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Abstract

Within the past several decades, the emergence of new viral diseases with more severe health
complications and mortality, primarily in older adults with comorbidities, is evidence of an age-
dependent, compromised bodily response to abrupt stress with concomitant reduced immunity.
The emergence of new infectious coronaviruses such as SARS-CoV-2 has resulted in the
coronavirus disease 2019 (COVID-19). The result is increased morbidity and mortality in
persons with underlying chronic diseases and among those with compromised defense
mechanisms, regardless of age and among older adults who are more likely to fit these
categories. COVID-19 appears to be primarily an upper respiratory disease. While SARS-CoV-2
is highly virulent, there is variability in the severity of the disease and its complications in
humans. Severe pneumonia, acute respiratory distress syndrome (ARDS), lung fibrosis, cardiac t
complication, acute kidney injury, hospitalization, and high mortality have been reported in older
adults with COVID-19, that result from pathogen-host interactions. Here, we review potential
interactions of the coronavirus and host cellular responses in relation to hallmarks of aging
including genomic instability, telomere attrition, impaired autophagy, mitochondrial dysfunction,
innate immunosenescence, inflammation and inflammasomes, adaptive immunosenescence, and
epigenetic alterations, that likely contribute to the increased pathophysiological responses to

SARS-CoV-2 among older adults.
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Introduction

The recently emerged coronavirus SARS-CoV-2 is distinguished phylogenetically from other
coronaviruses(1), causing more severe upper respiratory tract infections or distress and
admissions to intensive care units (ICUs). This often results in mechanical ventilation, as well as
mortality(2-5), mainly in persons with comorbidities or compromised immune systems such as
diabetes, hypertension, and cancer(6,7). Previous outbreaks of community-acquired pneumonia
and severe respiratory disease from coronaviruses were reported in 2003 and 2012, causing
severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS-
CoV), respectively(8). The latest coronavirus disease 2019 (COVID-19) started in Wuhan,
China(9,10) and with its high virulence capacity and fast transmissibility, primarily through
aerosol droplets(15), rapidly spread around the world (9,11,12) COVID-19 may appear as
asymptomatic or minimally symptomatic with or without fever, cough, shortness of breath,
fatigue, and gastrointestinal symptoms, with possible progression to moderate or severe
pneumonia, severe symptomatic acute respiratory distress syndrome (ARDS), heart
complications, and kidney injury(3,7,13,14), In clinical examinations, most patients had
deceased numbers of lymphocytes (lymphocytopenia) and platelets (thrombocytopenia)(3).
Increased inflammation and increased blood clots (D-Dimer) were reported in older patients with
interstitial pneumonia and ARDS. Computed tomography (CT) depicted multifocal ground-glass
opacities and subsegmental areas of consolidation and fibrosis in some cases even without overt
clinical symptoms (15).

The silent spread of SARS-CoV-2 via asymptomatic cases likely increases transmission to all
individuals but may be especially important for older persons who are at higher risk for more

severe complications(5,16-18). Currently, there are no proven treatments, only preventive and
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supportive interventions. However, both the virus and host contribute to COVID-19 initiation,
progress, and poor outcomes. Therefore, better understanding both the virus attack process and
the subsequent host response is likely to yield better clinical management among older adults.
Normal aging includes changes at the cell, tissue and organ levels (the “hallmarks of aging”) and
these contribute to morbidity and morbidity in the aging population. These hallmarks

include genomic instability, telomere attrition, impaired autophagy, mitochondrial dysfunction,
innate immunosenescence, inflammation and inflammasomes, adaptive immunosenescence, and
epigenetic alterations (Figure 1)(19,20). With the COVID-19 pandemic, consideration of these
hallmarks when treating infected older patients may be critical to enhance positive outcomes.
Here we focus on some of the hallmarks of aging with their potential roles in the host response to
SARS-CoV-2 infection.

SARS-CoV-2 virology

Classified within the Coronaviridae family, SARS-CoV-2 shares the main common
characteristics of this family. Coronaviruses are enveloped, with large (~30-kb) single stranded,
positive-sense RNA(21). Their genome is divided into two parts, 5° two-thirds and 3™ one-third,
with former including ORF1a and ORF1b that encodes ppla and pplab, two large polyproteins
that can be cleaved to smaller non-structural proteins (nspl to 16) required for new viral genetic
material. The rest of genome includes genes that encode the structural proteins and the accessory

genes, which produce virions and play a role in the host response, respectively(22).

