: ResNet-50 Encoder

Layer name Kernel size Stride Channels  Repeat times

Conv 1 7x7 2 3-64 1

Pool 1 3x3 2 1
1x11

Resblock 1 3x3 1 64—256 3
[1x1]
111

Resblock 2 3x3 1 256—512 4
[1x1]
111

Resblock 3 3x3 1 5121024 6
[1x1]
111

Resblock 4 3x3 1 10242048 3
[1x1]
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Table 3. Architecture of fully-connected network in our pattern classification model.

Classifier: Fully-connected neural network

Layer name Input dimension Output dimension
FC-11 2048 1000
FC-21 1000 100
FC-31 100 4
Softmax 2 4 4

1 FC = Fully-connected layer.
2 Softmax is used to map the output of a neural network to a probability distribution over

the predicted output classes. This ensures that the sum of all output elements equals 1.

During this experiment, we collected a total of 2,150 samples to form our training dataset, and
manually identified them into four categories: 1) background, 2) alignment mark, 3) normal, and 4)
abnormal. This dataset is also divided into training and validation sets, the data distribution of which
is listed in Table 4. There were 1,780 samples used for learning the model and 370 samples applied
for validation. Some commonly-used data augmentation techniques are applied in the present work,
including shifting and flipping, rotation, and brightness shifts. We set the hyper-parameters as
follows: rotation range of [—5° 5°], spatial shifts of [O.ZW-;pl, O.Zh-*rpl], brightness shifts of [1,10], a
random zoom range of [0.8,1.2], dropout probability of 0.5, batch size of 8, maximum epochs of 15,
optimized using Adam with commonly-used settings of f; = 0.9, B, = 0.999, and € = 1078, and the
learning rate n of 107°. Figure 15 shows the per-epoch trend of training and validation accuracy.
Note that we terminated the training process after eight epochs because the training and validation
accuracy converged to 89.13% and 99.46%, respectively. As shown in the figure, the training accuracy
is less than the validation accuracy; this situation can be attributed to several reasons: 1) The
regularization mechanisms, such as the dropout and L1/L2 weight regularization, were turned on
during training. 2) When using the Keras library in the TensorFlow, the training accuracy for an epoch
is the averaged accuracy over each batch of the training data. Because the model was changing over
time, the accuracy over the first batch was lower than that over the last batch. On the contrary, the
validation accuracy for an epoch is computed using the model as it is at the end of the epoch, resulting
in a higher accuracy. 3) The techniques of data augmentation used during training probably
produced certain samples that were difficult to identify. Finally, we used 370 additional test data for
evaluating the learned model, the results of which are summarized in Table 5 as a confusion matrix.
Only two normal samples were incorrectly identified as an abnormal class. The overall accuracy was
greater than 99%, and the accuracy for the normal samples was 98.57%.

0.9
0.8
>
Q
ol
3
9 07
< =o=Training
06 —a-\alidation
0.5
1 2 3 4 5 6 7 8
Epoch

Figure 15. Training and validation accuracy.
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Table 4. Distribution of data in our training dataset.

Class label # of training samples # of validation samples
Background 417 83
Alignment mark 386 64
Normal 560 140
Abnormal 417 83

Table 5. Confusion matrix for test dataset.

Predicted Alignment Accuracy
Background Normal Abnormal
True mark (%)
Background 83 0 0 0 100
Alignment mark 0 64 0 0 100
Normal 0 0 138 2 98.57
Abnormal 0 0 0 83 100

Table 6. Comparison of different models for image feature extraction.

Extractor Time (unit: ms) Number of parameters
Min. Max. Avg.
VGG-16 30.25 35.63 31.02 14,714,688
VGG-19 36.75 39.63 37.19 20,024,384
InceptionV3 33.38 45.88 35.02 21,802,784
MobileNet 24 30.63 25.03 3,228,864
ResNet-50 31 42 32.58 23,587,712

3.3. Comparison among Feature Extractors

When designing the architecture of our deep model, several CNN-based models that are
frequently used in image featuring were evaluated. In this subsection, five popular backbones,
namely, VGG-16, VGG-19, InceptionV3, MobileNet, and ResNet-50, were chosen for comparison. For
fairness, their inputs were normalized to an identical size and followed by the same classifier. Their
training and validation accuracy are presented separately in Figures 16 and 17. It can be seen that
ResNet-50 outperformed other approaches after six epochs. Moreover, it is evident that the validation
accuracy of ResNet-50 is consistently high. A computational comparison between these backbones is
listed in Table 6. Here, the minimum, maximum, and average computational times for a pattern
image and the total number of parameters of different backbones are summarized. Although ResNet-
50 has the maximum number of parameters, its computational time is still acceptable for wafer
inspection, and it was chosen as a standard subnetwork for the image feature extractor applied in our
proposed method.
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Figure 17. Validation accuracy for different CNN-based networks.

3.4. Wafer Map Generation for Inspection Visualization

The final result of our proposed method is a multi-class wafer map, the classes of which can be
manually defined by users. In this paper, four classes are applied: background, alignment mark, and
normal and abnormal patterns. Let the original SAT image be the input; thereafter, automatic
template extraction, pattern detection, and prediction steps, followed by pattern classification, are
conducted. All patterns are found, and the information of each pattern, including the location, width,
height, and its class is also obtained. Figure 18 shows the final results corresponding to images img01,
img02, and img03. The patterns belonging to the background, alignment mark, and normal and
abnormal pattern classes are plotted in gray, white, green, and red, respectively. The analyzed wafer
maps are useful for visualizing defects and finding potential fabrication issues.

(a) (b) ()

Figure 18. Results of our proposed inspection method for img01, img02, img03 SAT images.
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4. Conclusions

In this study, we proposed a vision-based method for detecting and recognizing dies on a wafer.
The main contributions of our method include an automatic scheme of a standard template extraction,
clustering based on the distance to produce a wafer map, and a deep learning-based pattern
classification model. An ordinary template matching was employed to detect regularly repeated die
patterns. Thus, we proposed a template extraction algorithm that provides a reliable template for
finding such patterns. Furthermore, a clustering technique applying the distance criterion was
introduced to predict the locations of the pattern candidates. For the pattern classification phase, we
designed a deep CNN-based model composed of an image feature extractor and a classifier to
identify patterns as different classes. The effectiveness and efficiency of our proposed method were
evaluated experimentally. Furthermore, qualitative and quantitative evaluations were also
conducted. By applying the proposed visual inspection method, SAT images from wafers can be
completely analyzed and used to form wafer maps. These wafer maps can provide important
information for finding and analyzing wafer manufacturing problems in the semiconductor industry.
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