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Abstract: In this study, differences in the kinetics of thermal-supported hydrolytic degradation of
poly(lactic acid) (PLA) sample wet spinning fibres due to material variance in the initial molecular
and supramolecular structure were analysed. The investigation was carried out at the
microstructural and molecular levels by using readily available methods such as scanning electron
microscopy, mass erosion measurement and estimation of intrinsic viscosity. The results show a
varying degree of influence of the initial structure on the degradation rate of studied PLA fibres.
The experiment shows that hydrolytic degradation at a temperature close to the cold crystallization
temperature on a macroscopic level is definitely more rapid for the amorphous material, while on a
molecular scale it is similar to a semi-crystalline material. Further, for the adopted degradation
temperature of 90 °C, a marginal influence of pH of the degradation medium on the degradation
kinetics was also demonstrated.
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1. Introduction

Poly(lactic acid) or polylactide (PLA) is the most commonly used biodegradable material,
produced from completely renewable sources such as sugar, corn or other vegetables [1]. This
thermoplastic aliphatic polyester exhibits similar mechanical properties as popular petroleum-based
polyesters, ~ with  additional = special  properties such as  compostability and
biocompatibility/bioresorbability [2,3]. According to the physical and chemical properties, PLA is a
promising alternative to petroleum-based polymers from the application point of view. PLA can be
used to form foams [4,5], films [6], fibres [7-9] and nonwovens [10,11] designed for many different
applications, from medical [12,13] to agricultural [14,15] use.

Commercially available PLA is synthesised by polycondensation of lactic acid (poly(lactic acid))
or ring-opening polymerisation of lactide obtained from the depolymerisation of oligomers of lactic
acid (polylactide), which is a product of the fermentation of biomass, such as corn [16].

The physical and chemical properties of final PLA products depend on chilarity of the polymer
chain, and from different supramolecular structures of polymer chains. The high chirality of PLA
chains reduces its ability to create a crystalline phase, which has a strong influence on the useful
properties of final products [17,18].
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PLA is also well known as a hydrolysable and unstable biodegradable polyester. Degradation
of this aliphatic polyester depends on the physical, chemical and biological agents used and is an
interesting subject from the scientific point of view. The degree and rate of degradation also depend
on the molecular and supramolecular structures of the polymer. The current state of knowledge on
PLA is based on experiments carried out under laboratory and natural conditions. The described
results of analysing degradation under laboratory conditions are focused on the influence of the
content of D-lactide isomer [19], the crystalline form [20], the content of nanomaterials [21,22] and the
pH and temperature of the degradation medium [23] on the rate of hydrolytic degradation, which is
the main way of PLA degradation; however, the tests were carried out on model samples and applied
a limited number of degradation factors. The results presented in these works testify that hydrolytic
degradation of polymer structures lasts up to many weeks and it is favourable to conduct it in
conditions close to the glass transition temperature of the polymer [24-26]. Other investigations of
PLA degradation carried out under laboratory conditions are thermal degradation [27,28], artificial
weathering [29,30] and composting [31,32].

An interesting issue in the field of life cycle assessment of PLA materials is testing in real
conditions, in which the true degradation time of PLA products can be verified. These tests should
take into account climatic conditions and the environment, including soil composition, and
degradation time may be even several years depending on the structure of the initial material [33,34].

In this paper, the results of investigating the influence of the initial molecular and
supramolecular structure of polylactide on the thermal-supported hydrolytic degradation of PLA
wet-spinning fibres are presented. The experiment was carried out with fibres characterized by
various molecular structures, including molar mass and content of D-lactide isomer of the polymer,
and various supramolecular structures, especially degree of crystallization and crystal form. The
process of degradation was carried out in a selected water base medium with pH 3.5, 5 and 10, under
temperatures near the cold crystallization point, 90 °C. The reason to conduct the process of
degradation at an elevated temperature was to reduce the time of the experiment and also to check
how the temperature-induced thermal condition inducing crystallization of PLA affected the rate of
hydrolytic degradation [35]. The detailed information about the fibres, their properties and the
methodology of how they were made were presented earlier [36]. The performed experiment allows
us to clarify how the initial molecular and supramolecular structure of PLA impacts the rate of
thermal-supported hydrolytic degradation of real objects that are ready for practical application such
as wet-spinning fibres. The degradation progress was measured as mass loss, supplemented by
photographic and scanning electron microscopy (SEM) documentation, and analysis of the change in
intrinsic viscosity as the parameter characterising the degradation on the molecular level. The
obtained results were numerically analysed in order to determine the factors of kinetic degradation
at the molecular and macroscopic levels, which is important data in the evaluation of the influence
of the structure of the initial material on the rate of degradation in the example of real objects such as
fibres.