Structural proteins include the Spike (S) glycoprotein known for its pathogenicity and having
two functional subunits, S1 as the receptor binding domain and S2 for mediating fusion between
the virus envelope and host cell membrane; nucleocapsid (N), shown to be involved in genome

replication; a membrane (M) protein originated from host organelles such as endoplasmic
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reticulum or Golgi and responsible for virus assembly; and the envelope protein (E) (Figure 2,
Tablel). Replication commences by the binding of the S protein to angiotensin-converting
enzyme 2 (ACEZ2), a cell surface receptor, in a manner similar to that of SARS-CoV, but with
stronger affinity (23, 24,28). ACE2 is expressed in the vascular endothelia, lung, kidney, small
intestine epithelial cells, immune cells, and testis (28,29). The virus enters the cell through either
an endosome (in acidic environments) or by host cell protease cleavage via Furin or TMPRSS2,
a serine protease shown to contribute to the immunopathology and lung illness of SARS-
CoV/(25-27). Using their own RNA polymerase, coronaviruses replicate in the host cell
cytoplasm using the host ribosome machinery to produce proteins. Subsequently, particle
assembly occurs in the host endoplasmic reticulum-Golgi intermediate complex (ERGIC), and
mature virions are released through a secretory mechanism in smooth-walled vesicles. The host
and virus factors interact in all processes, including entry into the cell, translation of replicase
and replication transcription assembly, genome replication and transcription, translation of
structural proteins, virion assembly, and release. (Figure 2). SARS-CoV-2 highly resembles
SARS-CoV, with 77% similarity of residual amino acids of the S protein to that of SARS-CoV.
Also, the similarity of N, M and 3a proteins in SARS-CoV and SARS-CoV-2 implies a similar
pathogenic pathway (28).

Hallmarks of Aging and COVID-19

Genomic instability

With aging, somatic mutations accumulate in cells and tissues leading to altered gene expression,
and with diminished DNA repair capacity, results in genomic instability(29). Collectively,
adverse cellular responses to DNA damage, such as programmed cell death (apoptosis), cellular

senescence, proteomic changes, and the effects on the error-prone mitochondrial genome have
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been reported as a reflection of genome instability; a putative common denominator of aging and
the decline in general bodily function(30). Genetic instability via age related accumulation of

somatic mutations has been reported for all cells, especially among cells of the immune system.

Diminished DNA repair capacity is decreased with aging. The DNA repair machinery involves
p53 functions, with mild and transient activation protecting cells from oxidative damage in
response to low stress. Conversely, in high levels of oxidative stress, persistent activation of p53
and increased mitochondrial outer membrane permeability results in apoptosis (Figure 2)(31).
Also, with aging, it has been shown that p53-mediated reduction in stress-induced p38 mitogen-
activated protein kinase (p38MAPK) can diminish senescence-associated secretory phenotype
(SASP). Additionally, p38MAPK is shown to regulate SASP independent of the canonical DNA
damage response (DDR)(32). Overall, DDR can play a role(s) in the pathogenesis of RNA
viruses through apoptosis induction, deleterious somatic mutations, and excessive stimulation of

inflammatory immune responses (Figure 3)(33).

Coronaviruses can induce cell arrest(34), but p53, through regulation of the cell cycle, can
downregulate coronavirus replication(35). However, the coronavirus papain-like protease in
SARS-CoV degrades p53 and interferes with interferon type I signaling, one of the first steps in
the innate immune response to viral infection(36). Increased p53 phosphorylation was induced
by both SARS-CoV’s M and 3a expression in mammalian cells, leading to cell cycle arrest at
G1(37). Additionally, the N protein, with a possible pathogenic role, can inhibit the activity of
the cyclin-dependent protein complex, resulting in hypophosphorylation of retinoblastoma, a cell
cycle check and tumor suppressor protein, and down-regulation in E2F1-mediated

transactivation, which results in the cell cycle arrest at the S phase(38,39).
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Of note, the 7a protein was shown to mediate apoptosis, interfering with Bcl-X (an anti-apoptotic
protein). Moreover, S, E, M, N, and accessory proteins 3a and 9b were also shown to modulate

apoptosis by activating the ER stress response and p38MAPK pathway (Figure 2)(40,41).

Together, genomic instability and DNA repair dysfunction are thus possible denominators of
various hallmarks of aging; not only are they likely to be a risk of poor outcomes, but their
impact is likely to be amplified with coronavirus infection as well as other pathogens whose

impact is greatest in the older population.

