Preprint
Article

Data Analytics: COVID-19 Prediction Using Multimodal Data

Submitted:

13 May 2020

Posted:

14 May 2020

You are already at the latest version

Abstract
Globally, there is massive uptake and explosion of data and challenge is to address issues like scale, pace, velocity, variety, volume and complexity of this big data. Considering the recent epidemic in China, modeling of COVID-19 epidemic for cumulative number of infected cases using data available in early phase was big challenge. Being COVID-19 pandemic during very short time span, it is very important to analyze the trend of these spread and infected cases. This chapter presents medical perspective of COVID-19 towards epidemiological triad and the study of state-of-the-art. The main aim this chapter is to present different predictive analytics techniques available for trend analysis, different models and algorithms and their comparison. Finally, this chapter concludes with the prediction of COVID-19 using Prophet algorithm indicating more faster spread in short term. These predictions will be useful to government and healthcare communities to initiate appropriate measures to control this outbreak in time.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

4113

Views

3912

Comments

1

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated