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Abstract: In the current pandemic of COVID-19, students and faculty are subject to social 
distancing and online learning. How to test students in this unprecedented environment is a new 
educational challenge with immediate and global impacts. The main contribution of this paper is 
to establish the feasibility that by a clever design we can control the average gain (which is 
referred to as the g-factor) from cheating behaviors to a degree as small as pre-specified so that 
accurate and reliable online exams can be administered. It is underlined that even after the 
pandemic the methods and systems in the spirit of our proposal are still valuable for cost-
effective exams to promote open courses and internet-based education. 
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I. Introduction 
In fundamental ways, measurement is necessary and instrumental in science, 
technology/engineering, education, and mathematics/statistics/data science (STEM). 
Measurement in education is commonly known as examination/testing, which can be open or 
close book, online or paper-based, subjective or objective (multiple choices). The ideal exam 
should sense a student’s capabilities of capturing knowledge units, solving problems and 
thinking creatively, be cost-effective and widely accessible. 
Along the above guideline, several comments can be made in order. Thanks to Google and 
other information retrieval engines, knowledge acquisition is never as easy as now. Hence, 
remembering facts and formulas becomes less important than understanding the subject matter 
thoroughly and mastering skills of finding and integrating needed pieces of information. In other 
words, open book tests seem in many cases more relevant than close book tests. Since 
individualized problem-solving problems lead to inhomogeneous answers which are generally 
time-consuming to be evaluated objectively and efficiently, multi-choice problems become 
increasingly popular. 
During a traditional exam in a school or college, a proctor sits in a classroom to prevent 
students from cheating. In a conventional online exam such as TOEFL and GRE, students can 
be also put in the same room under human monitoring. Arguably, it could be easier to cheat in 
online exams than to do so in paper-based tests. In all these cases, students are in the same 
room under centralized monitoring. However, in the pandemic of COVID-19 students are subject 
to social distancing and remote learning. How to test students in this environment is a new 
educational challenge with immediate and global impacts. As an example, College Board 
“canceled the May 2, 2020, SAT and SAT Subject Test administration. Makeup exams for the 
March 14 administration (scheduled for March 28) were also canceled” [1], since cheating would 
invalidate the test results during social distancing. 
In practice, several well-known means to suppress cheating behaviors are in use for 
management of online exams. First, testing software exists to prohibit students from 
copying/pasting. Also, the order of questions in an exam can be randomized so that neighboring 
students cannot peer each other’s’ results. Since students take different time lengths to solve 
the same problems, each of the questions can be timed to separate prepared and unprepared 
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students. In addition to the above means, software can be developed to enable remote 
proctoring. For example, ProctortrackTM [2] verifies the identity of test takers and detect when 
he/she leaves a test, if he/she does anything improper online such as searching for information. 
However, it relies on a webcam-based tracking which can be easily fooled. A user can easily 
cover the microphone of his/her computer and have the answers relayed to them from another 
device. Additionally, such software is expensive, and the cost is further enhanced by the 
requirement of additional equipment, such as webcams, speakers, etc. Thus, all these tricks, 
tips, programs and devices are insufficient or unsatisfactory to suppress cheating in online 
exams during social distancing.  
With the modern Internet and mobile technology, every student is well equipped at home. 
Hence, an exam during social distancing must be open book so online searches are allowed. 
Then, the challenge is how to prevent students from real-time communication during an exam, 
such as on a secondary device to do multi-choice problems with friends through 
Zoom/WebEx/Skype/FaceTime or even simple audio communication, which can be set up with 
little effort. Therefore, it is difficult to eliminate such cheating completely during social distancing. 
In a typical scenario, a perfect student A and an unprepared student B are friends and agree to 
cheat in an online exam during social distancing. Student A knows all answers perfectly, while 
independently Student B can only do random guessing. In the online exam, Student A can 
effortlessly give his/her answers to B, and B can achieve the perfect score as A, instead of B’s 
guessing-based score. If all questions are 4-choices with one and only one valid answer, the 
perfect student achieves 100%, while the statistical mean of Student B’s performance is 25%. 
By cheating, B achieves 100% instead of 25%, and his/her average gain (which is formally 
defined as the g-factor below) is 75% via cheating! 
Here we propose a scheme for cheating prevention in online exams during social distancing. 
With our scheme, even the two students can collaborate optimally, the unprepared student 
cannot achieve significantly better score than his/her random chance (which is 25% in the 
above example). Furthermore, with a more aggressive design potential cheating behaviors can 
be detected and penalized. The main contribution of this paper is to establish the feasibility that 
by a clever design we can control the average gain (the g-factor) from cheating behaviors to a 
degree as small as pre-specified in an online exam during social distancing. In the next section, 
we describe the general methodology. In the third section, we present representative results. In 
the last section, we discuss relevant issues and conclude the paper. 

II. Key Concepts: ASC, ASF and g-Factor 
In an online exam, M1 multiple-choice questions (MCQs) from a pool of M2 MCQs are provided 
to a class of N students, and there are Q choices per question with one and only one of them 
being correct. All the questions carry the same credit and take the same amount of time to 
answer. Without loss of generality, let us assume M1=M2=N for an initial analysis to illustrate 
the general idea. In this situation, we can present the questions to the students one by one in a 
way such that no two students receive the same question with each allowed time slot/window 
for his/her current question. For example, each student is provided t minutes before the 
question is replaced by another question from the set of the M2 questions. To ensure the 
previous restriction (of no two students receiving the same question), we do a simple left circular 
shift (alternatively, we may do a right circular shift) in the manner shown in Figure 1. Without 
loss of generality, six students in different colors are examined with six MCQs. 
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Figure 1. To six students, six MCQs are provided to each student one by one in a circular left shift 

scheme, and each question must be finished within the corresponding time slot in the grey bar. 

More generally, we may design an exam with M2=K*M1>M1 as well, and K is a positive integer 
for convenience, and it is possible to have M2<N as well. In Figure 2, we present a flowchart of 
one way how to assign questions to students in an online exam in an orderly fashion (which can 
be shown to be essentially equivalent to random assignment). 

 
Figure 2. Flowchart of presenting questions in a spatially diversified temporally controlled fashion. 
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In an ideal scenario, such an online exam would effectively prevent the students from cheating.  
Indeed, if the students were taking the online exam on their personal computers, they may also 
use their smartphones to communicate with each other. Since each student will in general have 
a different question within a particular time slot, it becomes difficult for them to collaborate. 
Unfortunately, this does not totally eliminate the possibility of cheating. Let us assume that two 
students, Red (a perfect student who knows all correct answer) and Green (a totally unprepared 
student who can only guess), decided to cheat during the exam. Although Red cannot directly 
share his/her answer with Green on the very first question, it may be possible for them to cheat 
on a later question. For instance, Red finishes Question 2 on the 2nd cycle while Green gets 
Question 2 on the 5th cycle. Hence, if Green asks for help on the fifth cycle, Red may provide 
the answer.   
in an MCQ exam, a perfect student can get the correct answer to any question with the 
probability of 1, while a totally unprepared student can find the correct answer with the 
probability of 1/Q. Let us assume that Green did not collaborate with Red and answered all the 
questions randomly. Given that each MCQ has Q options, one and only one of which is correct, 
the probability of Green getting x questions correctly answer, PX(x), out of M1 questions can be 
expressed as the binomial distribution: 

𝑃𝑃𝑋𝑋(𝑥𝑥) = 𝑀𝑀1!
𝑥𝑥!(𝑀𝑀1−𝑥𝑥)!
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 (1) 

By the design of the exam, Red will not be able to relay the answers of all the questions to 
Green. In Figure 1, Red receives 3 questions before Green. Since Green has no competence 
about the exam, the source of information will be unidirectional; i.e., from Red to Green. Under 
such a circumstance, if Red receives z questions before Green, Green will get at least z 
questions right. Out of the remaining M1-z questions, the probability for Green to get t questions 
correct is computed as 

𝑃𝑃𝑇𝑇(𝑡𝑡, 𝑧𝑧) = (𝑀𝑀1−𝑧𝑧)!
(𝑡𝑡)!(𝑀𝑀1−𝑧𝑧−𝑡𝑡)!
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 (2)   

Therefore, the total probability of Green getting x out of M1 questions correct becomes 

𝑃𝑃𝑋𝑋(𝑥𝑥) = � 0, 𝑥𝑥 < 𝑧𝑧
𝑃𝑃𝑇𝑇(𝑥𝑥 − 𝑧𝑧, 𝑧𝑧), 𝑧𝑧 ≤ 𝑥𝑥 ≤ 𝑀𝑀1 (3) 

where the zero probability for x<z is due to the assumption that Green copied Red on all the z 
questions correctly. In order to compare the probabilities of Green getting x questions right out 
of M1 questions with and without cheating, for a case shown in Figure 1, each question with four 
options, we have the results in Table 1. 

x (out of 6) Pf(x) Pc(x) 
0 0.1780 0 
1 0.3560 0 
2 0.2966 0 
3 0.1318 0.4219 
4 0.0330 0.4219 
5 0.0044 0.1406 
6 0.0002 0.0156 

Table 1. Comparison of the probabilities of Green’s chances in the exam with and without cheating, 
where Pf(x) and Pc(x) stand for probabilities of Green getting x questions right out of M correct in the fair 
and cheated exams respectively (Q = 4, z = 3 as shown in Figure 1).  

Closer looking at Figure 1, it is immediately realized that the relative positioning of the two 
students in cheating has a significant impact on the cheating performance/gain. For instance, if 
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Red and Purple are to collaborate, with Purple having the same academic competence as 
Green, the results will be quite different. This is because Red now receives five out of the six 
questions before Purple, and we have Table 2 for Purple similar to Table 1 for Green. 

x (out of 6) Pf(x) Pc(x) 
0 0.1780 0 
1 0.3560 0 
2 0.2966 0 
3 0.1318 0 
4 0.0330 0 
5 0.0044 0.75 
6 0.0002 0.25 

Table 2. Comparison of the probabilities of Purple’s chances in the exam with and without cheating, 
similar to Table 1 for Green. Note that due to his/her favorable position, Purple gains more than Green 
from Red in the exam. 

It should be noted that although the probability of answering each question correctly by Purple, 
without the help from Red is 0.25 (in case of four options), the probability of answering multiple 
questions correctly decreases due to the binomial nature of such a distribution. Therefore, to 
better understand how much the probability of success for a cheating student improves, we 
define the average score in a fair exam (ASF, normalized with M) and the average score in a 
cheated exam (ASC, normalized with M) as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ 𝑥𝑥𝑃𝑃𝑓𝑓 𝑓𝑓(𝑥𝑥)𝑀𝑀1
𝑥𝑥=0

𝑀𝑀1
 (4) 

𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑥𝑥𝑃𝑃𝑐𝑐 (𝑥𝑥)𝑀𝑀1
𝑥𝑥=0

𝑀𝑀1
 (5) 

Using these two parameters, we further define a parameter called the gain-factor (g-factor) as 
follows: 

𝑔𝑔 = 𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝐴𝐴 (6) 
Table 3 presents the ASF, ASC, and g-factor values for various cases as shown in Figure 1. 

Scenario ASF ASC g-factor 
RedOrange 0.25 0.3750 0.1250 
RedYellow 0.25 0.5000 0.2500 
RedGreen 0.25 0.6250 0.3750 
RedBlue 0.25 0.7500 0.5000 

Red Purple 0.25 0.8750 0.6250 
Table 3. ASF, ASC, and the g values for different scenarios in Figure 1 (N=M1=M2=6, Q=4). 

It is evident that the ASF remains a fixed value (1/Q) irrespective of the position of the student 
but the ASC and g-factor depend on the relative position of the ideal student and the student 
who is copying from him/her.  
In order to see how the g-factor changes with the position of the copying student when the 
perfect student is in the first position (like Red in Figure 1), we consider a class size of N=78 
(which is the class size for our undergraduate course “Bio-Imaging and Bio-Instrumentation” in 
this semester). We set M1=M2=N=78 and Q=4. With MatLab, we developed a program to 
compute the value of the g-factor from the second position to the 78th position, as plotted in 
Figure 3. 
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Figure 3. g-factor versus the position of the cheating student (M1=M2=N=78, Q=4). 

It is observed in Figure 3 that there is a steady rise in the value of the g-factor with an overall 
average g-factor of 0.3750. It each student gets exactly the same question in each time slot, the 
value of the g-factor for a cheating student helped by a perfect student would be 0.75 (meaning 
he/she would get a perfect score too). Since 78 MCQs usually take a long time to answer, 
meaning a portion of the students may not be able to answer all the questions within the allotted 
time. This will reduce the value of the g-factor computed in the hypothetical situation. In Figure 
3, the cheating student at the 78th position has a g-factor close to 0.75 (having a nearly perfect 
score). Therefore, a question arises is how we can control the maximum value of g. One way to 
address this issue would be to increase M2 and use M1 out of these M2 questions.  In such a 
case, it becomes feasible to reduce the information flow from the perfect student to the cheating 
student. This scenario is illustrated in Figure 4 where M2=8 instead of M2=6 in Figure 1.  