Telomere attrition

Telomeres are repetitive nucleotides (TTAGGG)n at the ends of each chromosome. The telomere
repetitive elements are motifs for shelterin, a protective protein complex, maintaining genome
stability. The telomere repeats can be transcribed to non-coding RNAs, called TERRA (telomere
repeat-containing RNA) that regulate telomeric structure and function. In addition, there are
regions near telomeres, called subtelomeres, containing particular CG-enriched genes that
regulate innate immunity(42). These genes, affected by telomere length, regulate TERRA
transcription and can be elevated in response to viral infection. Of these genes, interferon-
stimulated gene (ISG)-15 is the most significantly activated ISG in response to viral infection.
This suggests that telomere length, TERRA, and subtelomeric regions are linked with innate
immunity. Immune cells with diverse telomere lengths, often observed with aging, may underlie
differential viral immune responses(42). Another consequence of telomere attrition is the
premature induction of genome instability in viral-specific CD8+ memory T cells resulting in
senescent or antiapoptotic cells(43). enhancing what has already commenced with aging and

reported in association with chronic diseases and lifespan(44).Telomere attrition coupled with
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dysregulated innate and adaptive immune responses to viral infection is another aspect of

hallmarks of aging that can explain the severe outcomes in older adults with COVID-19.

Impaired Autophagy

Autophagy is a series of chaperon-dependent and chaperon-independent molecular actions for
degrading protein aggregates and maintaining homeostasis of organelles, including
mitochondria, peroxisomes and ribosomes, that in addition to protein and energy homeostasis
eliminates pathogens such as viral particles. It has been shown that with aging the autophagy

process is impaired and contributes to immunosenescence(45, 46).

The autophagy includes several ATG genes and protein complexes that participate in the
process. Briefly, autophagy initiation is with creation of a phagophore, with a double
membrane structure that originates from the endoplasmic reticulum, Golgi complex,
mitochondria, endosomes and/or the plasma membrane, and becomes an autophagosome.
MTORC1 and C2 are mammalian targets of rapamycin kinase and nutrient and stress level
detectors. In the absence of stress, the mTORC1/ULK1/2 complex inhibits phagophore
initiation. While under stress, including viral infections, the energy sensor 5° AMP-activated
protein kinase (AMPK) inhibits mMTORC1 and in turn activates downstream complexes, such
as phosphoinositide3-kinases( P13)/protein kinase B (AKT1), resulting in the induction of
autophagy and virion encapsulation(47). This leads to formation of an autolysosome, and the
autophagosomes fuse with lysosomes (phagolysosomes) to degrade the viral contents with

lysosomal hydrolases(47).

Additionally, autophagy can augment adaptive immune responses to viral infections.

Autophagy increases processing and presentation of viral antigens to the major
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histocompatibility complex (MHC)-I located on antigen presenting cells (APCs), such as B
cells, macrophages and dendritic cells. APCs, in turn, present viral antigens to CD4+ T cells to
release cytokines and regulate adaptive immune responses. Through phagosome-lysosome
fusion, Autophagy interferes with viral replication by inducing release of interferon gamma
(IFN- ) from CD4+ T helper 2 cells, which in turn promotes T cells, NK cells and
macrophages(48). Autophagy may also introduce endogenous viral antigens to CD8+ T cells
through APCs. It also controls the inflammatory response through degradation of damaged
mitochondria, preventing accumulation of ROS and activation of inflammasomes, [nucleotide-
binding oligomerization domain-like receptors and pyrin domain-containing protein 3
(NLRP3)]. Moreover, it recognizes targeted pro-interleukin-1p for lysosomal degradation to
modulate inflammasome responses(49-51). While some viruses evade direct autophagy,
immune-mediated effects of autophagy may help with viral infection control and

inflammatory-mediated tissue damage.

Niclosamide and valinomycin, two FDA drugs approved for other purposes, have been shown to
enhance autophagy and diminish viral replication(52). While for polyamines, such as spermidine,
that were also suggested to bolster autophagy, controversial results have been reported in regards
to viral infections(20,53). It has been reported that rapamycin and Vitamin D3, two drugs with
suggestive anti-aging effects, have antiviral efficacy by increasing autophagy(49,54). Despite its
immunosuppressive effects in transplant patients(55), rapamycin inhibition of mMTORC1
improves immune function in older adults(54). Therefore, it may have dual benefits in older
adults with COVID-19 infection and presumably would result in improved survival outcomes.
Some clinical trials using rapamycin have shown no serious side effects(56,57). Moreover, the

antiviral brefeldin A interferes with RNA virus trafficking by inhibiting membrane formation
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from the ER and Golgi system through a noncanonical autophagy pathway(58). Together,
impaired autophagy, along with stimulated inflammasome pathways discussed below seen in
viral infections(59) may be another hallmark of aging that explains the severity of COVID-19

and poorer outcomes in older adults.

