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boundary value
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Abstract

In this paper, Lyapunov-Razumikhin technique, design of state-dependent switching laws, a fixed point theorem and
variational methods are employed to derive the existence and the unique existence results of (globally) exponentially
stable positive stationary solution of delayed reaction-diffusion cell neural networks under Dirichlet zero boundary
value, including the global stability criteria in the classical meaning. Next, sufficient conditions are proposed to guar-
antee the global stability invariance of ordinary differential systems under the influence of diffusions. New theorems
show that the diffusion is a double-edged sword in judging the stability of diffusion systems. Besides, an example
is constructed to illuminate that any non-zero constant equilibrium point must be not in the phase plane of dynamic
system under Dirichlet zero boundary value, or it must lead to a contradiction. Next, under Lipschitz assumptions on
active function, another example is designed to prove that the small diffusion effect will cause the essential change of
the phase plane structure of the dynamic behavior of the delayed neural networks via a Saddle point theorem. Finally,
a numerical example illustrates the feasibility of the proposed methods.

Keywords: reaction-diffusion; cellular neural networks; exponential stability; stationary solutions ; Saddle point

theorem

1. Introduction

Firstly, we recalled the reason why we need to study the stability of reaction-diffusion neural networks system.
In 1988, inspired by cellular automata, Chua and Yang proposed a new neural network based on Hopfield network,
i.e. cellular neural network (CNN), which is formed by a number of cells with the same structure after a well-organized
combination ([22,23]). Each neuron in the network will automatically choose to connect with the nearest neuron.
Because of its local connectivity, CNN is especially suitable for ultra large scale integrated circuit implementation.
The characteristics of the above cellular neural network make it widely used in pattern recognition, image processing,

signal processing and other fields. The main function of cellular neural network is to transform an input image
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into a corresponding output image. For example, the existing target motion direction detection, edge detection, and
connected slice detection all use this function. In order to achieve these functions, the cellular neural network must be
completely stable, that is, all output trajectories must converge to a stable equilibrium point. So the stability of cellular
neural network has become a hot topic ([24-26]). As we all know, time delay may destroy the stability of the system
and lead to oscillation, bifurcation, chaos and other phenomena, thus changing the characteristics of the system. In
cellular neural networks, time delay is inevitable. For example, there are cell delay, transmission delay and synapse
delay in biological neural network ([27]). As pointed out in [28] that many pattern formation and wave propagation
phenomena that appear in nature can be described by systems of coupled nonlinear differential equations, generally
known as reaction-diffusion equations. These wave propagation phenomena are exhibited by systems belonging
to very different scientific disciplines. Besides, the interactions arising from the space-distributed structure of the
multilayer cellular neural networks can be seen as diffusion phenomenon([3, 29]). Thereby, the reaction-diffusion
effects cannot be neglected in both biological and man-made neural networks, especially when electrons are moving
in non-even electromagnetic field. Moreover, although the diffusion coefficients may be very small, the topological
structure of the phase plane of the dynamic behavior of the following reaction-diffusion system (1.1) is likely to change
substantially from a constant equilibrium point of the following system (1.3) to multiple stationary solutions of the
reaction-diffusion system (1.1). Therefore, many global stability results of delayed neural networks in the form of
ordinary differential equations may only be locally asymptotical stability criteria in real engineering. Unfortunately,
such an example has not been constructed for the time being. But that doesn’t mean there are no such examples,
which may become an open problem hereafter. On the other hand, fortunately, this paper has proposed the
conditions guaranteeing the global stability invariance of ordinary differential systems under the influence of
diffusions in the meaning of Definition 1 (see Corollary 3.4).

Next, we shall point out the fact that the stability results in previous literature involved to delayed reaction-
diffusion neural networks make it unnecessary to study the reaction-diffusion system (partial differential equa-
tions model), but only its corresponding ordinary differential equations model. What’s the problem?

For a long time, the stability of the reaction diffusion neural networks was investigated in many literatures[1-10],
in which the stability of the constant equilibrium point was studied. For example, in [1], the following cellular neural
networks with time-varying delays and reaction-diffusion terms was considered,

oy(t,x) O Oy(t, x) - Oy(t, x)
ot _Z Ox, Dy 0x,

) = Cy(, x) + Ag(y(t, x))
(1.1)

g=1

+ Bg(y(t — (1), x)) + J, (t,x) e R, X Q,

Next, the authors of [1] defined the equilibrium point of the time-delayed reaction-diffusion system (1.1) as the

constant vector y* satisfying

Cy" = Ag(y") + Bg(y") + J. (1.2)
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Here, we have to say, the equilibrium point y* is also the equilibrium point of the following ordinary differential

equations corresponding to the time-delayed partial differential equations (1.1),

dx(t)
dt

=—Cx(?) + Ag(x(t)) + Bg(x(t — (1)) + J, t e Ry, (1.3)

Due to the Poincare inequality, we see, the diffusion items actually promote the stability of the reaction diffusion
system (1.1). That is, we only need to study the ordinary differential equations (1.3) because the stability criteria
of the ordinary differential equations (1.3) must make the system (1.1) stable. In other words, the stability of the
reaction-diffusion model does not need to be studied because it is included in the stability of its corresponding
ordinary differential equations model.

So we need to ask where the problem is? The answer lies in the fact pointed out in this paper. In Theorem 3.3
and Corollary 3.4, the constant equilibrium point #* may become another u*(x), where u*(x) # u* in common
cases under Dirichlet zero boundary value. Only the zero solution #* = 0 might become one of the stationary
solutions of reaction-diffusion system. And so the uniqueness existence conditions of the stationary solution
u*(x) (see Corollary 3.4) illuminate the inconvenient and difficulties due to the inevitable diffusions in practical
engineering, which make it more difficult to judge the stability than ordinary differential system. Usually, the
positive stationary solution #*(x) > 0 implies more realistic meanings in in neural networks and other systems, such as
the financial systems ([11,12,30]). And so Theorem 3.1 and Theorem 3.2 have proposed the existence and the unique
existence of the (globally) exponentially stable positive stationary solution in this paper.

Motivated by some methods of [1-31], we investigate the stability of the nontrivial stationary solution of switched
reaction-diffusion neural networks with time delays. This paper has the following innovations:

% It is the first paper to study and obtain the existence theorem and unique existence theorem (see Theorem 3.1 and
Theorem 3.2) of (globally) asymptotically stable nontrivial stationary solution of reaction-diffusion neural networks
with time delays under Dirichlet zero boundary value via the comprehensive applications of Lyapunov-Razumikhin
technique, design of state-dependent switching laws, a fixed point theorem, variational methods, and construction of
compact operators on a convex set. Moreover, such new theorems illuminate originally that the diffusion phenomena
is the double-edged sword in judging the stability of delayed reaction-diffusion systems.

% It is the first paper to propose the conditions guaranteeing the global stability invariance of delayed ordinary
differential systems under the influence of diffusions in the meaning of Definition 1 (see Theorem 3.3 and Corollary
3.4).

% It is the first paper to design the contradiction results to show that any non-zero constant function must not be
a solution of any reaction diffusion neural networks under Dirichlet zero boundary value.

% It is also the first time to study how the tiny diffusion causes the essential change of the phase plane structure
of the dynamic behavior of the delayed neural networks under Lipschitz assumptions on activate functions or signal

functions.
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Notations :
Throughout this paper, we denote by I the identity matrix with an appropriate dimension, and assume that D, is
a positive definite diagonal matrix for any given o € {1,2,--- , N}. Besides, diag(- - -) stands for a diagonal matrix.

A > 0 (A > 0) means that A is a real symmetric positive (semi-positive) definite matrix. And denote |A| = (|a;;|)nxn

for any matrix A = (@;;)uxn- In addition, for any v = (vi,vo,-+-,v) ,u = (uj,uz, -+ ,u,)" € R", we denote
vl = (vil, val, - -+, a7, and v < u means that v; < u; foralli = 1,2, --- , n. Denote by Q, an open bounded domain
in R" with the smooth boundary 0Q,, for any given o € {1,2, - - -, N}. For convenience, we denote by A4,; > 0 the first

positive eigenvalue of the Laplace operator —A on the Sobolev space W5’2(QU).