2. Materials and Methods
2.1. Materials

An investigation of the influence of initial molecular and supramolecular structures of PLA on
the rate of thermal-supported hydrolytic degradation was performed on wet spinning fibres made
from a commercially available polymer, PLA Ingeo (Nature Works LLC, USA), as described in detail
by Puchalski et al. 2018 [36]. Table 1 shows the main parameters of the applied polymer, including
NatureWorks symbol, content of D-lactide isomer, weight-average molar mass (Mw), dispersity
(Mw/Mn) and the structural parameters of the studied samples: total draw ratio during fibre
processing, crystal form, degree of crystallinity (Xc) and linear mass.
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Table 1. Main characteristics of studied fibres and raw materials.
Characteristic of Raw Polymer Characteristic of Fibre
Contents Total
NatureWork
Sample ATure WOTKS  of D-lactde Muw Mw/  Draw  Crystal X** Linear
symbol . .
of PLA isomer (kg/mol) Mn Ratio form* (%) mass
(%) (%)
PLA12- amorph 158.00
DR400 Ingeo 4060D 12 119 1.40 400 - ous (2.09°%%)
PLA12- ,
DR600 Ingeo 4060D 12 119 1.40 600 a 1.2 80.33 (0.90)
PLA2.5- , 121.00
DR450 Ingeo 2002D 2.5 112.6 1.46 450 a 16.6 (1.43)
PLA2.5-
I 2002D 2. 112. 14 ' . 72.67 (0.7
DR550 ngeo 200 5 6 6 550 a 335 67 (0.79)
PLA1.4- ,
DR500 Ingeo 6201D 1.4 59.1 1.29 500 a 47.6 96.00 (1.04)
PLA1.4-
DR650 Ingeo 6201D 1.4 59.1 1.29 650 a 53.8 68.33 (0.52)

*Parameter determined by using WAXD method.
**Value estimated by using DSC method.
*** Coefficient of variation is in brackets.

2.2. Methodology of thermal-supported hydrolytic degradation

The hydrolytic degradation process was carried out in 3 selected mediums based on distilled
water with various pH: pH 10 (water solution of sodium carbonate), pH 5 and pH 3.5 (water solution
of acetic acid). Samples of the same mass, 5 g, were degraded in 50 mL of hydrolytic medium under
a controlled temperature of 90 °C for 1, 2, 3, 4, 5, 6, 7, 10, 14 and 21 days.

2.3. SEM method

The effects of degradation on the change of PLA fibre morphology were studied by using
photography documentation and a NovaNanoSEM 230 scanning electron microscope (SEM) from
FEI Company (Netherlands). For SEM measurement, the fibre samples were prepared by fixing the
parts of fibres to an SEM holder using conducting carbon adhesive tape. The studies were carried out
using low-vacuum mode and beam energy of 10 keV, which eliminated the requirement to cover the
sample with a conductive material such as gold.

2.4. Mass loss

The measurement of mass after degradation of samples, which were cleaned with distilled
water, was conducted using a PS.R1 precision balance (Radwag, Poland). The mass percent
remaining after time of degradation (D) was calculated according to the following equation:

D= —£100% 1)
t mo

where mo and m: are the masses of the sample before and after degradation, respectively.
2.5. Intrinsic viscosity

Structural changes at the molecular level during thermal-supported hydrolytic degradation
were estimated by determining the intrinsic viscosity of diluted polymer/dichloromethane
(0.08 g/dL) using an Ubbelohde viscometer (Type 2a, Poland) at 25 °C. The relationship between
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viscosity-average molecular weight (Mn)) and estimated intrinsic viscosity [n] can be described by the
following Mark-Houwink equation [37]:

[n] = KM,“ 2)

where K and a are constants, which for PLLA equal 1.124 x 102 and 0.52, respectively, and
satisfactorily describe the tested PLA from Nature Works LLC with a slight content of D-lactide
isomer [38]. Since the studied polymers changed at the molecular level during degradation, an
analysis of estimated intrinsic viscosity change as a function of degradation time was performed.