Mitochondrial dysfunction

Mitochondria, a power generator in cells, utilizes oxygen and nutrients to form ATP. ATP is
produced by glycolysis in limited amounts and in large amounts by oxidation of Krebs cycle
intermediates coupled to electron transport chains. In response to stress and pathogens,
mitochondria produce additional amounts of reactive oxygen species (ROS); this has been
associated with age-related diseases and decreased life span and is one of the contemporary
theories of ageing(60,61). ROS is a normal part of bodily defense mechanisms, but during stress,
high amounts are damaging. Detoxifying systems, including catalase, superoxide dismutase,
glutathione peroxidase and glutathione reductase with selenium and magnesium as their
cofactors(62), vitamin E and C, and coenzyme Q10 (which decreases with aging), help to
minimize ROS-induced tissue damage(61,63). Virus infection, including coronaviruses, can

induce ROS production and apoptosis(64).

The carnitine shuttle, a crucial mitochondrial process involved in ATP production from fatty acid
beta oxidation (FAO), is required for optimal adaptive T cell mediated immune responses(65).
FAOQO, via depleting fatty acid availability, may reduce viral replication(66).

Accumulation of mutations in mitochondrial DNA (mtDNA), also observed with aging, can also
impair mitochondrial function. For example, in response to apoptotic genes and outer membrane

permeability, cytochrome c is released to the cytoplasm, where it activates intrinsic and extrinsic
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apoptotic pathways and tissue damage. Moreover, mitochondrial function can influence both
innate and adaptive immunity. As a damage-associated molecular pattern (DAMP), mutated
mMtDNA activates NF-kB and NLRP3 pathways and mediates cytotoxic responses to lung cell
stress(60,67). Viral RNA also activates mitochondrial antiviral-signaling proteins (MAVS) by
activating RIG-I (a receptor for RNA viruses) which in-turn activates NF-kB and interferon-
regulatory factors. Moreover, MAVS activates NLRP3 and release inflammasome factors.
Metformin, an anti-diabetic drug recently proposed as an anti-aging modality, has been shown to
improve T cell function through increased FAO and AMP-activated kinase (AMPK)(66).
Induced hypoxia and shortness of breath, along with ARDS, are the main symptoms of COVID-
19. Therefore, mitochondrial dysfunction, a prominent hallmark of aging, would appear to be a
most critical system for intervention. Impaired respiration, diminished ATP production,
increased ROS, reduced detoxification capacity together with dysregulated immune function,
seems likely to play a pivotal role in the development of severe ARDS and mortality from
COVID-19. The impact of mitochondrial dysfunction may be especially catastrophic in patients

with insulin resistance and other comorbidities(66).

In addition to controlling metabolism and minimizing senescence, other anti-aging modalities
such as increasing the expression of the deacetylation enzyme SIRT1 (nicotinamide adenine
dinucleotide-dependent acetylase) have been reported to increase the life span and overall
health(68). SIRT1 was also reported to have antiviral effects(69), and its interaction with
FOXO3 (a transcription factor that is a sensor of the insulin signaling pathway) plays a role in
longevity by mediating response to stress(70). However, SIRT1 was also proposed as having
proviral activity in MERS-CoV replication(71). The effect of SIRT1 and FOXO3 solely or their

interactions with COVID-19 or other lethal RNA viruses require more investigation.
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Thus, there is a nexus of effects between mitochondrial function, immunity, stress and ageing

that all come into play upon viral infection.

Innate immunosenescence, inflammation and inflammasomes

The human body uses recognition receptors (PRRs) to identify pathogen-associated

molecular patterns (PAMPs) and endogenous danger (or damage)-associated molecular patterns
(DAMPs). The most well-known PRRs include the toll-like receptor (TLR), cytoplasmic
retinoic acid inducible gene-1 (R1G-1) and RIG-1 like receptor (RLR), and nucleotide binding
oligomerization domain (NOD)-like receptor (NLR). TLRs are induced in response to
recognized particles(72). For example, TLR7, which resides on chromosome X, is activated in
response to single stranded RNA viruses. TLRs then exert their effects through a set of adaptor
proteins such as MyD88 and TRIF, which are responsible for the production of proinflammatory
cytokines and IFNs type I and 111, respectively(73). IFN-I11 is released locally when virus invade
epithelial barriers, while IFN-I is more potent and systemic. The IFNs limit virus spread,
modulate the immune system and promote macrophage, NK, T and B cells activity(74).
However, it has also been shown that SARS-CoV can antagonize IFNs and evade the immune

system(75).