2. System descriptions

Consider the following switched neural networks with time-varying delays and reaction-diffusion terms

% D) Dy V(1) = Codl1,0 + Agg0( 1) + Bl =0, 0) + s (60 € R, X
@.1)

Vilt,x) =0, 1> 0, x € 0Qy, i=1,2,-- ,n,

where Q, C R" is a bounded domain with smooth boundary 9, the state variable y(t,x) = (y(t, x), y2(%, x),
-+, ya(t,x))T with y; representing state variable related to a neuron. J, = (Jo1,---,Jyn)’ € R" is the constant
external input vector, and both D, and C,; are positive definite diagonal matrices, in which D, represents the diffusion
coefficient matrix, and C,, represents the connection weight matrix of neural network. Besides, A, and B, both are the
connection weight matrices of neural network. For each x € Q, g((t, x)) = (g1(31(t, X)), - - - , 8. (¥u(t, X)))T represents
a time-dependent signal function vector. 7(¢) represents the time delay required for signal transmission from neuron j
to neuron i, satisfying 0 < 7(¢#) < 7. Assumed that y7(x) = (7 (x), -, y7(x))T is a nontrivial stationary solution of

reaction-diffusion switched system (2.1), then y? (x) satisfies two equations of the system (2.1), in addition,
—Coy7(x) + Agg(y7 (1) + Bog(y (X)) + Jo 0,  x € Q. (2.2)

Of course, the sufficient condition should be given to ensure the existence of such nontrivial stationary solution.

Set u(t, x) = y(t, x) — y“(x), then the system (2.1) is translated into the following system:

@ =D Au(t, x) — Cou(t, x) + As f(u(t, x)) + Bs f(u(t — 7(t), x)), (t,x) € R, X Q,
2.3)

ui(t,x) =0, >0, x € 0Q,, i =1,2,--- ,n,
where f(u(t, x)) = gy(t, x)) — g7 (x)), f(u(t — 7(t), x)) = g(y(t — 7(¢), x)) — g(»” (x)). Here, the nontrivial stationary
solution y“? (x) of the system (2.1) corresponds to the null solution of the system (2.3).

Besides, we may equip the system (2.3) with the initial value:

ui(s,x) = ¢i(s,x), -1 <5 <0, x€Qyp, 2.4)

where (¢, (s, X), $2(s, X), -+ , dn(s, X))T = ¢(s, x), and each ¢;(s, x) is bounded on [, 0] X Q.
4


https://doi.org/10.20944/preprints202004.0277.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020 d0i:10.20944/preprints202004.0277.v4

In some cases, the following assumptions may be considered:

(A1) There is a positive definite diagonal matrix G = diag(G, G, - - - , G,) such that
lgi(s) — gDl < Gils —1l, Vs, reR;
(A2) There is a positive real number ¢ > 0 such that
0<|-Cov+Asg(v) + BogOW) + Jo| < ¢cDy,E, YveER'

where D, > 0 is a positive definite diagonal matrix, and E = (1, 1,-- -, DT e R™.
Define the switching law as follows,

Switching Law §: At each switching we determine the next mode according to the following minimum law :

o(f) = argmin(y — y”)T[( ~ 251Dy —2C, + A;AL + B,BT + G + quGZ) + ‘I’](y —y%). (2.5)

(&1) Choose the initial mode o () = i, if (y(to, x) — y7(x)) € Tj,.
(&2) Foreach t > 1y, if o(t7) = i and (y —y”) € Y}, keep o(¢) = i. On the other hand, if (") =i but (y —y7) ¢ Y;.
i.e., hitting a switching surface, choose the next mode by applying (2.5) and begin to switch.

Here, ¥ is a positive definite symmetric matrix with AW > 0, and Y, is defined as follows,

T, = {y e R"|(y - y‘T)T( — 201Dy~ 2Cy + AyAT + ByBL + G? + €7qG + ‘P)(y — ) < o},
where A, 'Y represents the minimum of all the eigenvalues of the symmetric matrix ¥ > 0.

Definition 1. A system is said to be globally asymptotically stable if it owns an equilibrium point which is globally
asymptotically stable. Particularly, the globally asymptotical stability of an ordinary differential system is said to
be invariant under the influence of diffusions if a constant equilibrium point u#* of the ordinary differential system is
globally asymptotically stable, and u*(x) is a globally asymptotically stable stationary solution of its corresponding

reaction-diffusion system, where u*(x) is not necessarily equal to u*.

Definition 2.([42]) Let ¢ be a real C! functional defined on a Banach space X. If any sequence {u,} in X with
Y(u,) — aand ||’ (u,)llx» — 0 has a convergent subsequence, and this holds for every a € R, one says that y satisfies

the (PS) condition.

Definition 3. Suppose that for each o € T, there exists the unique stationary solution y”(x) for the switched system

(2.1), and u = y(t, x) — y7(x) satisfies

U, , < Mliglze™, Vi>0,
L*(Qy)

where vy > 0 and M > 1 are constants. Then we say, the switched system (2.1) is globally exponentially stable in the
meaning of switching, and the null solution the null solution of the switched delayed reaction-diffusion system (2.3)

5
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equipped with the initial value (2.4) is globally exponentially stable. Particularly, in the case of T = {1} or 7 (x) = y(x)

for all o € T, we say, the switched system (2.1) is globally exponentially stable (in the classical meaning).

Lemma 2.1.([32]) Let 3 be a Banach space, and £ is a closed convex set. If T : & — £ is a compact mapping such
that for any ¢ € R with ||¢|| = M, the inequality ¢ # r(¢) holds for each r € [0, 1], where M is any given positive

constant, then there exits at least a fixed point of T, say, ¢ € £ with ||¢|| < M.

Lemma 2.2. ([42]) Let H = H, @ H, be a Banach space, and H, is a finite dimension subspace. If y € C'(H,R),
satisfying ¥(0) = 0, the (PS) condition. Besides, for some ¢ > 0, the following conditions hold,

P ¥(u) < 0if u € Hy with |ju|| < ;

P2) ¥(u) > 0if u € H, with |ju|| < 5;

(P3) ¢ is bounded below, satisfying infy ¢ < 0,

then  owns at least two non-zero critical points.

Lemma 2.3 ([48]). For the given matrices E, F, and G with FT F < I and scalar & > 0, the following inequality holds:
GFE + E"F'G" < eGG" + sE"E
3. Main results

Theorem 3.1. Suppose that the conditions (A1) and (A2) hold, then the system (2.1) possesses a positive bounded
stationary solution y“(x) for x € Q, with y"|so, = 0. In addition, there is a sequence of nonnegative constants

N
Bo(oc=1,2,--- ,N)with ) B, =1and 0 < S, < 1| and positive constants y € (0, A,;n'¥) and g > 1 such that
o=1

N
> ,8(,( ~ 251Dy — 2Cy + AgAL + B[,Bg) +G2+ G+ ¥ <0, 3.1)

o=1
then the null solution of the switched delayed reaction-diffusion system (2.3) equipped with the initial value (2.4) is

exponentially stable with the convergence rate 5.

Proof. Firstly, we denote ||u;|| = ./ fQ |Vu;|2dx, and ||u|| = Y |lu;l|. Besides, denote by I the identity matrix. If the
f’ i=1

stationary solution of the system (2.1) exists, we may denote y”(x).

Define the operator 901 : [C(Q_(,)]” - [C(Q_U)]" as follows,

0 -A O 0
N =
0 0 O -A
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The operator 9T has the inverse operator 91~! as follows,

A0 0 - 0
o 0 (A" 0 -+ 0
0 0 0 - (=A)!

where 97! : [C (Q_g)]” — [C(Q_(,)]" is a linear compact positive operator ([13]), and

My (x) = =D, Cyy” (x) + D;'Arg(y7 (x)) + D;' Bog (07 (X)) + D'y, x € Qp,

W) =0, x€dQy, i=1,2,--+,n,

It is obvious that ( - D;'Cyy” (x) + D' Ay gy (%)) + D;' B,g(y" (x)) + D! JJ) is continuous for all the variables
x,y‘l",--- ,yo. Define

£ = {p(x) € [CEOQNT" : 9(x) =0, x € Q; ¢(x) = 0, x € IQ},

then R is a positive cone, which must be a closed convex subset of [C (Q_g)]”. Define an operator T : 8 — £ such that
Tp = E)ﬁ*l( - D;ICago + D;IAO.g(cp) + D;_IB(,g(go) + D;lJo.), pER

Because 9! is the linear positive compact operator([13]), and ( - D;l Coy" (x) + D;IA(,g(y"(x)) + D(’,IBO.g(y”(x)) +
D! JJ) is positive continuous, we can conclude that T : 8 — £ is a positive compact operator.

Next, we claim that ¥ satisfies all the assumption conditions of Lemma 2.1, which implies that ¥ has at least a
fixed pointin & .

Indeed, if it is not true, there must be {r,,} C [0, 1] and {p,} C K with

On = 1, S(gy) = rnfnrl( — D;'Copn + D3 Arg(en) + D' Bogley) + D;lf(r) (.4)

and

llgnll = M, = 400, n — +oo.

The compactness of bounded closed sets in a finite dimensional space yields that there is a subsequence of {r,},
say, {r,} such that lim r, = ro.

n—oo
Let
_ Pn
llenll”

then it is easy to conclude from (3.4) and (H2) that if r,, — r¢ € [0, 1],

n

£y LoeR =1 (3.5)

7
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In fact, combining (H2) and the property of the operator 0~! yields
-D;'Cyn + D' Ayg(pn) + D7 Brg(en) + D71y
lleonll
On one hand, £y = 0 implies ||£y|| = 0. On the other hand, it follows by £, — £y and ||£,]| = 1 that ||£y|| = 1, which

Snzrnim_l( )—>0€R", n — oo.

contradicts ||£o|| = 0, and hence all the conditions of Lemma 2.1 are satisfied. Thereby, there exists y” € & such that
y7 = %y7 with [y7|| < M, and y” is a bounded positive solution of the system (2.1).

Next, we consider the following Lyapunov functional :

V= f (t, x) — y7 (17 [y(t, x) — Y7 (x)]dx = f ul (¢, X)u(t, x)dx. (3.8)
Qs

o

Set

ey’f ul (¢, u(t, x)dx, >0,
U(t, u(t, x)) = &
f uT(t, u(t, x)dx, te[-10],

Qs

It is obvious that U is continuous for ¢ > —7. For > 0 and y > 0,

Now we claim that there is a positive constants Cyp > 1 and K € R with K > 1 such that
U(t,u(t, x)) < KColigllz, V120, 3.9

where [|¢]2 = sup Jo, #7 (5. 00(s, x)dx.
se[—-T,

Indeed, suppose this claim is not true, then there must be a ¢ > 0 such that U(z, u(t, x)) > KCol|¢|>. Obviously,

(3.9) holds for t € [—7, 0], and hence there must exist #* > 0 such that
U@, u(t*, x)) = KCollpll?  and  U(t,u(t, x)) < KCollg|l2, Y1 € [0,7],

and hence

U@ u(r, x)) = KCollgll;  and  U(t,u(t, x)) < KCollgll2, V1 € [-7.1°]. (3.10)
Let ¢ > 1, and due to U(0, u(0, x)) < KC0||¢||$ = U(*, u(t*, x)), there is t** € [0, ] such that

* kK 1 * *
U@, u(t)) = EKC0||¢||% < KGoligllz = U(t*, u(t"));

3.11)
U@, u(r) < Ut u(t, x)) < U@, u(@)) = KCollgll;, Vi€ [, r].
It follows from (3.10), (3.11) and the definition of U(t, u(t, x)) that for s € [—7,0] and ¢ € [£**, ¢"],
f e [ul (t + s)u(r + s)ldx
e"U@+s,ut+s), t+s=0
ePU(t+ s,u(t+s), t+s<0 (3.12)

Le Ut + s, u(t + 5))

<q f [ ¢, x)uct, x)ldx,
Q,

8
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which yields that for any s € [, 0],

f ! (t = T())u(t — 7(1)))dx < "¢ f ul (¢, Xut, x)dx, te[f, 1] (3.13)

o

On the other hand, the condition (A1) yields

u'Agfu) + T ATu =(ALw)" fu) + 7 (u)(ALu)
<u" (AeADYu + u” G?u
and
u” By f(u(t — 7(x), %)) + fT(u(t — 7(x), x))BTu <u” (B, BDyu + u” (1 — 7(x), x)G?u(t — 7(x), x).

Now, we calculate the derlvanve along51de with the trajectories of the system (2.1) or (2.3) as follows,

dv

I =2f uT(t, x)[DUAu(t, x) — Cou(t, x) + Ax f(u(t, x)) + By f(u(t — 7(2), x))|dx
Q,

< f ul (1, x)( — 24Dy —2Cy + A;AT + B, BT + Gz)u(t, x)dx
Qu’

+ f ul (1 = 7(x), x)G?u(t — 7(x), x)dx,

o

which together with (3.13) implies that

dv

o f ul (1, x)( — 20Dy —2C5 + A;AL + B,BT + G* + quGZ)u(t, x)dx, t €[t 1]. (3.14)
Qa’

For any given t > ty, according to the switching law §, when o(+7) = i and u(t, x) € T;, then keep o(¢) = i, and

we can conclude that
dv

= < f u’ (1, x)( —24/Dy = 2C, + A;AY + B,B” + G* + e”qu)u(t, x)dx

(3.15)
<= Adnin PV, u(t, x)), t € [£7,1].

When o(t7) =i and u(t, x) ¢ Y, which means that the trajectory hits a switching surface. On the other hand, it is not

difficult to deduce from (3.1) that U T; = R" \ {0}, which together with the minimum law (2.5) yields (3.15), too.

Thereby, it follows from the deﬁnltlon of U(t, u(t, x)) that

dU
dr

which derives that U(t*, u(¢*)) < U(#™,u(t*)). This contradicts (3.11). So we have prove the claim (3.9), which

=y = dminP)UG u(t, x) <0, t €[, 1],

means
e f u” (¢, xyu(t, X)dx < KCollpl?, Vt>0,
QU‘
or
lull}q,,, < KCollgllze ™, V1 >0,
which implies that the switched delayed reaction-diffusion system (2.3) equipped with the initial value (2.4) is expo-

nentially stable with the convergence rate % O
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Remark 1. Particularly, in the case of © = {1} or N = 1, the system (2.1) is the common delayed reaction-diffusion
system without any switches. Theorem 3.1 includes the exponential stability in the classical sense for the positive
bounded stationary solution of the following common delayed reaction-diffusion system:

WX DAy x) - Cy(e, x) + Ag(y(t, 1)) + BeGy(t — (0 1) + (1) € Ry X Q,
ot (3.16)

yi(t,x) =0,t >0, x€0Q, i=1,2,--- ,n.

Remark 2. For the first time, Theorem 3.1 shows the two sides of the diffusion phenomena in practical engineering
(see Remark 5 for details). But [1, Theorem 1] only shows one side of the diffusion phenomena which promotes the
stability of reaction-diffusion neural networks. So do those of previous related literature [2-10] and the references
therein.

Next, the uniqueness of the positive stationary solution of Theorem 3.1 will be presented by adding a condition to
Theorem 3.1 so that the exponential stability of the positive stationary solution is global (in the meaning of Definition

3).

Theorem 3.2. If all the assumptions of Theorem 3.1 hold, and if, in addition, the following condition is satisfied,

(A3) for each o € T, there exists a scalar £ > 0 such that

—C, + %‘7(3—11 +£G?) < 1,1 D,, (.17)

where the constant p, > 0 satisfying p2I > (A, + B,)" (A, + B,), then the system (2.1) possesses a unique positive
bounded stationary solution y“ (x) for x € Q, with y7|5o, = 0. And the null solution of the switched delayed reaction-
diffusion system (2.3) equipped with the initial value (2.4) is globally exponentially stable with the convergence rate
%. Particulary, if ¥ = {1} or N = 1, the unique stationary solution y” (x)(c- = 1) of the deterministic system (2.1) is

globally exponentially stable in the classical meaning.

Proof. Assume both y(x) and v(x) are the stationary solutions of the system (2.1). Then we claim y(x) = v(x).

In fact, Lemma 2.3 yields
(300 = 00 (A + B9 = 80:00)
=500 =0T, + B s000) - gv) + (50 - g(v(x)))Tmo + B (5(x) — (x) (3.18)
<2260 = v |71 4+ 26?0 = v

Since both y(x) and v(x) are the stationary solutions of the system (2.1), we can see it from (3.18), variational method

10
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and the Poincare inequality that

Ag1 Y(x) = (I Dyrly(x) = v(x)ldx < f IV (x) = v D[V (p(x) = v(x))ldx
Qo Qr

<- f [y(x) = v()I" Corly(x) — v(x)ldx + f %(y(X) - V(X))T[a’ll +8G? |(y(x) — v(x))dx
Qo Qo

< | - v(x)IT[ —C,+ %”(3*11 + SGZ)]Iy(x) (Ol

Q0
Now the condition (A3) yields the claim via the proof by contradiction. And so the system (2.1) possesses a unique
positive bounded stationary solution y“ (x) for x € Q, with y7|sq, = 0. Moreover, according to the proof of Theorem
3.1, the unique positive bounded stationary solution y (x) is globally exponentially stable, i.e., the null solution of the
switched delayed reaction-diffusion system (2.3) equipped with the initial value (2.4) is globally exponentially stable
with the convergence rate %

O

Remark 3. (A2) and (A3) are the sufficient conditions, guaranteeing the global stability invariance of ordinary
differential systems under the influence of diffusions in the meaning of Definition 1 (see Corollary 3.4).

To show the idea of Remark 2, we may consider the stability of the constant equilibrium point of the following
delayed reaction-diffusion Cohen-Grossberg neural networks which is the partial differential equations model studied
in [2]:

g A, n n
u (;t D Aut, x) — adu, x))[b,(u,v(t, 0) = > e fiust, %) ; gt =T, )+ L[|, 1>0,1#0,xeQ,

J=1

wi(t*, x) =muu (£, x)+ Y nihiui(t —7i(0),%), t=t, 0<t,(0) <1,V
( ) ( ) ; h Qi ( (1), %)) k 0 V) (3.19)

ui(t,x) =0, t>0,x€dQ,i=12,---,n,

ui(s, x) =¢;i(s,x), -1<s<0, 7= max 7,
1<j<n

where u; (11, x) = u;(#, x), all the variables, coefficients and functions are defined in [2], and are different from those of
our Theorem 3.1 and Theorem 3.2. Below, we will give a stability criterion of its corresponding ordinary differential

equations as follows, which will be completely similar as [2, Theorem 3.1]:

d ; n n
”;—t“) = — ) Bi) = Y cufiui) = Y dig e = TN + L}, 10,1 % 1,
j=1 j=1
w(t") =man(t) + ) mighy (0 =T 0), =1, (3.20)
j=1
u;(s) =¢i(s), -T<s<0, 7= lrgflélrj, i=1,2,---,n.

For the convenience of readers, we may copy the assumption conditions in the document [2] as follows,

(H1) Each function a;(u#) is bounded, positive and continuous, i.e., there exist two positive diagonal matrices

11
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A = diag(A,,A,,--+ ,A,) and A = diag(A1, Ay, -+ ,A,) such that

0<A <au)<A;, YueR, Vi

—l

(H2) Each function b;() is monotone increasing, i.e., there exist a positive diagonal matrix B = diag(B,, B2, - , B,)
such that
bi(u) — b;
bitw) = biv) >B;, Vuvu#v)eR, Vi

u—v
(H3) There exist three positive diagonal matrices F' = diag(F, F»,--- ,F,), G = diag(Gy,G2,--- ,G,) and H =
diag(H, H, - , Hy,) such that

0< fitw) — fi(v) <F. 0< 8i(w) — gi(v) <G. 0< hi(u) — hi(v)

< < < H; Yu,v(iu #v) e R, Vi.
u—v u—v u—v

It is obvious that the system (3.19) and its corresponding ordinary differential equations (3.20) own the same

constant equilibrium point u* = (u},--- ,u;)" € R"if u* = (uf,--- ,u;)" satisfies
n n
biup) = " ciifiu}) D dijg i) + 1 =0,
-1 -1
! ! Vi, j=1,2,---,n. (3.21)

n
(m; = D + ) migh;() = 0,
j=1

Theorem 3.3. Under assumptions (H1)-(H3), if the following conditions hold:

(C1) there exists a positive diagonal matrix P > 0 such that

—2PAB+ F> PA|C| PAID|
¥=| |cTapP -1 0 |<o,
IDT|AP 0 .
where R = diag(ry, 72, ,74), |Cl = (I¢ijDuxn> ID| = ({dijnxn, I = diag(1,1,---,1);

~ ) s 2
(€2) g = 4w® 5 4G —} > () where
/lmaxP /lminP

® = 2PAB — PA|C||CT|AP — PAID||D"|AP - F> > 0;

(C3) there exists a constant ¢ such that § > In(pe'7)/57, where A > 0 is the unique solution of the equation 1 = a —

T
1, 2 (PMP) | 2Ano(HN_PNH) 17

AT —
be'", and p = max{ 2 1P

}s M = diag(mla my,:--, mn)’ N = (nij)nxm H= diag(Hh RS Hn)a
then we have the conclusions:
Conclusion (1) the constant equilibrium point #* of the ordinary differential system (3.20) is globally exponen-

In(pe'™) ) .

. . 1
tially stable with convergence rate 5(1 — —5-

12
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Conclusion (2) If there exits a solution u*(x)(# u* in common cases) of the following equations:
0 =1 - @) B = Y. cifiG(0) = D dg i) + B, xe @
j=1 =1

u;(x) =mu;(x) + Z niihi(ui(x), Y, (3.22)
j=1

ui(x) =0, x€dQ,i=12,--,n,

then the globally exponential stability of the equilibrium point «* of the reaction-diffusion system (3.20) directly

yields that the stationary solution u*(x) of the system (3.19) is also globally exponentially stable with the same con-

In(pe'™)

vergence rate %(/l - =%

), which implies that the diffusion promotes the stability, or the diffusion is not harmful to

the stability.

Proof. Firstly, we may prove the first conclusion of Theorem 3.1 involved in the system (3.20).
Next, for any given i, let y;(f) = u;(t) — u;, where u” is the constant equilibrium point of the system (3.20). Then

the system (3.20) can be transformed into

d l ~ » n " n _
yd—f’) =- ai<yi(t>)[b,-(y,-<t>) = D eufioi o) = Y dy =T 120,11,
j=1 j=1
Yit") =miy; (™) + Z nhi (it —T,(0), =t (3.23)
j=1
yi(s) =¢i(s) —u;(s), -T<s<0, 7= max 7, i=1,2,--,n

where @;(yi(1) = a;(yi(t) + u}), bi(yi() = bi(yi(t) + u}) — b)), fiy;(0) = fi(y;() + uy) = fiw?), g;j(v;(0) =
100 + ) = &), hy(yi(0) = hj(y; (@) + u?) = hy(uct) for all i, j = 1,2, .n.

Similarly as the proof of [2, Theorem 3.1], we may set up the Lyapunov function as follows,
V(o)=Y OPY@) = YT 0)IPIY (1),

where Y(1) = (yi(#), - -+, ya())", P = diag(p1, p2, -+ . pn)-
For the case of t # ;, we compute the Dini derivative of V(t) alongside with the trajectories of (3.23),
D*V() = - 2YT()PA(Y(D)B(Y (D) + 2YT () PA(Y (1)) CE(Y(D) + 2YT () PA(Y()DG(Y(t — (1))
<= YT @Y @]+ YT (2 - 1())G*Y (1 — 7(1))

<=av() + bVl

where A(Y(1)) = diag(é (yi(1), -+ , @y (ya()), BY (@) = (Bi(y1(1), -+, BaGu@)T, FY(®) = (i1 @), -+, fuu)),
G(Y (1) = @10, BaGn®ONT, Gt = 7(1)) = @01 = T1(O)), -+ » Bt = Ta)))-

When 7 = #;, using the similar methods in the proof of [2, Theorem 3.1] results in that

= Amax(PMP) Amax(HNTPNH) —~
Vi =V Py < 2222 0D 4 o e OV N )

13
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Now it follows from (5 1), (52), (C3) and [2, Lemma 2.2] that

In(pedT)
T

V() < plVO)].e 51, 1>0,

or

V() = u) (u(t) = u) = VYT (1) < pj‘“%f VIYTOY )], e 305 1> 0,

which has proved that the equilibrium point u* of system (3.20) is globally exponentially stable with convergence rate
1 In(pe'™)
31— ),

Finally, we shall prove the second conclusion of Theorem 3.3.

Indeed, let Y(z, x) = u(t, x) — u*(x), where the stationary solution u*(x) = (uj(x), - ,u(x))T , then the system

(3.19) can be transformed into

0 i1, - ~ < ~ & ~
D it 0 = 051 B3 = 3 €06 0) D=0 10120

J=1

yilt", x) =my; (1, x) + Z nhi ot —0,%), t=t, 0< ;)< 15 Y,
=

(3.24)
yit,x)=0, t>0,x€0Q,i=12,---,n,
yi(s, %) =¢i(s, %) —u; (x), -T<s<0, 7= max j,
where y;, a;, b;, fj, gj and 7; all are defined as those of [2].
f IVu(t, x)Pdx > 44 f ul(t, x)dx
Q Q
On the other hand, the Poincare inequality and the Dirichlet zero boundary value yields
Y7(t, x)PRAY (1, x)dx = — T Y (==—)d
fg (t, X)PRAY (1, x)dx L;”’”Z;(ax,-) x
B = (3.25)

n
<-4 f > piriyi, x)dx < 0,
Q0
where A; is the smallest positive eigenvalue of the following eigenvalue problem:

—Ap(x) =Ap(x), x€QcR™,
e(x) =0, x€0Q.

