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Abstract

An oil and vinegar scheme is a signature scheme based on multivariate
quadratic polynomials over finite fields. The system of polynomials contains
n variables, divided into two groups: v vinegar variables and o oil variables.
The scheme is called balanced (OV) or unbalanced (UOV), depending on
whether v = 0 or not, respectively. These schemes are very fast and require
modest computational resources, which make them ideal for low-cost devices
such as smart cards. However, the OV scheme has been already proven to
be insecure and the UOV scheme has been proven to be very vulnerable for
many parameter choices. In this paper, we propose a new multivariate public
key signature whose central map consists of a set of polynomials obtained
from the multiplication of block matrices. Our construction is motivated
by the design of the Simple Matrix Scheme for Encryption and the UOV
scheme. We show that it is secure against the Separation Method, which can
be used to attack the UOV scheme, and against the Rank Attack, which is
one of the deadliest attacks against multivariate public key cryptosystems.
Some theoretical results on matrices with polynomial entries are also given,
to support the construction of the scheme.

Keywords: Multivariate Public Key Cryptosystem, Random polynomial,
Oil Vinegar signature, Provable Security

1. Introduction

Multivariate public key cryptosystems (MPKCs) were first introduced in
1988 by Matsumoto and Imai [1] with their scheme, called C* or MI. The
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public key of an MPKC is a system of multivariate polynomials—mostly
quadratic—over a finite field. In general, the structure of an MPKC can be
described, as follows.
Let k be a finite field with q elements. A public key is a map
F̄ : kn → km, which is constructed as F̄ = L1 ◦ F ◦ L2, where L1 and L2 are
two random invertible affine transformations over kn and km, respectively.
The central map F : kn → km is a non-linear multivariate polynomial map
which has the property of being easily invertible (i.e., computationally). The
key to building a good MPKC is to find a good polynomial system F which
makes the cryptosystem secure.

The security of an MPKC is based on the fact that solving a set of multi-
variate polynomial equations over a finite field, in general, has been proven to
be an NP-hard problem [2]. However, this does not guarantee that MPKCs
are secure. Nevertheless, this property makes the family of MPKCs a good
candidate for the Post Quantum Cryptography (PQC) era, if well designed.
On the other hand, due to Shor’s algorithm [3], the well-known number
theoretic-based cryptosystems(e.g., RSA, ECC, and the Diffie–Hellman key
exchange scheme) have been proven to be insecure if a quantum computer is
built.

These facts have inspired many researchers to become involved in the
area of MPKCs, which underwent very fast development in the late 1990s.
Since then, there have been many attempts to build MPKCs. Unfortu-
nately, most of the existing MPKCs have problems, due to the facts that
randomness has not been well-used and that cryptanalysts usually exploit
the structure of the family of polynomials involved to attack the MPKCs
(see [4, 5, 6, 7, 8, 1, 1, 1, 1]). Direct attacks using algorithms to solve the
multivariate systems are also often used to attack MPKCs [1, 1, 1, 1, 1, 1].
As mentioned in [1], the deadliest attacks for MPKCs are Rank attacks [8],
which consist of finding some quadratic forms with low rank associated with
the central map. Even if the parameters are carefully chosen, there still ex-
ist few successful designs, such as the Rainbow scheme proposed by Ding
and Schmidt [2, 2], the Simple Matrix Scheme for Encryption [1], and the
HFEv− [2, 2, 2]. Indeed, this work was mostly inspired by the constructions
in [1, 2]. We use the multiplication of block matrices to design our new
proposed scheme. The arguments that prove its security are very similar to
those used in [1, 2].

The rest of this paper is organized as follows. We recall the description
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of a UOV scheme from [2, 2] in Section 2. In Section 3, we introduce some
theoretical groundwork concerning matrices with polynomial entries. These
results support the construction of the new proposed scheme, which is intro-
duced in the second part of Section 3. Section 4 discusses the security of our
scheme and Section 5 concludes the paper.

2. Preliminaries

The initial Oil and Vinegar scheme was defeated with the separation
method attack. However, a huge number of multivariate schemes have been
proven to be vulnerable to the MinRank attack. In this section, we recall the
descriptions of these two algebraic attacks. A short description of the UOV
scheme is also given.

2.1. Multivariate Public Key Cryptosystems and UOV Scheme

2.1.1. Multivariate Public Key Cryptosystems

The main characteristic of a Multivariate public-key cryptosystem is that
its public keys consist of a set of non-linear algebraic polynomials

p = (p1(x1, ..., xn), ..., pm(x1, ..., xn)) ∈ k[x1, ..., xn]m.

To encrypt a message or to verify a signature, one needs only to evaluate
this set of polynomials at a given point (a1, ..., an). Decryption and signing
are done with the help of the private key by solving the system

p1(z1, ..., zn) = 0, ..., pm(z1, ..., zn) = 0. (1)

However, without the private key, solving the system should be impossible
(or, at least, very hard) to ensure the security of the cryptosystem. To build
a secure system, we start by very carefully choosing a trapdoor

f(x) = (f1(x1, ..., xn), ..., fm(x1, ..., xn)) ∈ k[x1, ..., xn]m,

which is easy to solve. That is, given y = (y1, ..., ym) ∈ km, we have an
efficient method for computing the solutions of

f1(x1, ..., xn) = y1, ..., fm(x1, ..., xn) = ym.
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Then, denoting by GLi(k) the set of all i× i invertible matrices with entries
in k, we choose (L1,L2) ∈ GLm(k)×GLn(k) and compose f with L1 and L2

from the left and right, respectively, to obtain

p = (f1(x · L2), . . . , fm(x · L2)) · L1 = (p1(x), . . . , pm(x)), (2)

where x = (x1, ..., xn).
In some cases, L1 or L2 may be the identity of GLm(k) or GLn(k), re-

spectively. The private key of these systems consists of (L1,L2) ∈ GLm(k)×
GLn(k) and the polynomial f1, . . . , fm, while the public key consists of the
field k and the set of algebraic polynomials:
p = (p1(x1, ..., xn), ..., pm(x1, ..., xn)) ∈ k[x1, ..., xn]m mentioned above.

2.1.2. Oil and Vinegar Polynomials

In this subsection, we give a quick description of the Unbalanced Oil and
Vinegar (UOV) scheme and its known cryptanalysis, for illustrative purposes.
The basic building block for an OV or UOV scheme is the Oil and Vinegar
polynomial.

An Oil and Vinegar polynomial is a quadratic multivariate polynomial
with o+ v = n variables, where o represents the number of oil variables and
v the number of vinegar variables. The non-linear terms appear only in the
following two cases: between vinegar variables, or with one vinegar variable
and one oil variable. In other words, there is no quadratic term with oil
variables only.
More precisely, let k be a finite field with q elements, x1, x2, ..., xo be the o
oil variables, and x′1, x

′
2, ..., x

′
v be the v vinegar variables. An Oil and Vinegar

polynomial is any (total degree two) polynomial f ∈ k[x1, ..., xo, x
′
1, x
′
2, ..., x

′
v]

of the form

f =
o∑

i=1

v∑
j=1

aijxix
′
j +

v∑
i=1

v∑
j=i

bijx
′
ix
′
j +

o∑
i=1

cixi +
v∑

j=1

djx
′
j + e, (3)

where aij, bij, ci, dj, e ∈ k.

2.1.3. Oil and Vinegar map and scheme

Let F : kn −→ ko be a polynomial map of the form

F (x1, ..., xo, x
′
1, ..., x

′
v) = (f1(x1, ..., xo, x

′
1, ..., x

′
v), ....fo(x1, ..., xo, x

′
1, ..., x

′
v)),
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where f1, f2, ....fo ∈ k[x1, x2, ..., xo, x
′
1, x
′
2, ..., x

′
v] are Oil and Vinegar polyno-

mials. Then, F is called an Oil and Vinegar map.

The trapdoor for an OV or UOV scheme is a set of Oil and Vinegar
polynomial maps, where the public key is a map

p = (p1(x), . . . , po(x)) = (f1(x · L2), . . . , fo(x · L2)).

In the context described above, L1 is the identity of GLo(k) and composition
by L2 ∈ GLn(k) is carried out to mix the oil and vinegar variables. The
private key is L2 and the central map is F. For the OV and UOV schemes,
there is no need to use a second linear transformation L1. These schemes are
designed only for the signature.

To sign a message y = (y1, y2, ...., yo), we need to find a vector w =
(w1, w2, ..., wn) such that p(w) = y. To do so, we first choose v random values
for the vinegar variables x′1, x

′
2, ..., x

′
v and substitute them into the system to

obtain o linear equations in the o variables x1, x2, ..., xo. This linear system
has a high probability of having a solution. If it does not, we change the
values of the vinegar variables x′1, x

′
2, ..., x

′
v and try again until a solution in

ko is found. Then, we apply L−1
2 ∈ GLn(k).

To verify whether w is a signature for y, it suffices to check that p(w) = y.

2.2. Attacks against the UOV Scheme

In this subsection, we present two of the most well-known attacks against
the UOV scheme; namely, the Separation Method attack and the MinRank
attack, which was performed for the first time on the HFE scheme.

2.2.1. Separation Method Attack

The separation attack was introduced by Kipnis and Shamir [8], in order
to defeat the original Oil and Vinegar scheme. It has been extended to many
other systems containing two different sets of variables. The idea consists of
finding an invariant subspace of the subspace spanned by the n polynomials
of the public key. This invariant subspace represents the Oil subspace and
its complement is the Vinegar subspace. Once this separation is done, one
can easily forge arbitrary signatures.
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2.2.2. MinRank attack

As mentioned earlier, one of the deadliest attacks against multivariate
public key cryptosystems is the MinRank attack, which is an attack based
on the MinRank problem. This problem can be formulated as follows:
Given positive integers N, n, r with r ≤ n and N matrices M1, ...,MN of
dimension n× n, find a non-trivial linear combination M of M1,M2, ...,MN

such that Rank(M) ≤ r.
If r = n − 1, the MinRank problem has been proven to be NP-complete.
However, for small r, it may be easily solvable. Therefore, all MPKCs which
have the property that some quadratic form associated to their central maps
has a low rank are vulnerable to this attack. We give an illustration by
describing the MinRank attack on the HFE scheme [2]. The attack was first
performed by Kipnis and Shamir [8], who showed that the security of HFE
can be reduced to a MinRank problem.

2.2.3. The HFE Scheme

The HFE cryptosystem was proposed by Jacques Patarin in [2]. It can
be described as follows: Let q = pe, where p is a prime number and e ≥ 1.
Let K be an extension of degree n of the finite field k = Fq. Clearly, K ∼= kn.

Let φ : K → kn be a k-linear isomorphism map between the finite field
K and the n-dimensional vector space kn. The central map of HFE is a
univariate polynomial F (x) of the following form

F (x) =
r−1∑
i=0

r−1∑
j=0

αijx
qi+qj +

r−1∑
i=0

βix
qi + γ ∈ K[x], (4)

where αij, βi, γ ∈ K and r is a small constant, chosen in a way such that
F (x) can be efficiently inverted. The public key is given by

P = T ◦ φ ◦ F ◦ φ−1 ◦ S,

where T : kn −→ kn and S : kn −→ kn are two invertible linear transforma-
tions and the private key consists of T, F, and S.