RIG-I-like receptors are also sensors for RNA viruses and can activate MAVS, as discussed
under mitochondrial dysfunction above, which in turn induces NF-xB-related factors, such as IL-
6, TNF-a and IRFs, and NLRP3-related factors, such as IL-1p and IL-18, shown to be involved
in inflammasome activation(72). Elevated inflammasome pathways in normal aging have also
been associated with age-related chronic diseases. RNA viral infections such as coronavirus can
result in surging inflammasome levels that can exacerbate the impaired immunological responses

in aging(59,76-78).

12
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With aging there are innate immunity modifications that diminish normal anti-viral responses,
such as attenuated interferon responses to viral infection in monocytes and neutrophils( 74,79—
81). Also, NK cells shift from less-mature, ready-to-release cytokine states to more mature
subsets with decreased function. Migration to the site of infection, response to the PRP ligands,
and phagocytosis of apoptotic cells declined in aged macrophages. Moreover, costimulatory
signals from the APCs (macrophages, B cells, NK and dendritic cells), that are required to
activate T cells, are also decreased(81). These defects in innate immunity with aging, coupled
with exposure to coronaviruses with high pathogenicity such as SARS-CoV2, can explain failure
of the initial steps to control COVID-19 infections and resulting critical conditions in older
adults.

ACE2 is an enzyme converting angiotensin (Ang)-1 to -2 and Ang-(1 to 7). Ang-2 has
profibrotic and proinflammatory roles, increases macrophage phagocytosis, reduces
hematopoietic progenitor and stem cell proliferation, and increases spleen lymphatic
proliferation(82). However, Ang (1-7), and also almandine have anti-inflammatory actions.
ACE2 shows a protective impact against lung injury, suggesting a context and tissue dependent
effect for ACE2. Diminished ACE2 expression in a rat model of aging also suggest a paradoxical
role for ACE2 in older adults. Measuring ACE2 expression and viral loads in older adults with
COVID-19 will decipher this enigma(83).

Lung macrophages, including M1 with proinflammatory activity and M2 with regulatory
functions, provide localized lung innate immunity. Dysregulated activation of innate immunity
plays a primary role in encountering pathogens and in the elevated inflammatory cascade that
underlies the pathophysiology of ARDS(84). ARDS is also a systemic inflammatory syndrome

with reciprocal involvement of the lungs and other organ systems(85-88). Increased and
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sustained inflammasome-regulated cytokines have been associated with poor outcomes and
fibrosis in ARDS patients(89-93).

The SARS-CoV 3a accessory protein activates the NLRP3 pathway. Moreover, in tissue autopsy
of patients with SARS-CoV, high levels of both NF-kB- and NLRP3-related cytokines were
detected(94,95). Of particular importance was elevated tumor necrosis factor alpha (TNFa)
converting enzyme (TACE), a proteolytic enzyme in the processing of TNFa; TNF receptors
(TNFRs) and angiotensin-converting enzyme 2 (ACEZ2). Increased ACE2 and TACE levels have
been shown to be associated with poor prognosis in heart failure. In addition to Ang-2 levels,
TNFR-1 and TNFR-2 have been strongly associated with kidney failure(96). Thus, the heart and
kidney, as well as other organs enriched in ACE2 receptors, may benefit from drugs that
influence the renin angiotensin system and that ameliorate inflammation(97).

Another reported complication with COVID-19 is lung fibrosis. Multiple organ fibrosis is also
observed with aging, that in part, is believed to be the result of steady low-grade inflammation
evoked by senescent cells and increased TGF-beta and IL-13 production(98). In both SARS-
CoVs in addition to TGF-beta, overactivation of epidermal growth factor receptor signaling has
been shown(15,93). SARS-CoV-2 has also been reported to have a Furin-like cleavage site(99).
One premise is that Furin activity is increased after cleavage of SARS-CoV-2 S protein. Furin, a
host cell protease, increases both NLRP3 and NF-«kB pathways and plays role in various disease
and viral infection symptoms(100). Moreover, Furin can cleave the cytokine TGF-beta and
increase expression of the serine proteinase inhibitor alpha (1)-antitrypsin Portland(101). TGF-
beta can, in turn, increase collagen synthesis and development of fibrosis(102). The role of Furin

or other protease activities with SARS-CoV-2 require more elucidation.
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Additionally, with coronavirus infections, the incidence and severity of ARDS is higher in men
than women(103,104). Sex-disparity in innate immune response to pathogens has been shown.
With SARS-CoV, viral titers and the accumulation of inflammatory monocytes and neutrophils
in the lungs was higher among men. Estrogen receptor signaling may play a protective role(105),
and low testosterone levels have been implicated in reduced immunity(106). Accordingly,
investigation of inflammatory responses, viral loads and immune response patterns across sex
and age with RNA viral infections are required. Similar questions may be asked regarding the
sex-dependent survival paradox with higher mortality in men and more age-related frailty in

women.