3. Results and Discussion

3.1. Photographic documentation and SEM results

First, the changes of morphology of the PLA fibres after the thermal-supported hydrolytic
degradation process were characterized. All of the investigated samples were completely degraded
after 21 days. Figure 1 shows selected photographs of the degradation process of the studied samples
occurring in various hydrolysed mediums. According to these photographs, the physical changes of
samples during thermal-supported hydrolytic degradation depended on the initial ordering and
crystallinity of the sample, and were visible as strong shrinkage after the first day of the experiment
in the case of amorphous samples. The relationship between supramolecular ordering and the
shrinkage phenomenon of the fibrous PLA structure was well known, as reported by, e.g., Puchalski
et al. [39]. Shrinkage of fibrous materials resulted from the disordered pre-existing supramolecular
structure of the polymer, which has a tendency towards relaxing and ordering, mainly during
thermal processing. Therefore, the reason for their amorphous initial structure, the rapid and
significant shrinkage of fibres obtained from PLA12, was possible to predict. The opposite occurred
with fibres from PLA1.4, in which, due to the initial semicrystalline structure, the shrinkage was
marginal. A very interesting phenomenon was observed in the investigation of thermal-supported
degradation of fibres made from PLA2.5. The rapid shrinkage of fibres occurring with a lower draw
ratio was observed, while in the case of fibres with a higher draw ratio, this phenomenon was
insignificant. That result confirmed the relationship between shrinkage during thermal-supported
hydrolytic degradation and the pre-existing supramolecular structure created in the technological
regime. The next step of degradation was fragmentation, which was observed after the third and fifth
days of degradation despite the ordering of the pre-existing supramolecular structure. According to
the photographic documentation (Figures 51-53), the most degradable fibres ware obtained from
PLA with the highest D-lactide content and molar mass and amorphous supramolecular ordering;
after the third day the samples were in powdered form, which was the effect of the first stage of the
degradation process, fragmentation. During the degradation time, the volume of the samples
decreased, suggesting significant mass loss, the kinetics of which are presented in the next part of
this paper. The most important information obtained from the photographic documentation is the
lack of a clearly visible influence of the change of pH of the hydrolytic medium on the rate of
degradation. Regarding the organoleptic evaluation of the degradation effects, it can only be
concluded that in the case of thermal-supported hydrolytic degradation, the initial structure of the
polymer and the regimes of its processing, which determine the ordering and crystallinity of the
fibres, have a significant influence on the rate of degradation.
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Figure 1. Photographic documentation of thermal-supported hydrolytic degradation of fibres
obtained from PLA.

A more exhaustive analysis of the morphological structure changes of PLA fibres during
degradation was obtained by using scanning electron microscopy. Figure 2 shows representative
SEM images of samples before and after 7 days of thermal-supported hydrolytic degradation
recorded at a magnification of x2000. The initial structures of investigated samples were different.
The PLA12-DR400 and PLA12-DR600 fibres were characterised by the least textured surface, the
surface of PLA2.5-DR450 and PLA2.5-DR550 fibres was wavy, while the surface texture of PLA1.4-
DR500 and PLA1.4-DR650 was smooth but contained transverse elements occurring periodically. The
SEM results after 7 days of degradation clearly showed the evolution of morphology of samples as
the result of various mechanisms of thermal-supported degradation. All studied materials were
fragmented after 7 days, which is the first stage of degradation of polymeric materials. The
degradation of the studied materials was combined with the process of PLA disintegration and
fragmentation, which takes place in the areas of erosion of amorphous structure of the fibre material,
which was described in detail by Azimi et al. [40]. This was confirmed by the presence of transverse
cracks in the samples, especially in PLA12-DR400 and PLA12-DR600. The last degradation
mechanism that was clearly visible was erosion, mainly surface erosion, as illustrated by the changes
of surface texture of the studied samples. The analysis of the investigations by SEM showed
differences in the degradation rate of studied samples, varying by initial polymer structure and
supramolecular structure of fibres. In the case of PLA12-DR400 and PLA12-DR600 samples, the
amorphous SEM results are proof of rapid fragmentation before surface erosion. In contrast, the SEM
results verify the strong tendency of surface erosion in semicrystalline samples PLA2.5-DR450 and
PLA2.5-DR550, while the semicrystalline PLA1.4-DR500 and PLA1.4-DR650 samples underwent
mainly fragmentation and erosion of the amorphous phase of materials.
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Figure 2. SEM results of studied samples recorded before and after 7 days of thermal-supported
hydrolytic degradation.