2.2.4. MinRank Attack on HFE

In [8], Kipnis and Shamir showed that an attacker can ignore lower degree
monomials and still be able to recover the key. Furthermore, the public key
P and the transformations S, T, T−1 satisfy the following theorem.
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Theorem 1. For the maps S, T, T−1 given in the HFE, there exist maps
G∗, S∗, T ∗, T ∗−1 over K such that

S∗(x) =
n−1∑
i=0

six
qi , T ∗−1(x) =

n−1∑
i=0

tix
qi , (5)

and G∗(x) = T ∗(F (S∗(x))). Moreover, G∗(x) can be expressed in the form:

G∗(x) =
n−1∑
i=0

n−1∑
j=0

gijx
qi+qj = xGxt, (6)

where x = (x, xq, . . . , xq
n−1

) is a vector over K, xt is the transposition of x,
and G = [gij] is a matrix over K.

The theorem implies the identity T ∗−1(G∗(x)) = F (S∗(x)) which, in turn,
implies that

G′ =
n−1∑
i=0

tkG
∗k = WFW t,

where F = [αij] over K, G∗k and W are two matrices over K whose respective

(i, j) entries are gq
k

i−k,j−k, and sq
i

i−j, where i−k, j−k, and i− j are computed
modulo n.

As the rank of WFW t is no more than r, recovering t0, t1, . . . , tn−1 can be
reduced to solving a MinRank problem; that is, finding t0, t1, . . . , tn−1 such
that

Rank(
n−1∑
i=0

tkG
∗k) ≤ r. (7)

Once the values t0, t1, . . . , tn−1 are found, T and S can be easily computed.
Therefore, the key point in the HFE attack is to solve the MinRank problem.

Just as for the HFE, many other multivariate schemes have been proven
to be insecure using the MinRank attack. In [1], Billet and Gilbert used
the MinRank attack against the Rainbow scheme [19] with the parameters
(28, 6, 6, 5, 5, 11), which forms a layer-based variant of the UOV scheme.
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3. Our New Scheme

In this section, we describe the proposed scheme. As stated in the intro-
duction, we were mainly inspired by the construction of the Simple Matrix
Scheme [1] and the Unbalanced Oil Vinegar Signature Scheme [2, 2] to con-
duct this work. Some theoretical results needed in the description are also
presented.

3.1. Theoretical Groundwork

We start with the following theorem. It plays a crucial role in the signing
process.

Theorem 2. Let k be a finite field and denote by k∗ the non-zero elements
of k. Let A = (aij)u×u be an invertible u× u matrix with aij ∈ k and C any
(s−u)×u matrix with entries in k. Let B be a u×(s−u) matrix whose entries
are random multivariate linear polynomials. Assume D = CA−1B+E, where
E is a (s− u)× (s− u) invertible matrix.

Then, the block matrix

M =

(
Au×u Bu×(s−u)

C(s−u)×u D(s−u)×(s−u)

)
is invertible and the entries of M−1 are multivariate affine linear polynomials
with coefficients in k.

Proof. Let M =

(
Au×u Bu×(s−u)

C(s−u)×u D(s−u)×(s−u)

)
and assume that there exist ma-

trices U, V,X, and Y of dimension u× u, (s− u)× (s− u), (s− u)× u, and
u× (s− u), respectively, satisfying

M =

(
I O
X I

)(
U O
O V

)(
I Y
O I

)
.

Then, we have

M =

(
U UY
XU XUY + V

)
.

By equating the two forms of M, we obtain

U = A, X = CA−1, Y = A−1B, and V = D − CA−1B.
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That is,

M =

(
I O

CA−1 I

)(
A O
O D − CA−1B

)(
I A−1B
O I

)
,

which can be inverted, as A−1 and (D − CA−1B) are invertible. We have

M−1 =

(
I −A−1B
O I

)(
A−1 O
O (D − A−1CB)−1

)(
I O

−CA−1 I

)
,

i.e.

M−1 =

(
I −A−1B
O I

)(
A−1 O
O E−1

)(
I O

−CA−1 I

)
.

The fact that the entries of M−1 are multivariate affine linear polynomials
with coefficients in k follows directly from the entries of the matrices A,B,C,
and D.

The matrix in Theorem 2 will play a crucial role in the design of our new
scheme. As we will see in the description of the scheme, the polynomials in
the public key are the entries of a matrix obtained by multiplying M with
another matrix whose entries are random polynomials. The matrix M−1 will
be used in the signing process. This will help to create a system of linear
equations whose solution is the signature x of a given document y.

3.2. Description of the New Scheme

Let n,m, s ∈ N be integers satisfying m = s2 and 4
3
≤ n ≤ 2m. For i ∈ N,

let ki denote the set of all i-tuples of elements of k and let (x1, x2, . . . , xn) ∈
kn and (y1, y2, . . . , ym) ∈ km. The polynomial ring with n variables in k is
denoted by k[x1, . . . , xn]. Let L1 : kn → kn and L2 : km → km be two linear
transformations; that is

L1(x) = L1x and L2(y) = L2y,

where L1 is an n× n matrix and and L2 is an m×m matrix with entries in
k, x = (x1, x2, . . . , xn)t, y = (y1, y2, . . . , ym)t, and t denotes matrix transpo-
sition.

The Central map
The central map of the new scheme is obtained after performing a series of
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operations on matrices with polynomial entries. The idea is inspired by the
construction of the Simple Matrix Scheme for Encryption, which was the first
in this new generation of multivariate polynomial cryptosystems which use
matrix multiplication to generate a public key.

For i = 1, ..., s, let pi, p
′
i ∈ k[x1, ..., xn], be 2s2 random affine polynomials.

Define

P =


p1(x)p′1(x) p2(x)p′2(x) ... ps(x)p′s(x)

ps+1(x)p′s+1(x) ps+2(x)p′s+2(x) ... p2s(x)p′2s(x)

...
...

...
...

p(s−1)s+1(x)p′
(s−1)s+1

(x) p(s−1)s+2(x)p′
(s−1)s+2

(x) ... ps2 (x)p′
s2

(x)

 ,

M =

(
Au×u Bu×(s−u)

C(s−u)×u D(s−u)×(s−u)

)
,

be a block matrix such that A is invertible and only one of the matrices
B and C has linear polynomial entries and the other one has scalar entries.

Let D = CA−1B + E, where E is an invertible matrix with entries in k.
Define H = MP and let fij ∈ k[x1, . . . , xn] be the (i, j) element in H. Then,
with this notation, we obtain s2 = m polynomials
f11, . . . , f1s, f21, . . . f2s, . . . fs1, . . . fss, which can be enumerated as f1, f2, . . . , fm.
We define the central map as

F(x1, . . . , xn) = (f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn))

and
F̄ = L2 ◦ F ◦ L1 = (f̄1, f̄2, . . . , f̄m), (8)

where L1 : kn → kn and L2 : km → km are as defined above, and f̄i ∈
k[x1, . . . , xn] are m multivariate polynomials of degree three. The secret key
and the public key are given by:

Secret Key: The secret key is comprised of the following two parts:

1) The invertible linear transformations L1,L2.

2) The matrices M and P .

Public Key: The public key is comprised of the following two parts:

1) The field k, including the additive and multiplicative structure;

10
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2) The maps F̄ or, equivalently, its m total degree three components

f̄1(x1, x2, . . . , xn), . . . , f̄m(x1, x2, . . . , xn) ∈ k[x1, . . . , xn].

Signing: A signer will sign a message y1, ..., ym with x1, ..., xn satisfying

(y1, y2, . . . , ym) = F̄(x1, x2, . . . , xn). (9)

To find x1, ..., xn,

1 Compute (ȳ1, ȳ2, . . . , ȳn) = L−1
2 (y1, y2, . . . , ym).

2 Put

H =

 ȳ1 ȳ2 ... ȳs
ȳs+1 ȳs+2 ... ȳ2s

...
...

...
...

ȳ(s−1)s+1 ȳ(s−1)s+2 ... ȳs2

 .

As H = MP , we have P = M−1H. Notice that M is an invertible
matrix with polynomial entries and, so, Theorem 2 can be used to find
its inverse.