 
Figure 4. To six students, eight MCQs are provided to each student one by one in a circular left shift 

scheme, which an enhanced version of the exam shown in Figure 1. 

Using our MatLab simulator, keeping all other conditions the same (Q=4) we can compute the 
values of the ASF, ASC, and g values again. The results are shown in Table 4. 
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Scenario ASF ASC g-factor 
RedOrange 0.25 0.25 0 
RedYellow 0.25 0.25 0 
RedGreen 0.25 0.3750 0.1250 
RedBlue 0.25 0.5000 0.2500 

Red Purple 0.25 0.6250 0.3750 
Table 4. ASF, ASC, and the g values for different scenarios in Figure 1 (N=M1=6, M2=8, and Q=4). 

Thus, by increasing the pool of questions the g-factor can be reduced.  Furthermore, we run a 
simulation similar to that shown in Figure 3 for N=M1=78, and M2=100. The g-factor is again 
plotted with respect to the position of the cheating student from the 2nd to the 78th position in 
Figure 5. This time a few students have zero g-factors, and the maximum g-factor is slightly 
more than 0.5. 

 
Figure 5. g-factor versus the position of the cheating student (M1=N=78, M2=100, and Q=4). 

In practice, M1 should be chosen smaller than N, in the case of large classes or national exams. 
The selection of M1 mainly relies on the content to be tested and the period of time to be 
reasonable, and should not depend on N. Hence, a realistic scenario is that given N students, 
Q-choices MCQs of a pre-decided number M1, we can achieve a targeted small average g-
factor of all positions a cheating student can take using a sufficient large MCQ database of size 
M2 (we only consider M2=K*M1 without loss of generality, where K is a positive integer for 
convenience).  

III. Guiding Principle: Average g-Factor Reduction 
To find good combinations of M1 and M2, we can use the mean ASC or g scores as the 
criterion, defined as the average obtained at all student positions except the first one that is for 
the knowledge-wise perfect student who helps the cheating student. A flowchart for calculation 
of the mean ASC scores is shown in Figure 6.  
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Figure 6. Flowchart for calculation of the mean ASC scores. 

We evaluated the combinations of M1 from 10 to 100 with a step of 10, K from 1 to 15, and N of 
80 and 40 respectively. The mean ASC scores in these cases are summarized in Tables 5 and 
6. The mean g-factor can be easily calculated by subtracting the results by 0.25. 

M1 K = 1, 2, 3, …, 10 

10 0.6582 0.4494 0.3544 0.3449 0.3022 0.3022 0.3022 0.2927 0.2842 0.2766 
20 0.6392 0.4399 0.3497 0.3402 0.3070 0.2932 0.2813 0.2714 0.2671 0.2633 
30 0.6044 0.3972 0.3611 0.3101 0.2880 0.2788 0.2709 0.2642 0.2614 0.2589 
40 0.6297 0.4351 0.3333 0.2951 0.2785 0.2716 0.2657 0.2607 0.2585 0.2566 
50 0.5747 0.3981 0.3166 0.2861 0.2728 0.2673 0.2625 0.2585 0.2568 0.2553 
60 0.5696 0.3734 0.3055 0.2801 0.2690 0.2644 0.2604 0.2571 0.2557 0.2544 
70 0.5931 0.3558 0.2976 0.2758 0.2663 0.2623 0.2590 0.2561 0.2549 0.2538 
80 0.6250 0.3426 0.2917 0.2725 0.2642 0.2608 0.2578 0.2553 0.2543 0.2533 
90 0.5833 0.3323 0.2870 0.2700 0.2627 0.2596 0.2570 0.2547 0.2538 0.2530 
100 0.5500 0.3241 0.2833 0.2680 0.2614 0.2586 0.2563 0.2543 0.2534 0.2527 

Table 5. Mean ASC scores under different combinations of M1 and K (N = 80, Q = 4). 
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M1 K = 1, 2, 3, …, 10 