Adaptive immunosenescence

Adaptive immunity includes humoral and cell immunity responses mediated by B cells and
CD8+ and CD4+ T cells that identify and respond to specific pathogens. B lymphocytes are
triggered to differentiate into immunoglobin (Ig) producing plasma cells by cytokine production
from CD4+ cells that recognize viral antigens presented via MHC-I11. All immunoglobins,
including IgA from respiratory mucosal cells and IgM and 1gG, have been reported with SARS-
CoV(72). IgM is the first antibody secreted in response to acute viral infection. 1gG, produced
later and enhanced upon re-infection, presents Fc segments that bind to complement receptors
residing on macrophages and dendritic cells, which facilitate the phagocytosis of infected cells.
Moreover, the Fc segments participate in antibody-dependent cellular toxicity mediated by both
NK and CD8+ cells. With aging, alteration in B cell numbers and decreased IgM and IgD levels
(antigen recognition soluble antibodies) shifts the naive (CD27-) towards memory (CD27+) B
cells(107). Moreover, in response to anti-viral vaccines, long-lived plasma cells decrease(108).

The key factors mediating the B cell response, including E47 and enzymes responsible for

15
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hypermutations required for antigen recognition sites, are also affected. Thus, there is diminished

effective antibody response to diverse and novel pathogens in older adults.

The communication between antigen recognition receptors (TCR) and co-stimulatory receptors,
on T cells and MHC-1 on antigen presenting cells (APCs), convert naive T cells to memory cells
which become effector cells to mount a highly specific response. The rest of the memory cells
remain in the body to respond to antigen re-exposure(109,110). However, the response is not as
vigorous in the aged.

Upon viral infection, activated cytotoxic CD8+ cells release enzymes that lyse infected cells and
degrade viral genomes. If CD8+ cells fail to eliminate the virus, cytokines are produced and
released from CD4+ T effector cells and induce inflammatory responses that may exacerbate
conditions and inflict damage(111).

The dysregulation of both the innate and adaptive immune systems with age has been termed
immunosenescence(112), for which accumulated somatic mutations and telomere attrition have
been suggested as culprits. Immunosenescence is an emerging concern for the aging population
in being able to respond to acute and chronic physical stress. With aging, hematopoietic stem
cells, and therefore, progenitors of both B cells and T cell lineages, and the structure of lymph
nodes, the secondary immune organ, are affected. Decreased numbers of naive CD8+ T cells and
reduced TCR diversity result in impaired recognition of new antigens and accumulation of
dysfunctional memory T cells(113-115). However, there may be a massive increase in memory
effector cells in response to a massive pathogen exposure, resulting in augmented inflammatory
response. Nevertheless, senescent immune cells were shown to diminish IFN response to viral
infection.116 Also, the reciprocal interactions between increased production of inflammation

mediators and immunosenescence have been shown(117). Of note, transcription factors FOXO1
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and FOXO3 that are expressed on T cells play an important role in entry to the cell cycle and
regulation of T cell function(118,119). Inactivation of FOXO through an autophagy-mediated
pathway (PI3/AKT) and their downregulation has been suggested to stimulate T cell proliferation
upon activation of TCR in response to PAMP or DAMP. While FOXO1 has been shown to
maintain T cell homeostasis, FOXO3 increases polyclonal CD8+ T cell expansion in a tissue-
specific manner by reducing apoptosis upon acute viral infection. This suggests a potential use
for FOXO3 as an adjuvant in vaccines.

Epigenetic alterations

With aging, cell-specific epigenetic alterations play a pivotal role in distinguishing immune cell
phenotypes, especially in T cells(119). Moreover, specific epigenetic modifications, such as
chromatin accessibility, via histone acetylation/methylation have been shown with aging(119).
Chronic viral infection can accelerate aging as measured through “epigenetic clocks.” Moreover,
persons with accelerating “epigenetic clocks” would possibly have more severe outcomes with
COVID-19 infections(120,121). Overall, these clocks are highly correlated with chronological
age. Moreover, the epigenetic changes in CpG-sites located in sub-teleomeric regions that
control innate immunity may mediate inflammatory responses to COVID-19. Changes in
chromatin accessibility following such stress are inevitable. However, distinguishing epigenetic
patterns based on viral infection from the ones developed based on normal mortality or
chronological age may predict the severity of COVID-19-related outcomes. Such epigenetic
patterns should be investigated. Moreover, differential methylation rates (DMR) following
COVID-19 infection may reveal accelerated aging and subsequent exacerbation of chronic
diseases in COVID-19 survivors. In addition, RNA viral infection may play a role in

retrotransposon-mediated changes in the genome, which may exert alterations in DMR in
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specific genome regions. Therefore, measuring the epigenetic signatures following COVID-19 in
short-term and long-term follow-ups is warranted.

