Nowadays smartphone utilization for disease diagnosis and remote health care applications has become promising due to their ubiquity. Here, a novel convolutional neural network method for detecting keratoconus that is wholly implemented on a smartphone is proposed. The proposed method provides accurate detection of over 72.9% for all stages of keratoconus. Preliminary results indicate 90%, 83%, 64% and 52% detection rate for severe, advanced, moderate and mild stages of disease, respectively.
Keywords:
Subject: Computer Science and Mathematics - Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.