Constructing the Lyapunov functional as follows,

V(@) = f YT (1, x)PY (1, x)dx = f IYT (¢, x)|P|Y (2, x)|dx
Q Q

14
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For the case of ¢ # 1;, we compute the Dini derivative of V() alongside with the trajectories of (3.24),
D* V() = fg [ —2YT(t, x)PA(Y (1, x))B(Y (£, x)) + 2YT (t, ) PA(Y (£, x)) CF (Y (£, x)) + 2Y7 (¢, ) PA(Y (£, x)) DG(Y (1 — 7(1), x)) |dx
< L [ — YT (1, 0| (2 2)| + Y7 (¢ = 7(0), )GV (¢ = 7(0), %) |dx
< fg [—m/(r, x) + b[V(t, x)],]dx,

where X, E, F. s G all are defined as those of [2]. Completely similar as the proof of the first conclusion of Theorem

3.3, we can also obtain

PMP HNTPNH
Vi = [ Y0Py < 22 g 2O D
Q min min
and
n E,lr
V@) < pIVO)re 5, 1> 0,
or

/lm XP _1 ,i
f Wt ) = ) (ult, x) — u)dx < [ L2mf | f YT(0, 0¥ (0, 0dx], e 0D >0,
Q Amin P Q

which has proved that the equilibrium point «* of system (3.20) is globally exponentially stable with convergence rate
1 In(pe'")
31— ==,

In fact, due to (3.25), the globally exponential stability of the equilibrium point u* of system (3.20) directly yields
that the equilibrium point u*(x) of system (3.19) is also globally exponentially stable with the same convergence rate

%(/1 - %) , which implies that the diffusion promotes the stability. The proof is completed.
O

Remark 4. Obviously, [2, Theorem 3.1] is the direct corollary of the conclusion (1) of Theorem 3.3 due to the

Poincare inequality. In fact, the condition (C1) of [2, Theorem 3.1] is as follows,

—-2IPR 0 O
w=F+| 0 0 of<0 (326)
0 0 0

and the condition (C2) of [2, Theorem 3.1] is as follows,

Ainin® Aoin® A G2
a= min >a= min ma: =b20, (327)
/lmaxP AmaxP /lmmP
where
® =2IPR+® > 0. (3.28)

Remark 5. Conclusion (1) of Theorem 3.3 involved in the ordinary differential system (3.20) is completely similar
as [2, Theorem 3.1] of the reaction-diffusion system (3.19). Due to Poincare inequality, [2, Theorem 3.1] becomes

15
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actually a corollary of the Conclusion (1) of Theorem 3.3, which implies that diffusions only promote the stability of
the reaction-diffusion system. Actually, [2, Theorem 3.1] does not illuminate any negative effects on the stability of the
reaction-diffusion system, compared with the conclusion (1) of Theorem 3.3. However, Conclusion (2) of Theorem
3.3 can show the two sides of the influence of diffusion on judging the stability of the diffusion system (3.19), for
the existence of the solution #*(x) of the equations (3.22) may place more restrictions on the system, which may be

similar as the condition (A2) of Theorem 3.1.

Remark 6. Particularly let a;(i;) = 1 and b;(u;) = b;u; with b; € R in the delayed reaction-diffusion Cohen-Grossberg
neural networks (3.19), then the Cohen-Grossberg neural networks (3.19) is reduced to the following cellular neural
networks

Ju;(t, x)
ot

=riug(t, %) = b1, ¥) + ) cifiui(t ) + Y dig it =0, 0) =L 20,1 %1,

j=1 j=1

wi(*, 2) =man(t, ) + ) nih (=70, %), 1=1, 0 <10 < T, V)
j=1

ui(t,x) =0, t>20,x€dQ,i=12,---,n,

u;i(s, x) =¢;(s,x), —-T<Ls<L0, 7= lrgjaén T;.

So the conclusions of Theorem 3.3 include the case of cellular neural networks. But if there is not impulse control in
Theorem 3.3, the unique existence of the stationary solution of reaction-diffusion system should be given so that
the global stability can be guaranteed for the reaction-diffusion system.

The following corollary can be derived by our Theorem 3.2 and Theorem 3.3.

Corollary 3.4 (Global Stability Invariance). Suppose the conditions (H1)-(H3), (C1) and (C2) are satisfied, and
a;i(u;) = 1, bi(u;) = bju;, fi(u;) = gi(u;) as said in Remark 6. Besides, H; = 0,m; = 1,n;; =0, A = A=1
then we have the conclusions:

Conclusion (1) the constant equilibrium point u* of the following system is globally exponentially stable:

duy(1) C C
T = b i)+ ) dig it =T O) ~ Ly 120,
= = (3.29)
ui(s) =¢i(s), -T<s<0, 7= max T, i= L,2,---,n.
Conclusion (2) If there exits a solution u*(x)(# u* in common cases) of the following equations:
0 =riAui(x) = biat(x) + ), ciig;(i(0) + ) dijg () — L, x€Q
=1 =1 (3.30)
ui(x) =0, xe€dQ,i=1,2,---,n,
and if, in addition, there exists a scalar € > 0 such that
P, -1 2
-B+ 5(8 I +eG°) < 4R, (3.31)
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where the constant p > 0 satisfying p*I > (C+D)"(C+D), and R = diag(ry,r3,--- ,1,), B = diag(by,bs,- -+ ,b,),C =
(cij), D = (d;j), then the globally exponential stability of the equilibrium point u* of the system (3.29) directly yields
that the equilibrium point #*(x) of the following reaction-diffusion system is also globally exponentially stable (in the
classical meaning):

Ouy(t, x)

o =) = bt 0) + ) cug (6 0) + Y dyg e =0, ~ I, 1> 0.x€Q,

j=1 j=1
ui(t,x) =0, t>20,x€dQ, i=1,2,---,n,
u;i(s, x) =¢;(s,x), —-TLs<L0, 7= lrgj;agxnr.
Remark 7. Corollary 3.4 illuminates the invariance of global stability in the meaning of Definition 1. Without the
impulse control, the unique existence of the stationary solution must be considered for the reaction-diffusion system.
In the conclusion (2) of Corollary 3.4, the condition (3.31) is the condition (A3). Besides, the existence of the
stationary solution u*(x) of the equations (3.30) might be guaranteed by some condition similarly as (A2). In common
cases, u*(x) is not necessarily equal to u*. In fact, if the constant vector u* # 0, u* is not any stationary solutions of
reaction-diffusion system under Dirichlet zero boundary value. Below, an example will be designed to show it (see
Statement 1).
To illuminates the effectiveness of Corollary 3.4, the Global Stability Invariance, we may present the following
simple example in the case of n = 1.

Example 3.5. In Corollary 3.4, setn = 1,and B = 2,C = 0.01,D = 0.01,1; = 0.1, g(#) = u and then the Lipschitz

constantof gis G = 1. Let u* = % is the unique solution of the following equation:

0=-2u+0.0lu+0.01u+0.1.

Moreover, it is easy to verify that the conclusion (1) of Corollary 3.4 holds due to the fact that the related conditions

of Corollary 3.4 are satisfied. That is, the constant equilibrium point u* = % of the system (3.29) is globally
exponentially stable.
Besides, set R = 0.1, p = 0.02, £ = 1, then —B + g(a‘ll +&G?) <0 < 4R, where I = 1. According to Corollary

3.4, if u*(x) is a solution of the following equation
0=01Au—-2u+001u+001u+0.1, xeQ; u=0, xe€dQ,
whose solution is corresponding to the critical point of the following functional

1 1
xw) = = f [VulPdx + = f 19.8udx — f udx,
2 Q 2 Q Q

then the unique stationary solution u*(x) of the system (3.30) is globally exponentially stable in the classical mean-
ing. As the selected special example, we are willing to prove the existence of the stationary solution u*(x). In fact,
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x € C'(Hy(Q),R), and y is coercive, for
1 2 1 2 1 2 *
xw) == [Vu|“dx + = 19.8u“dx — udx > —||ul|” = c*||lul]| = +o0,  |ju|| = oo,
2 Q 2 Q Q 2

where || - || is the norm of Hé (Q) with |lu|* = fQ |Vu>dx, and ¢* > 0 is a constant. It is easy to prove that y satisfy the
Palais-Smale condition, and y is bounded below (see the methods used in proof of Statement 2 below). And hence,
X can attain its global minimum, say, y(u#*(x)) at the point #*(x), on H(‘)(Q) (see, e.g. the proof of [49, Lemma 2.5]).