Proteomics in aging

Recent studies have shown certain protein markers track chronological age and binary outcomes
of health versus disease as well as other age-related markers. Notably, growth differentiation
factor 15 (GDF15), a member of TGF-beta superfamily, and the most significant marker
associated with aging(122) has been associated with viral infection. Overexpression of

human GDF15 protein in mice increased inflammation and viral particle release, and in human
airway epithelial cells increased inflammation via inhibition of IFN-A1. Moreover, in patients
with ARDS, elevated GDF15 was a significant prognostic marker for poor outcomes(123). Use
of GDf15 in COVID-19 patients as a prognosis biomarker should be explored.

Medical Interventions

Targeting the SARS CoV-2 receptor: Among the various targets that impact viral binding and
cell entry, targeting the ACE2 receptor as well as the S protein are being considered. A
recombinant S protein that binds to ACE2 and thereby outcompetes the SARS-CoV?2 for binding
and viral entry into Vero cells has been proposed (in review)(124). Up on approval of the
surmise of decreased ACE2 expression with aging whether this modality benefit older adults
would be a conundrum.

Vaccines: A vaccine (MRNA1273) has been developed based on the SARS CoV-1 epidemic,
and testing has just started for COVID-19. The efficacy among older adults remains to be
elucidated. It is clear that among the numerous vaccines now being developed, a vaccine,
however effective, will not be a universal panacea. The primary problem remains that not all

individuals are vaccinated or become immunized and that older adults in particular have
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weakened responses to vaccines(113,125-128). To boost immune response, adding adjuvants to
vaccines has been suggested(129). Nevertheless, it is clear that alternate therapeutic strategies,
ideally orally active small-molecule agents, in addition to vaccines will be required.
Conceptually, and by analogy to HIV-1, it seems likely that a cocktail of agents that interfere in
several pathways will be required to deal effectively with the virus.

Minimizing inflammation: One critical phenotype of COVID-19 is ARDS and has been
approached by guidelines(5,130). However, to abate cascades of acutely activated
proinflammation(131,132), systemic removal of circulatory inflammatory markers and their
mediators would be needed. For example, plasma or whole blood exchange with healthy,
younger donors may benefit older patients with critical ARDS(133-137) as a crisis modifying
modality.

Blocking Viral Fusion and Replication: Recently, theaflavin, a polyphenolic compound in
black tea, has been suggested to inhibit viral replication targeting the RdRp enzyme(109-111).
Other pre-clinical medications include favipiravir, a more potent antiviral than lopinavir-
ritonavir(141,142), combined with tocilizumab, an IL-6 receptor antagonist used in rheumatoid
arthritis and other “cytokine storm” conditions(143,144), and remdesivir, an RNA polymerase
inhibitor, another potential prophylactic and therapeutic modality candidate against COVID-
19(145-147). Moreover, adding hydroxychloroquine to increase pH in endosomes may block
virus fusion mediated by the endosomal pathway.148 Although COVID-19 uses host ribosomes
as the cellular translation machinery no modality to target ribosome shift has been

suggested(149).
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Targeting Aging Related Pathways: Interfering with pathways associated with the hallmarks of
aging may improve response to anti-viral drugs(150). Potential drugs or drug targets include
rapamycin, and metformin, agents that decrease insulin levels and IGF-1 signaling as well as
inhibitors of the mTOR pathway, agents that reduce mitochondrial ROS production and activate
AMP-activated kinase (AMPK). The status of metformin as an antiviral remains to be elucidated.
On the one hand cellular senescence pathways impact viral replication possibly due to decreases
in virus-induced type I IFN expression(116). On the other, senescence may play an anti-viral role
as part of the host cell response(151). The role of senolytic drugs improve response to anti-viral
modalities and vaccines in older age patients with COVID-19 requires investigation.