3.2. Mass loss kinetics

The photographic documentation and SEM results clearly show the evolution of the samples’
morphology during degradation at the macroscopic and microscopic scale, and verify the shrinkage,
fragmentation and erosion of the studied fibrous materials. The next step of the investigation was to
analyse mass loss in the function of degradation time measured as mass percent remaining, according
to Equation (1). Figure 3 shows the changes of mass percent remaining (D) of studied samples during
thermal-supported hydrolytic degradation in selected water solution with various pH levels. A
significant increase of mass percent remaining for the samples obtained from PLA containing 2.5%
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and 12% D-lactide was observed after the second day, while for fibres obtained from PLA with 1.4%
D-lactide it was only after the fifth day.
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Figure 3. Changes of mass percent remaining of studied samples during thermal-supported
hydrolytic degradation.

Table 1 shows estimations of the two characteristic kinetic parameters describing the typical
erosion profile, onset time (ton) and observed pseudo-first-order rate of erosion constant (ke). The
latter was characterized as a slope value according to the equation [41]

In(Dy) = A — k.t 3)

where Dt is mass percent remaining after time of degradation calculated according to Equation (1), t
is the time of degradation starting from when erosion was significant, and A is an intercept. The
calculated ton value is derived from intersecting the regression line in Equation (3) with the initial
mass value as follows:

A - In(100
ton = * (4)

Table 2. Kinetic parameters of mass percent remaining of studied samples during thermal-
supported hydrolytic degradation.

do0i:10.20944/preprints202004.0255.v1

SAMPLE pH of A+SE ketSE R fon

medium (days™?) (days)
PLA12-DR400 pH3.5 4.653+0.132 0.289+0.029 0.962 0.327
PLA12-DR400 pHS5 4.710+0.122 0.312+0.027 0.959 0.336
PLA12-DR400 pH 10 4.777+0.141 0.377+0.031 0.980 0.426
PLA12-DR600 pH3.5 4.858+0.061 0.304+0.013 0.988 0.832
PLA12-DR600 pH5 4.848+0.053 0.338+0.011 0.993 0.718
PLA12-DR600 pH 10 4.803+0.098 0.362+0.022 0.988 0.686
PLA2.5-DR450 pH3.5 4.725+0.058 0.107+0.044 0.989 1.120
PLA2.5-DR450 pHS5 4.743+0.088 0.120+0.012 0.974 1.149
PLA2.5-DR450 pH 10 4.755+0.045 0.120+0.010 0.990 1.149
PLA2.5-DR550 pH3.5 4.782+0.036 0.133+0.025 0.992 1.330
PLA2.5-DR550 pH5 4.767+0.060 0.109+0.012 0.973 1.385
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PLA2.5-DR550 pH 10 4.807+0.037 0.150+0.035 0.997 1.346
PLA1.4-DR500 pH3.5 4.776+0.031 0.095+0.004 0.988 1.698
PLA1.4-DR500 pH5 4.731+0.040 0.077+0.005 0.969 1.634
PLA1.4-DR500 pH 10 4.718+0.047 0.075+0.006 0.972 1.638
PLA1.4-DR650 pH3.5 4.770+0.019 0.082+0.003 0.992 2.010
PLA1.4-DR650 pHS5 4.762+0.024 0.078+0.003 0.988 2.011
PLA1.4-DR650 pH 10 4.791+0.041 0.087+0.005 0.976 2.116

Considering the limited data points for each investigation, Table 1 shows good adherence to
Equation (3) with a high correlation coefficient (R) and reasonably small relative standard error (SE)
in ke and intercept values estimated by the use of OriginPro 8.6 software. The analysis of estimated
kinetic parameters of erosion profiles of PLA fibres degraded by thermal-supported hydrolysis
clearly presents the influence of the initial PLA molecular structure on the pseudo-first-order rate
constant and onset time values. The ke increased with increased content of D-lactide isomer and
decreased weight-average molar mass, as expected. It is worth noting that it is difficult to define the
influence of the crystallinity degree of investigated samples on the pseudo-first-order rate of erosion
constant value. In contrast, it is in the case of ton where both the molecular structure of the initial
polymer and the supramolecular structure of fibres influence this parameter. The onset time
increased with increased content of D-lactide, weight-average molar mass and crystallinity degree.
The highest pseudo-first-order rate of erosion constant, around 0.3 days-, and lowest onset time,
around 0.35 days, characterized the amorphous PLA12-DR400 and PLA12-DR600 fibres, while for
the PLA1.4-DR500 and PLA1.4-DR650 fibres, the maximum k. was 0.095 days and 0.087 days and
ton was 1.698 days and 2.116 days, respectively. Thus, the experiment also showed that the pre-
existing ordering and crystalline structure influenced the kinetics of PLA degradation in the
proposed conditions, and the shortest onset time was observed for fibres characterized by amorphous
structure (less than 1 day) and the longest onset time for materials with semicrystalline structure of
ordered a form (more than 2 days).

3.2. Degradation kinetics of PLA fibres on molecular level

The degradation of polymers is mainly investigated on the molecular level by means of size
exclusion chromatography (SEC) [42] or gel permeation chromatography (GPC) [43], by which it is
possible to analyse the number average molar mass (Mn), weight-average molar mass (Mw) and
dispersity (Mw/Mn). In our experiment, according to the possibilities of investigation, we decided to
analyse the changes of fibres at the molecular level by means of a viscometer, which, according to
Equation (2), allows that analysis to be performed.

The analysis of changes of measured intrinsic viscosity of PLA fibres during thermal-supported
hydrolytic degradation was carried out up to the first 7 days, resulting from the strong mass loss after
7 days (described above) and finally in the impossibility of preparing experimental samples. Figure
3 shows the relative changes of [n] due to the medium with various pH levels. All studied samples
indicated a change in molecular level after the first day, but the most intense was in the material
formed from PLA containing 12% D-lactide isomer and characterized by the highest molar mass.
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Figure 4. Changes of intrinsic viscosity percent remaining of studied samples during thermal-
supported hydrolytic degradation.

To insightfully analyse the thermal-supported degradation rate of the studied samples, the
degradation rate constant (kd) was calculated from the decreased relative intrinsic viscosity based on
the first-order kinetic model according to the following equation [44]:

n,J
In <[%> = A - akgt (5)

where [1¢]/[no] is the percentage change of intrinsic viscosity after time degradation [n] due to initial
intrinsic viscosity [no], & is constant according to Equation (2), t is the time of degradation and A is
an intercept.

According to the apparent degradation rate, the degradation time of half intrinsic viscosity is
calculated by the following equation:

A —In(50)
O(kd

(6)

ts09 =

The presented first-order kinetic model was used to describe the thermal-supported degradation of
the studied fibres based on estimated intrinsic viscosity. Table 3 shows the kinetic parameters of the
investigated degradation.

Table 3. Kinetic parameters of intrinsic viscosity percent remaining of studied samples during
thermal-supported hydrolytic degradation.

SAMPLE pH.of ASE ka+SE R ts0%
medium (days™) (days)

PLA12-DR400 pH 3.5 4.599+0.160 0.686+0.039 0.970 1,09
PLA12-DR400 pH5 4.572+0.179 0.702+0.044 0.962 1,09
PLA12-DR400 pH 10 4.593+0.168 0.704+0.040 0.959 1,19
PLA12-DR600 pH3.5 4.437+0.094 0.651+0.023 0.985 1,35
PLA12-DR600 pH5 4.438+0.079 0.654+0.019 0.989 1,29
PLA12-DR600 pH 10 4.503+0.084 0.670+0.020 0.988 1,31
PLA2.5-DR450 pH3.5 4.568+0.186 0.659+0.044 0.954 1,15