Due to the condition (3.31), the unique stationary solution u*(x) of the system (3.30) is globally exponentially stable

o1
1.98°

x € Q, for u* = %L is a non-zero constant (see Statement 1 for

in the classical meaning. Particularly, u*(x) # o8

details).

Statement 1. Let u* be a non-zero constant equilibrium point of an ordinary differential system. Then u* is not any
stationary solutions of its corresponding reaction-diffusion system under Dirichlet zero boundary value, or it must

lead to a contradiction.

Proof. Consider the following cellular neural networks in the case of n = 1:

) __ Cx(1) + Af(x(1)) + Bf(x(t = T(t)) + J,  1>0,
dt (3.32)

x(s) =£(s) is bounded in [, 0].

and its corresponding reaction-diffusion system:

6“(5; D DAt x) — Cult. x) + Af(u(t. ) + Bfu(t — 10, 0) + 1, (t.1) € Ro x Q. Q= (0.1) C R,
u(t,x) =0, 1 > 0, x € 4, (3.33)

u(s, x) =&(s, x)is bounded in [-7, 0] X (0, 1).

where D = 0.001, C = 1.8, A =0.2,B =0.1,J = 1.09, and f(s) = 0.05(s — 6) for s € R!.

1000 — 290 js the constant equilibrium point of the system (3.32). Obviously,

Direct computation derives that x = {7¢z = 557

f is Lipschitz continuous function with Lipschitz constant 1=0.05.1In[31, Theorem 1], let p=1and N =1, then

—i(-NCN™" = TINAILIIN7l; = 1.8 = 0.05 % 0.2 > 0.05 x 0.1 = [INB||IN"'|I, > 0,

and hence [31, Theorem 1] results in that there is the unique constant equilibrium point x* = Ze= = 55 of the ordinary

differential system (3.32) is globally exponentially stable.

Next, direct computation illuminates that the stationary solutions of the system (3.33) satisfies the following

equation:
2
LU _1785u(v) - 1000, xe Q= (0.1,
e (3.34)
u(0) =u(1) = 0.

Now it is easy to verify that

200(e= V1785 — 1)

\Wx _ 200(8 1785 _ 1) —V1785x + @
357(e VITES — ¢~ VIT®) 357(e 1755 — - V1755) 357

18
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is a solution of the equation (3.34), and it is also a nontrivial stationary solution of the reaction-diffusion (3.33).
Below, by the proof by contradiction, we shall prove that u* is not the equilibrium point of the reaction-diffusion
(3.33), where u* = u*(x) = 192 = 30 for all x € (0, 1) with u*(0) = u*(1) = 0.

Firstly, by direct computation, the system (3.33) becomes the following system:

a s
ugt %) =0.001Au(z, x) — 1.8u(t, x) + 0.01u(t, x) + 0.005u(t — 7(H), x)+1, >0, xe Q=(0,1),

u(t,0) =u(t,1) =0,
u(s, x) =£(s, x) is bounded in [-7, 0] x (0, 1),

which is equivalent to the following system via the transformation y(¢, x) = u(t, x) — u*:

o gt %) 0,001 Ay(t, %) — 1.8y(1, ¥) + 0.013(1, ) + 0.005y(t — 7(1), x), 1> 0, x € Q = (0, 1),
¥(t,0) =y(1, 1) =0, (3.36)

(s, x) =n(s, x)is bounded in [-7, 0] x (0, 1),

Consider the Lyapunov functional: V(¢, y(, x)) = fQ y2(t, x)dx, then the derivative ‘fj—‘t/ alongside with the trajecto-

ries of the system (3.36) yields

dv(t,y(t,x))

= f 20, x)(0.00lAy(t, ) — 1.8y(1, %) + 0.01y(z, x) + 0.005(t — 7(0), x))dx
Q

< - (0.0027% + 3.575) f y2(t, x)dx + 0.005 f Y2(t - 1(t), x)dx
Q Q
=—aV(t,y(t, x)) + bV(t,y(t — 7(2), X)),

where a = 0.0027% + 3.575, b = 0.005, satisfying a > b > 0. By employing [46, Lemma 3] or the methods in the
proof of [40, Theorem 3], we can derive that the zero solution of the system (3.43) is globally exponentially stable
with the convergence rate %, where A > 0 is the unique solution of the equation A = a — be'™. That is, the constant
equilibrium point u* of the reaction diffusion system (3.33) is globally exponentially stable, and so u* is the unique
equilibrium point of the reaction-diffusion system. However, u.(x) defined as (3.33) is its another equilibrium point.
This contradiction shows that u* can not be the stationary solution of the reaction-diffusion system.

O

Remark 8. In [2, Theorem 3.1], u* is a non-zero constant vector in common cases. But [2, Theorem 3.1] told us that
u* is a stable equilibrium point of a reaction-diffusion system under Dirichlet zero boundary value. Now Statement 1
illuminates that it must lead to a contradiction. On the other hand, the conclusion of Theorem 3.3 points out that u*(x)
a stable equilibrium point of the reaction-diffusion system under Dirichlet zero boundary value, but u*(x) is not equal
to the non-zero constant vector u*. Such errors also occur in many previous literature (see, e.g. [2,17, 37,38] and the

related references therein).
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Remark 9. Of course, some suitable non-zero constant vectors can be the equilibrium points or stationary solutions
of delayed reaction-diffusion systems under Neumann boundary value (see, e.g. [15, 16, 34-36, 39, 47]) though they
can not be the equilibrium points or stationary solutions of delayed reaction-diffusion systems under Dirichlet zero

boundary value.

In the proof of Statement 1, u* is the unique equilibrium point of ordinary differential system with Lipschitz
assumption on active function f. Now we want to know whether the number of equilibrium points changes under the
influence of inevitable diffusions.

Consider the following cellular neural networks in the case of n = 1,

% = —Cx(t) + Af(x(t) + Bf(x(t = (1)) + J,  and x € R, (3.37)

and its corresponding reaction-diffusion cellular neural networks

M) DAt )~ Cutt, x) + Af(u(t.0) + Bf(t ~=().0) + /. and 130, x €€,
= (3.38)

u(t, x) =0, x €09,

where Q is an open bounded domain in R3 with smooth boundary 0Q2, D € R! is the diffusion coefficient with D > 0,

and C, A both are positive real numbers, J = 0, B = 0, the function f is defined as follow,

3D . 2D

7#1”34'7#1, u< -1
D
f(u) = Z,Ll]u, uel[-1,1]; (3.39)
3D ! 2D > 1
A Hu A M1, uz L

Here, we denote by ; the ith positive eigenvalue of the following eigenvalue problem :

—Au(x) + gu()c) =uu(x), x € Q,
D (3.40)
u(x) =0, u € 0Q,

then yy = § + Ay, and pp > py ([33)).
Statement 2. If zero solution is the global stable unique equilibrium point of ordinary differential system (3.37), then

its corresponding reaction-diffusion system (3.38) owns zero solution and other stationary solutions which are at least

two non-zero functions or infinitely many positive functions and negative functions.

Proof. Firstly, it is easy to see from f(0) = 0 and J = 0 that zero solution is also an equilibrium point of the system
(3.38).
Besides, we claim that the system (3.38) owns other stationary solutions which are at least two non-zero functions

or infinitely many positive functions and negative functions.
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In fact, we know from (3.39) that Id'gi”)l < §y1 for all u € R!, because
Dt <-1
e u s ux —1L;
A/JI
dfw) _| D
_J Y _ . 3.41
an TH uel-1,1] (3.41)
Dt >1
Y u 3, =
Aﬂl u
And hence, f is Lipschitz continuous as follow,
D 1
lf(u) = fOI < Zmlu -vl, VYuveR. (3.42)
And the definition of f yields
9D $, 2D N 1D <1
gk T g, S
. 1D
O R L SR (3.43)
0 2A
9D s 2D N 1D S 1
4AH1M~ Amu 4A’u1’ uzl.

Besides, if u(x) is the stationary solution of the system (3.38), u(x) is a solution of the following equation:

0 =DAu(x) — Cu(x) + Af(u(x)), xeQ,
u(x) =0, x € 0Q,

whose solution is corresponding to the critical point of the following function:

1 C A
Ju) = = f \VulPdx + — f wdx — = f F(u)dx,
Denote H = {u € W(;’Z(Q), fg \VuPdx + $ fg u?dx < oo}, in which the inner product is presented as follows,

C
(u,v)szqudx+—fuvdx,
Q D Jg

and its induced norm is denote by || - ||z. Obviously, J € C'(H,R").

where F(u) is given by (3.43).