At any age, calorie restriction and exercise improve health and immunity. These might help
minimize infection with COVID-19 although exercise is not always feasible among the elderly.
Although lists of drugs and vitamins have been suggested as candidate modalities, approved anti-
COVID-19 medications remain to be recognized(142,152,153). More importantly, at this
writing, none of the ongoing clinical trials have considered recruiting older patients. Thus, the
impact of all potential therapies and safety in older adults will need to be determined. We
suggest that an accelerated understanding of the interactions between COVID-19 and the host
hallmarks of aging, as well as targeted therapies, will be more likely to arise from focused
understanding of mechanisms in young and particularly old patients.

Conclusion

The COVID-19 outbreak is a worldwide public health problem whose consequences are likely to
persist for several years. Older adults and patients with comorbidities are at higher risk and
develop more severe and critical complications. Both the incidence and severity of disease

appear to be more prominent in men than women and more epidemiological reports from
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different geographical regions across age and sex are required. Coronaviruses use host factors for
replication that are impacted by age. Innate immunity neutralizing antibodies, cellular immunity
responses such as CD4+ and CD8+ T cells, B cells, natural killer cells, macrophages,
inflammatory host responses, along with specific virus antigen epitopes, play interactive roles in
disease development. The imposition of acute stress in older adults, where diminished reserves
and stress response capacity and reduced immune response to vaccines, place them at higher risk
for critical health complications and mortality. Together with anti-viral interventions, key
hallmarks of aging may offer insights for identifying and treating patients most at risk as well as
those with no or minimal risk. The study of patients with COVID-19 from time of infection to
long-term follow-up across the age spectrum in men and women will shed more light on the

basis for age and sex differences in response to such stressors.
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Table 1. COVID-19 Structural proteins, non-structural
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roteins, and accessory proteins

Replication phase Host factor Virus factor Function
Binding and entry ACE2 Spike glycol Cellular receptor
protein (S)
Attachment and entry S glycoprotein
Viral transcription/replication, Replicase
ribosome frameshift polyprotein 1a
(R1a)
Viral transcription/replication, replicase
ribosome frameshift polyprotein
lab (R1ab)
Protein 3a Independent
budding
Envelope small membrane Independent
protein (E) budding
Membrane protein (M) Virion
morphogenesis
Non-structural protein 6 (NS6) Unknown
Non-structural protein (Ns) 7a Unknown
(Ns7a)
Protein 7b (Ns7B) Unknown
Ns8a Unknown
Nucleoprotein (N) Viral genome
packaging
Ns14
Ns 9b Unknown
Ns10 Unknown
IFITM Inhibit cell entry
(interferon-induced
transmembrane)
TMPRSS2 Cleave and activate S
(Transmembrane protein

Protease Serine2)

Furin

Cleave and activate S
protein

Genome replication and
transcription

GSK3
Glycogen synthase
Kinase 3

Phosphorylate N protein
and facilitate viral
replication

Translation of structural
proteins

N-linked
glycosylation
enzymes in Golgi

Modify Sand M
protein; N-linked
glycosylation of the S
protein facilitates lectin-
mediated virion
attachment and
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constitutes some
neutralizing epitopes

Endoplasmic Proper folding and
reticulum maturation of protein
chaperones
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Figurel: Schematic of severe acute respiratory syndrome coronavirus-2(SARS-CoV2) and
Biological features clockwise: Telomere length, genome instability, mitochondria, stem cell,
extracellular matrix, Golgi, endoplasmic reticulum, cell membranes, epigenetics, senescent cells,

inflammation, autophagy.

Figure2.a: COVID-19 genome and proteins.
Figure2b: Coronavirus structure, cell entry and replication.
ACE2: Angiotensin-converting enzyme2, ERGIC: Endoplasmic reticulum-Golgi intermediate

compartment, ER: endoplasmic reticulum

Figure3. Mitochondria, outer membrane permeability and apoptosis pathways:

Apoptosis induced by coronavirus infection including intrinsic and extrinsic apoptosis.

Ligands: FasL, Fas ligand, TNF-o, tumor necrosis factor alpha, anti-apoptotic factors: Bcl2-
associated X; Bcl-xL, Bcl-2-like protein 1; Bcl2, B cell lymphoma 2, Mcl1, myeloid cell
leukemia 1; proapoptotic factors: PUMA, p53-upregulated modulator of apoptosis; BAD, Bcl2-
associated agonist of cell death; BAX; BID, BH3-interacting domain death agonist; BIM, Bcl2-
interacting mediator of cell death; APAF1, apoptotic peptidase-activating factor 1;

Casp: caspase; FADD: Fas associated via death domain; AKT: RAC-alpha

serine/threonineprotein kinase; SARS, severe acute respiratory syndrome(64).
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