3 Assign an arbitrary value ai to each p′i(x), i = 1, 2, ..., s2 and solve the
system (p′i(x)) = (ai).

4 Solve the new linear system P = M−1H, (p′i(x)) = (ai) for x1, ..., xn. If
there is no solution, we choose new values for the p′i(x), i = 1, 2, ..., s2

and repeat step 4. Let (x̄1, x̄2, . . . , x̄n) be the solution.

5 Compute (x1, . . . , xn) = L−1
1 (x̄1, . . . , x̄n). The signature is (x1, . . . , xn).

Verification:
Anyone can verify the signature by computing

(y1, y2, . . . , ym) = F̄(x1, x2, . . . , xn).

If true, we accept. Otherwise, we reject.

11
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Some Remarks on the signing process:

• The matrix M used in the description of the new scheme satisfies the
conditions of Theorem 2. Therefore, the existence of the inverse M−1 is
guaranteed by the theorem and the entries of M−1 are all multivariate
affine linear polynomials with coefficients in k.

• Step 3 is necessary, in case some of the p′i are not linearly independent.
In such a case, there will be no solution and the values for the p′i should
be changed.

After few tries, a solution will be found: the probability of obtaining
at least one solution is very high, as the probability of an n×n matrix
over Fq being invertible is (1− 1

q
)(1− 1

q2
) · · · (1− 1

qn−1 ) (see [2]).

• The relation between m,n, and s may be ignored and the values may
be chosen arbitrarily, in general.

• Contrary to the decryption process in [1], there is no failure in the
signing process.

The following toy example is based on Theorem 2 and uses aB with linear
polynomial entries.

Example Let k = F3, s = 3, m = s2 = 9, and n = 18.
Assume

A = ( 1 2
2 2 ) , B =

(
x1+x10
2x5+1

)
, C = ( 1 1 )E = ( 2 ) .

Therefore, D = CA−1B + E = x5 + 1.

Then,

M =
(

1 2 x1+x10
2 2 2x5+1
1 1 x5+1

)
and M−1 =

(
2 2x1+2x5+2x10+2 2x1+2x5+2x10+1
1 x1+2x5+x10+2 x1+2x5+x10+1
0 2 2

)
Let P1 = 2x4 + x9, P2 = 2x1 + 1, P3 = x7 + x11, P4 = x8 + 2, P5 =

2x12 + 1, P6 = 2x5 + 1, P7 = x3 + 2x6, P8 = 2x10 + x1, and P9 = x2 + 2.
P ′1 = x5 + 1, P ′2 = x2, P

′
3 = x1 + x5, P

′
4 = 2x6 + 1, P ′5 = x12 + 2, P ′6 =

x10, P
′
7 = x3 + x9, P

′
8 = x7 + x10, and P ′9 = 2x4.
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We obtain

P =

(
2x4x5+2x4+x5x9+x9 2x1x2+x2 x1x7+x1x11+x5x7+x5x11

2x6x8+x6+x8+2 2x2
12+2x12+2 2x5x10+x10

x2
3+2x3x6+x3x9+2x6x9 x1x7+x1x10+2x7x10+2x2

10 2x2x4+x4

)
.

Hence,

H = MP =

(
f1 f2 f3
f4 f5 f6
f7 f8 f9

)
,

where
f1 = x1x

2
3 + 2x1x3x6 + x1x3x9 + 2x1x6x9 + x2

3x10 + 2x3x6x10 + x3x9x10 +
2x4x5 + 2x4 + x5x9 + x6x8 + 2x6x9x10 + 2x6 + 2x8 + x9 + 1,

f2 = x2
1x7 + x2

1x10 + 2x1x2 + x2 + 2x7x
2
10 + 2x3

10 + x2
12 + x12 + 1,

f3 = 2x1x2x4 + x1x4 + x1x7 + x1x11 + 2x2x4x10 + x4x10 + x5x7 + x5x10 +
x5x11 + 2x10,

f4 = 2x2
3x5 +x2

3 +x3x5x6 + 2x3x5x9 + 2x3x6 +x3x9 +x4x5 +x4 +x5x6x9 +
2x5x9 + x6x8 + 2x6x9 + 2x6 + 2x8 + 2x9 + 1,

f5 = x1x2 + 2x1x5x7 + 2x1x5x10 + x1x7 + x1x10 + 2x2 + x5x7x10 + x5x
2
10 +

2x7x10 + 2x2
10 + x2

12 + x12 + 1,
f6 = 2x1x7 + 2x1x11 + x2x4x5 + 2x2x4 + 2x4x5 + x4 + 2x5x7 + x5x10 +