Besides, we claim that the functional J is bounded below. In fact, if it is not true, there must exist a sequence {u,,}
in H such that J(u,) — —oo as |ju,||zy — 0. So there must exist a scalar ¢ > 0 such that J(u,) < P for all n. Set
W, = uy/|lugllg, then ||,]|z = 1 for all n. Moreover, Sobolev embedding theorem tells us that there exists 90 € H
such that 20, — 20 in H, 20, — W in LY(Q) with 2 < g < 2%, and W, (x) — W(x), a.e. x € Q, where 2* is the

critical sobolev exponent. Here and below, a subsequence of {u,} is still denoted by {u,} for convenience.

2

By employing the similar methods used in the proof of [49, Lemma 2.1], we claim that ||QU||%, = w1 ||20] @)
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In fact, on one hand, it follows by (3.43) that there is such a constant M > 1 big enough that

P 1o ) 3t Jo tndx = 55 [0 Flun)dx
= >0 = S5 — il ] + -
loaal2 ™ MuallZ, 2 I,
L9 B, — s+ i< Bty = 5F ()l . S U3ty = 5F(u)ldx
== — M1
2 ML) NI, a1,
1 2 A
1 1 oo za[3H1n = B F(up)ldx
= (I, 11, — =1l )] + 0 + =25
S UG = Sl )] ol
1 1 J; B vy
> 101, = 120, )] + 0 + W +0.
H
On the other hand,
flgmlsM kmdx) eyl - mesQ e
]2, T ’
Hence,

lim sup |[20,/17; — 1120117, q, < 0 = limsup 10,17 < pil|20117, o, < 1201,

n—oo n—oo

which together with the weak lower semi-continuity of the norm yields

: 2 2 2 P 2
lim sup [l < uillN 2 ) < 1M < liminf |20,

n—oo
This implies the strong convergence of {20, } in Hilbert space H, and hence |||y = 1, and IIQBII%I = ,ulllﬂﬂlli2 @’
which means that 20 is the eigenfunction of the least positive eigenvalue u;. Let ¢; be the positive eigenfunction in

the one-dimensional eigenfunction space of the least positive eigenvalue y; such that ||¢;||g = 1, and ¢;(x) > 0 for all

x € Q, then T = +¢;. Since W, (x) — W(x), a.e. x € Q, there exits Q" C Q such that mes(Q/Q*) = 0 and

|1, (20|
et |2

120, (x)| = - pi(x), Yxe,

which implies |u,(x)] = +o0, ¥V x € QF. Now, it follows by (3.43) that

1 1C A
P 3w = 5 fg Vunldr+ 5 fg 2dx- = fg Fuydx

> f [lmuﬁ—nu)]dx: f [1u1uﬁ—F(u)]dx+ f [lmuﬁ—F(u)]dx
Q 2 Q/Q* 2 QF 2

1
=f (U2 — F(u)ldx — +00, 1 — oo,
o 2
which means that J is bounded below.

By employing the similar methods used in [50], we shall prove that J satisfies the (PS) condition.

In fact, if {u,} satisfies J(u,) — a, ||J’ (u,)||lg= — 0, and n is big enough, we see

1 1C A
a+0(1)=3(u,,)=§j£;|Vun|2dx+ EBLuﬁdx—BLF(u,,)dx
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and
C A
G (uy), uy) = f [Vu, | dx + — f wrdx — —= f £ () undx.
Q D Jo D Jo

And hence,

L II2+Af[1f( i — Flun)ldx < a + o(1) + S )l

—||u, — —fu)u, — F(u,)]dx <a+o - Uzl e,

ollet ) 13 3 e - ltenlle
or

1, " A (1

—Nuully < a+o(1) + S gl + = | |5 f@n)u, — F(up)ldx. (3.44)

6 3 DJ,'3

On the other hand, (3.43) and (3.39) yield that there exists a constant ¢, > 0 big enough, satisfying

1
I3/ G = Fw)l < catd +co, lul > 1;

1 1D
|3/ Gou = Fal =1 - gzlmﬁl <ec., uel-1,1],

or

1
Igf(u)u —Fw)| < cu’ +¢., YueR!,

which together with (3.44), Holder inequality and Poincare inequality implies

1 c.A A 4
—lullfy < a+ o(1) + clluglly + ——mes(Q) + —cZllull;,. (3.45)
6 D D
And then {u,} is bounded in H due to (3.45).
Due to the fact [|u|]* < ”””123 < clull, we see, || - || and || - || are a pair of equivalent norms. Moreover, we know

from (3.39) that f(u) satisfies the Caratheodory condition, and
1 L,
If ()] < ci + cilul3, and0<§<2 -1,

which means that the bounded set {u,,} with the condition [|J"(u,)||z- — O is a compact set in the Hilbert space H. This
have verified that J satisfies the (PS) condition.

On the one hand, if infy J > 0, we claim that there are infinitely many positive stationary solutions and infinitely
many negative stationary solutions for the reaction diffusion system (3.43) .

Indeed, since || - || and || - ||z are a pair of equivalent norms, Sobolev space H ([43-45]) has the orthogonal decom-
position H = E(u;)® E(u;)*, where E(u;) represents the eigenfunction space of py, and E(uy)* = E(uy) ® E(u3)®- - - .
Obviously, J satisfies (P1). In fact, if u € E(u;) with |lu]lgz < J, the equivalence of norms in each finite dimensional
space yields

lullg < 0= f lu(x)|dx < 61 = lu(x)| < 1, a.e. x € Q.
Q

where the positive number ¢ is small enough, and so is ;. And then

1., A
v <tz _ A (¢
J(u) 2IIMIIH DL (w)dx

(3.46)

1 u?
=§||u||%,—u1f3dx=0<o, we Equ), lull < 0.
Q
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which together with infy J > 0 implies that all u € E(u;) with |lu||z < J are the stationary solutions of the reaction
diffusion system (3.38). Moreover, E(u;) implies that there are infinitely many positive stationary solutions and
infinitely many negative stationary solutions for the reaction diffusion system (3.38).

On the other hand, if infy J < 0, we see, the condition (P3) holds. Then we claim that there are at least three
equilibrium solutions including two non-zero stationary solutions, for the reaction diffusion system (3.38) if infy J <
0.

In fact, (3.46) implies that (P1) holds. In order to apply Lemma 2.2, we only need to verify the condition (P2) of
Lemma 2.2. Next, for u € E(u)*, let u = v + z, where v € E(uo), z € E(uz) ® E(ug) @ - - - . Then we get

A
J(u) > (m f Vidx + 1o f 2dx)+—[||Z||H o f z2dx]—5 f F(u)dx
Q Q

(f 2dx+f 2dx)+ (1——)|| ||H—— F(u)dx (3.47)
Q

:[EHZ Luzdx ) fQF(u)dx] + E(l - ﬂ—3)||z||%1, YueEQu)".
Due to (3.43), there exists 6 € (0, 1) such that

2A
EF(u) =’ < pou?,  if lul <5< 1, ueE@)t. (3.48)
Moreover, for this ¢, there exists correspondingly 6, > 0 such that for u € E(uy) with |lullg < 2, we get
lu(x)| < g, a.e. x € Qin view of the equivalence of norms in finite dimensional space.
Define
={xeQ:lux)| <6}, Q={xeQ:|ulx)|>ad}.

Due to the orthogonal decomposition of the Sobolev space H and u = v + z, we see, |lullg < d2 = |Vllg < 92,
which implies

1
IM(X)I [zl = lu(0)l = () = EIM(X)I, a.e.x €.

NIO’)

(0l <

Besides, (3.43) yields

1 A
Iz,uzuzdx - HF@l < c.lul < 8cul, x € Q.

So we can see it from the orthogonal decomposition of the Sobolev space H and the Sobolev embedding theorem
that for all u € E(u)*, if |jullg < 62, we get

1 A 1 1 A
NORIETE fg | u'dx — 5 | Fade+ (1 - Z—j)ﬂzuz + G f udx - 5 | Fadx]

Q Q Q

1
250 - —)||z||H ~ 8¢, | ldx
Q

2
which implies that the condition (P2) holds. And now all the conditions of Saddle point theorem are satisfied. Ac-

1
>=(1- )12 - 8A1IE,
M3

cording to Lemma 2.2, we have proved the claim. And the proof is completed.
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O

Remark 10. Statement 2 actually illuminates that under Lipschtiz assumption on active function, diffusion may make
an equilibrium point become infinitely many stationary solution. The deeper purpose of Statement 2 may be revealed
in the final section for further considerations (see Problem 1). On the other hand, according to the Introduction in [51],
the function f defined by (3.39) satisfies the conditions [51, (7)] and [51, (8)], and hence, the zero solution is actually
the unique equilibrium point of the ordinary differential system (3.37). Thereby, Statement 2 has actually verified that
under the Lipschitz assumption on the function f, the small diffusion can truly make one equilibrium point become

multiple stationary solutions (three stationary solutions, even infinitely many stationary solutions).