10 0.6538 0.4423 0.3558 0.3365 0.3038 0.2904 0.2788 0.2692 0.2692 0.2615 
20 0.6346 0.4327 0.3375 0.2933 0.2769 0.2702 0.2644 0.2596 0.2596 0.2558 
30 0.5769 0.3718 0.3083 0.2788 0.2679 0.2635 0.2596 0.2564 0.2564 0.2538 
40 0.6250 0.3413 0.2938 0.2716 0.2635 0.2601 0.2572 0.2548 0.2548 0.2529 
50 0.5500 0.3231 0.2850 0.2673 0.2608 0.2581 0.2558 0.2538 0.2538 0.2523 
60 0.5000 0.3109 0.2792 0.2644 0.2590 0.2567 0.2548 0.2532 0.2532 0.2519 
70 0.4643 0.3022 0.2750 0.2624 0.2577 0.2558 0.2541 0.2527 0.2527 0.2516 
80 0.4375 0.2957 0.2719 0.2608 0.2567 0.2550 0.2536 0.2524 0.2524 0.2514 
90 0.4167 0.2906 0.2694 0.2596 0.2560 0.2545 0.2532 0.2521 0.2521 0.2513 
100 0.4000 0.2865 0.2675 0.2587 0.2554 0.2540 0.2529 0.2519 0.2519 0.2512 

Table 6. Mean ASC scores under different combinations of M1 and K (N = 40, Q = 4). 
As demonstrated along the row direction of Tables 5 and 6, increasing K will decrease the g-
factor, which is expected since we are increasing M2. Interestingly, going down the first column 
in Table 5, the mean ASC score decreases with jumps, which can be explained as follows. If M2 
is smaller than N, then some positions will inevitably receive the same sequence of MCQs as 
that of the first position receives, and those positions will have a large z equal to M1. In the first 
column, M2=M1, hence if M1 is much smaller than N, we will periodically introduce more such 
positions and raise the mean ASC scores. Similar effects are also observed in the first column 
in Table 6. Comparing Tables 5 and 6, it is seen that the values in Table 6 are generally smaller 
than those in Table 5. This indicates that the case with a smaller N is easier to handle (to 
reduce the mean ASC). For the situation of our interest, with N around 80 and Q=4, a good and 
reasonable practice will be M1=30, K=3, which will lead to an average g-factor about 0.111 
according to Table 5. In addition, if N is decreased to 40, the average g-factor can be reduced to 
0.058 according to Table 6. 
IV. Discussions and Conclusion 
The above initial analysis is basically focused on the scenario where a perfect student A helps a 
totally unprepared student B, which is the extreme case that maximizes the gain of cheating. 
Given the limited time of an exam and involved stresses, the student B needs ideally only one 
perfect helper, and is unlikely to team up with more than one students. Since B is totally 
unprepared, he/she is unable to judge among inputs from multiple helpers. Multiple helpers 
might not really help B better than a single perfect helper, and are harder to coordinate than 
working with only Student A. Hence, the “A helping B” model is well justified. 
How much Student A could help Student B depends on the orders in which the multiple choice 
questions are presented to each of them. Student B can only benefit from the answers Student 
A has finished before his/her allotted time slots are over, and in the best case B can see A’s all 
answers (B may not have time to benefit from A’s first answer) while in the worst case B can 
only get one correct answer from A. Practically, the average gain is what matters in our exam 
design, which is the g-factor we have analyzed above. Because a sufficient small g-factor can 
be always achieved, the cheating behavior in the “A helping B” model will not improve B’s exam 
score significantly. This demonstrates that online exams during social distancing can be 
effectively conducted by a good design. 
While the g-factor analysis is a good way to suppress cheating behaviors so that their effects 
are insignificant, with data analysis such cheating behaviors can be actually detected and 
potentially penalized for even better quality of online exams during social distancing. This is 
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particularly possible if the value of M2 is greater than M1. Since positioning of the student may 
have a significant impact on the performance, we may do a presumptive placement based on 
the performance of the students in their previous courses or their cumulative grade point 
averages (CGPAs). While it is no guarantee that a student with a low CGPA would copy from a 
student with a high CGPA, it can be one of the strategies that we employ to combat cheating 
during the exam. Other strategies include giving exams by shuffling the positions of the students 
and have data that we can analyze to optimize the orders of their questions in the exam. When 
a prior distribution of students’ scores is available, their competence levels can be readily 
estimated to minimize the average g factor. Moreover, using machine learning techniques we 
can adaptively identify potential cheating episodes in real-time during an online exam in the 
following steps as an example. First, high and low performers can be easily identified in an early 
stage of the exam, and the answers of a high performer in an early stage can be correlated to 
the answers of any low performer in a later stage. Any significant discrepancy between the hit 
rates of a student in early and late stages may suggest a potential cheating incident. The 
significance of the discrepancy can be tested in reference of the prior distribution of students’ 
scores. That is, an exam may be divided into two parts unknown to students, one part is used to 
capture potential cheating, while the other part is used to produce his/her score. Optionally, the 
length of an exam for Student B can be extended if the likelihood appears high to indicate that A 
is helping B. In the extended portion, B will get questions that A has no answers. An additional 
note that M1 questions can have different weights/credits/time-lengths, as shown in Figure 7, 
and our methods can be generalized in this and other ways. More generally, the relationship 
between anti-cheating schemes and cheating strategies can be casted in the game theory 
framework [3], and deserves further investigation, even using the block chain technology [4] to 
keep the database of questions confidential (fully accessible to faculty only) and students’ 
individual credits well managed (for them to earn academic credits). 