PLA2.5-DR450 pH5 4.557+0.190 0.676+0.045 0.954 1,06
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PLA2.5-DR450 pH 10 4.586+0.140 0.679+0.033 0.969 1,10
PLA2.5-DR550 pH3.5 4.448+0.080 0.632+0.019 0.989 1,33
PLA2.5-DR550 pH5 4.390+0.100 0.610+0.024 0.980 1,29
PLA2.5-DR550 pH 10 4.425+0.088 0.628+0.021 0.986 1,34
PLA1.4-DR500 pH3.5 4.710+0.100 0.636+0.024 0.982 1,53
PLA1.4-DR500 pHS5 4.680+0.088 0.663+0.021 0.987 1,57
PLA1.4-DR500 pH 10 4.770+0.109 0.630+0.026 0.978 1,54
PLA1.4-DR650 pH3.5 4.658+0.071 0.619+0.017 0.990 1,70
PLA1.4-DR650 pH 5 4.681+0.102 0.610+0.025 0.978 1,67
PLA1.4-DR650 pH 10 4.641+0.081 0.588+0.019 0.985 1,72

Similar to the mass loss kinetics analysis, Table 2 shows good adherence to Equation (5) with a
high correlation coefficient (R) and relatively small relative standard error (SE) in ka and intercept
values estimated by OriginPro 8.6 to assess relative intrinsic viscosity change kinetics. However, the
performed experiment clearly showed the various characteristics of degradation of the molecular
structure of PLA more than the macroscopic mass erosion of the samples.

With regard to degradation at the molecular level, it is difficult to unequivocally find the
influence of the initial polymer structure on the degradation kinetics. The estimated degradation rate
values constantly decrease insignificantly with decreased content of D-lactide isomer and Mw and
increased crystallinity degree. The influence of the initial structure on the kinetics of degradation is
more pronounced for tsox when it increases with the decreased content of D-lactide isomer and
weight-average molar mass, and also with increased crystallization degree. It is worth noting that the
degradation time of half intrinsic viscosity was less than 2 days for all studied samples and the
highest was for the PLA1.4-DR650 sample, in which the crystalline a form was detected. The pH of
the environment also has a slight influence on the kinetic factors of thermal-supported hydrolytic
degradation of PLA fibers at the molecular level, but it is not possible to predict which pH value will
be more favourable. For the most amorphous sample, the lower value of tso% was estimated for pH 5,
but for the most crystalline sample with a form crystal it was pH 3.5.

4. Conclusions

The main goal of this investigation was to present differences in the kinetics of hydrolytic
degradation of PLA due to real material variance in the molecular and supramolecular structure of
sample wet-spinning fibers. Complementary studies were realized on various levels by using
selected methods such as SEM and viscosimetry.

The thermal-supported hydrolytic degradation experiment allows us to show the influences of
temperature, or heat transfer, on the kinetics of hydrolytic degradation. In the sample erosion,
decreasing molar mass (intrinsic viscosity) was significantly more rapid than at lower temperatures,
the results of which are described in the cited literature.

From the macro- and microscopic point of view, all of the studied fibres became fragmented
after just 3 days, and according to SEM results surface and volume erosion were observed. The initial
structure of the studied biodegradable fibres had a strong effect on the degradation, which was
shown by photographic documentation and analysis of mass loss kinetics. The onset time for the
amorphous material with high molar mass and D-lactide content was less than 1 day, while for the
semicrystalline material it was nearly 2 days. The erosion profiles and pseudo-first-order rate of
erosion constant were also variable and dependent on the initial structure. It is worth noting that the
experiment demonstrated the lack of influence or insignificant influence of the pH of the applied
degradation medium on the process kinetics. This is due to an increase in temperature of the process
to the value at the point where the pH is not affected by hydrolysis.

The molecular structure was also changed during thermal-supported hydrolytic degradation,
but in this case the influence of the initial structure on the process rate was less significant than in the
macrostructure change. The calculated degradation time of half intrinsic viscosity for the amorphous
samples with the highest molar mass was around 1 day, while for semicrystalline material with the
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lower molar mass it was around 1.5 days. Based on the obtained results, it is supposed that the initial
supramolecular structure has an effect on the degradation rate at the molecular level.

To summarize the experiment, it should be stated that the initial structure and supramolecular
ordering had the greatest influence on the macroscopic effects of the degradation, and for the adopted
degradation temperature of 90 °C, the influence of the pH of the degradation medium on the
degradation kinetics was marginal.
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