4. Numerical example

Example 4.1. Consider the following switched financial system with o € {1, 2, 3},

oy(t, x
yg[ ) =D, Ay(t, x) — C1y(t, x) + A g(y(t, x)) + Big(y(t — 7(1), X)) + J1, (1, x) € R, X Q,
(4.1a)
yit,x)=0,1>0, x € 0Qy, i=1,2,
ay(t, x)

=D, Ay(t, x) — Coy(t, X) + Aog(y(t, X)) + Bog(y(t — 7(1), X)) + J2, (1, %) € Ry X &,
ot (4.1b)

yi(t,x) =0, >0, x € 0Qy, i =1,2,

and

o g; Y Dy Ay(t, ) = Cay(t,x) + Asg(o(t, ) + BagOt — T(0).0) + I, (1) € R, x s,
4.1¢)

yi(t,x) =0,12>0, x €0Q;3, i=1,2,
or the following corresponding homogeneous equations:

D) D A, 2) = Ctlt, ) + A (1, ) + B fult = (0. 0), (1.3) € R, x
ar (42)

u(t,x)=0,t>0,x€0Q,, i=1,2; o€{l,2,3}

equipped with the initial value:

uj(s, x) = ¢i(s, x) = ﬁ sin/[xP(x; = 5(0 + D18 (= S+ 1)), j=1,2, -1 <s<0, x€Q,, oe{l,2,3),

! 4.3)
where Q; = [0, 1]x[0, 1], Q, = [0, 1.3]x[0, 1.3], Q3 = [0, 1.5]x[0, 1.5], A;; = 19.7392, A5; = 11.68, A3; = 8.7730(see
Remark 13).

Set ¢ = 100000000, I = diag(1, 1), and
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0.448 0 0.455 0 0.438 0
Cl = 5 C2 = B C3 = s
0 0.441 0 0.441 0 0.433

0.45 0.00003 A 0.452 0.00001
-0.00003 044 | ~0.00001 0441 |

0.439 0.000015
-0.00001 0.433

0446 -000003) (0458 -0.00001) (0437  -0.000015
000003 0442 | 000001 0441 | 000001 0433 |

Let gi(y;) = 222r0000LSY 4 then G = diag(0.51,0.51). Set J, = (0.2sino, —0.1cos o), o = 1,2,3, then
the direct calculation can verify that both conditions (A1) and (A2) hold.

For example, in the case of o = 1, direct computation derives

0.448 x 3240000001 sinyy ] [ 02sin 1

0<|-Civ+Ai1gv)+ Bigv) + Jl] = [0.441 s 39+0.0002001 - Coleos

J< c¢D\E,

which means that (A2) holds in the case of o = 1. Similarly we can compute and verify that (A2) holds in the case of
o=273.

Case 1

Set

0.05 0 0.07 0 0.09 0
D = » Dy = » D3 = , 4.4)
0 0.055 0 0.075 0  0.095

Moreover, in (3.17), let p, = 1, then it is easy to verify that p, > 0 satisfies p2I > (A, + By)" (A, + B,) for each o

In addition, set & = 2,

—C, + %(511 +£G?) < 0.11 < A D,, forall o=1,2,3.

Then the condition (A3) holds (Below, it can be verified similarly that (A3) holds in Case 2-3, too).
Let g = 1.00001, ¥ = 0.000187 and 7 = 3.5, then employing computer LMI toolbox to solve the inequality (3.1)

derives the following feasible data:
B1 =0.5676, B, = 0.3633, B3 = 0.0691, v = 0.38,

then the switched delayed reaction-diffusion system (2.3) equipped with the initial value (2.4) is globally exponentially
stable with the convergence rate 19% due to Theorem 3.2.
Case 2

If replacing the diffusion coefficients (4.4) with the following diffusion coefficients

01 O 015 0 01 O
D, = » Dy = » D3 = , 4.5
0 0.15 0 02 0 0.15
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and other data of Case 1 are not changed, we can use the computer LMI toolbox to solve the inequality (3.1), resulting

in the following feasible data:
B1 =0.6769, B, = 0.2333, B3 = 0.0898, y = 0.44,

then the switched delayed reaction-diffusion system (2.3) equipped with the initial value (2.4) is globally exponentially
stable with the convergence rate 22% due to Theorem 3.2.

Case 3

If replacing 7 = 3.5 with 7 = 3, and other data of Case 1 are not changed, we can use the computer LMI toolbox

to solve the inequality (3.1), resulting in the following feasible data:
B1 =0.6616, B, = 0.3113, 85 = 0.0271, y = 0.58,

then the switched delayed reaction-diffusion system (2.3) equipped with the initial value (2.4) is globally exponentially

stable with the convergence rate 29% due to Theorem 3.2.

Table 1.Comparisons the influences on the convergence rate % under different diffusion coefficients with the same other data

Case 1 Case 2

diffusion coefficient | (4.4) (smaller) | (4.5) (bigger)

Convergence rate 19% 22%

Remark 11. Table 1 tells us that the larger the diffusion coefficient, the faster the convergence rate. On the other hand,

the harsh condition (A2) illuminates that the diffusion makes it more difficult to judge the stability of the system.

Table 2.Comparisons the influences on the convergence rate % under different upper limits of delays with the same other data

Case 1 | Case 3

diffusion coefficient | 7 = 3.5 T=3

Convergence rate 19% 29%

Remark 12. Table 2 indicates that the larger the upper bound 7 of time delays, the slower the convergence speed %
Remark 13. (see,e.g.,[14-16]) The smallest positive eigenvalue of —A, in W;”’ 0,7)1s

1
2 (p-1)7 dt 4
O
0 »
(1-35)

IFQ={(x,x) :0<x <a 0<x <B cR?and Wé""(Q) with p = 2, the first eigenvalue 4; = (£)* + (g)z.

Besides, it is well known that there is the following approximate substitution of Poincare inequality lemma :

Remark 14. Let Q be a cube |x;| < [;(i = 1,2, --- ,n) and let u(x) be a real-valued function belonging to C'(€) which
vanish on the boundary 0Q of Q, i.e., u(x)|spo = 0, then

b
f [2(dx < P f 19E 24y,
Q Q 0x;
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5. Conclusions and further considerations

By constructing a compact operator on a convex set, the author makes up for the loss of compactness in infinite
dimensional space. Using a fixed point theorem, variational methods and Lyapunov functional method results in the
existence positive bounded stationary solution, which is exponentially stable. Moreover, by using the first positive
eigenvalue of Laplace operator —A to restrain Lipschitz constants, the author proposes the uniqueness theorem of
the stationary solution of reaction-diffusion system under Dirichlet zero boundary value, and thereby the stability of
Theorem 3.1 becomes global. Not only that, Theorem 3.1 and Theorem 3.2 derive a corollary on the variance of global
stability. Moreover, Statement 1 points out the fact that non-zero constant vector can not be a stationary solution of
the reaction-diffusion system under Dirichlet zero boundary value. Besides, Statement 2 points out that the influence
of diffusions changes the number of the system under Lipschitz assumptions on active functions. Finally, a numerical
example is presented to illuminate the effectiveness of the proposed methods.

Below, some interesting problems are proposed as follows,

Problem 1. How to improve the example in Statement 2 or add a suitable condition to the example in Statement
2 so that the constant equilibrium point of the ordinary differential system can be truly proved to be globally asymp-
totically stable. At the same time, the corresponding reaction-diffusion system owns multiple stationary solutions. If
so, many global stability results of delayed neural networks in the form of ordinary differential equations may only be
locally asymptotical stability criteria in real engineering due to the inevitable diffusions.

Problem 2. How to replace (A2) with a weaker condition in Theorem 3.1 ?

Problem 3. Is the condition (A3) of Theorem 3.2 necessary for the uniqueness? If not, what’s the weaker

condition?
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