 
Figure 7. To six students, six MCQs of different lengths are provided to each student one by one in a 

circular left shift scheme. 

Social distancing due to COVID-19 has a positive aspect that online learning and testing 
practice becomes immediately popular, thanks to the Internet and mobile technologies. A high-
quality online examination system is a key to offer uncompromised educational outcomes. 
Anticipating further development of online learning and testing platforms, it is perhaps unique 
time to revisit traditional teaching practice. If both teaching and testing can be conveniently and 
professionally done during social distancing, why not keep doing in this mode even after the 
pandemic? This will reduce needs for conventional infrastructures, share and integrate optimal 
teaching and testing resources, and deliver high-quality education equally well globally. 
In conclusion, we have proposed a novel scheme for online exams during social distancing, 
illustrated the design theory and examples, and produced guidelines for our own final exam in 
our undergraduate course “Bio-Imaging and Bio-Instrumentation” in this semester. Further 
investigation and implementation are actively under way. We welcome feedback and 
collaboration. 
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Appendix. Sample MATLAB Code for Our Numerical Study of Online Exams 

close all 
clear all 
clc 
  
%% taking input and getting rid of invalid inputs 
while 1 
    N=input('No of students:'); 
    M=input('No of questions:'); 
    P=input('Input pool of questions:'); 
    N=floor(N); 
    M=floor(M); 
    P=floor(P); 
    if M~=N 
        disp('Not possible, input again'); 
    elseif P<M 
        disp ('Not possible, input again'); 
    else 
        while 1 
            C=input('Choices per question (at least 2):'); 
            C=floor(C); 
            if C<2 
                disp('Invalid no. of choices, input again'); 
            else 
                break 
            end 
        end 
        break 
    end 
end 
% while 1 
    ideal_student=input(['Select ID of perfect student (1 to 
',num2str(N),'):']); 
%     copy_student=input(['Select ID of copy student (1 to 
',num2str(N),'):']); 
    ideal_student=floor(ideal_student); 
    copy_student=floor(copy_student); 
    if ideal_student==copy_student 
        disp('Not possible, give selection again'); 
         
    elseif ideal_student<1||ideal_student>N||copy_student<1||copy_student>N 
        disp('Invalid input, give selection again'); 
         
    else 
        break 
    end 
end 
  
%% 
student_id=1:N; 
question_id=1:P; 
  
if P>N 
    student_id=[student_id zeros(1,P-N)]; % append the additional P-M 
questions at the end 
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end 
master_array=student_id; 
z=-1; % -1 for Left shift 
for i=1:M 
    master_array=[master_array;question_id]%assigns q_id to each student_id 
    question_id=circshift(question_id,z);%tracks the questions as the exam 
progresses 
end 
q_order_ideal=master_array(:,ideal_student);%question order for ideal stdnt 
q_order_copy=master_array(:,copy_student);%question order for copy stdnt 
  
count=0; 
for m=2:length(q_order_ideal)%check for copy 
    for n=m+1:length(q_order_copy) 
        if q_order_copy(n)==q_order_ideal(m) 
            count=count+1; 
            break 
        end 
    end 
end 
  
%% calculate probabilities 
prob_sure=zeros(1,count);%matching with ideal 
if count %if no overlap with ideal 
    prob_sure(count)=1; 
else 
    prob_sure=[]; 
end 
rem_q=M-count;%non-matching 
prob_array=0:rem_q; 
prob_binomial=binopdf(prob_array,rem_q,1/C);%binomial distribution 
prob_copy=[prob_sure prob_binomial];%probabilites for cheating 
prob_fair=binopdf(0:M,M,1/C);%probabilities for fair exam 
ASF=1/M*sum((0:M).*prob_fair);%ASF 
ASC=(count+sum((0:M-count).*prob_binomial))/M;%ASC 
g_factor=ASC-ASF;%g-factor 
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