2x5x11 + 2x10,
f7 = x2

3x5 +x2
3 +2x3x5x6 +x3x5x9 +2x3x6 +x3x9 +2x4x5 +2x4 +2x5x6x9 +

x5x9 + 2x6x8 + 2x6x9 + x6 + x8 + x9 + 2,
f8 = 2x1x2 + x1x5x7 + x1x5x10 + x1x7 + x1x10 + x2 + 2x5x7x10 + 2x5x

2
10 +

2x7x10 + 2x2
10 + 2x2

12 + 2x12 + 2, and
f9 = x1x7+x1x11+2x2x4x5+2x2x4+x4x5+x4+x5x7+2x5x10+x5x11+x10.
Now, we have

F(x1, · · · , x18) = (f1(x1, · · · , x18), · · · , f9(x1, · · · , x18)).

The Public Key is:

1 F3.

2 f1, f2, f3, f4, f5, f6, f7, f8, f9.

The Private Key is:

P =

(
2x4x5+2x4+x5x9+x9 2x1x2+x2 x1x7+x1x11+x5x7+x5x11

2x6x8+x6+x8+2 2x2
12+2x12+2 2x5x10+x10

x2
3+2x3x6+x3x9+2x6x9 x1x7+x1x10+2x7x10+2x2

10 2x2x4+x4

)
and
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M =
(

1 2 x1+x10
2 2 2x5+1
1 1 x5+1

)
.

Now, assume that Alice wants to sign the document y = (1, 0, 1, 1, 2, 0, 1, 1, 2).

She substitutes y in H and gets H =
(

1 0 1
1 2 0
1 1 2

)
. As H = MP , she gets

P = M−1H; that is,

(
2x4x5+2x4+x5x9+x9 2x1x2+x2 x1x7+x1x11+x5x7+x5x11

2x6x8+x6+x8+2 2x2
12+2x12+2 2x5x10+x10

x2
3+2x3x6+x3x9+2x6x9 x1x7+x1x10+2x7x10+2x2

10 2x2x4+x4

)
=

(
2x2

1+x1x10+2x1x17+2x2
10+2x10x17+2x2

17 x2
1+2x1x10+x1x17+x1+x2

10+x10x17+x10+x2
17+2x17 x1+x10+2x17

x1+x10+2x17+1 2x1+2x10+x17+1 2
x1+x10+2x17+2 2x1+2x10+x17 2

)
.

Finally, to find the signature, Alice assigns a fixed value to the polynomials
P ′i , as follows: P ′1 = 2, P ′2 = 2, P ′3 = 1, P ′4 = 2, P ′5 = 2, P ′6 = 1, P ′7 = 1, P ′8 = 0
and P ′9 = 1.
Then, she then solves the linear system and obtains the singature

x = (0, 2, 0, 2, 1, 2, 2, 0, 1, 1, 1, 0).

Alice sends the signed document to Bob, who can verify it by checking

F(0, 2, 0, 2, 1, 2, 2, 0, 1, 1, 1, 0) = (1, 0, 1, 1, 2, 0, 1, 1, 2)

and accepts the document.

4. Security Analysis

Further analysis of the security, as well as the choice of parameters and
the efficiency of our new scheme, will be left for future work. We give, here,
some observations that make us believe that our new proposed scheme has
good security, if the parameters are carefully chosen.

In the separation attacks introduced by Kipnis and Shamir [8], the Oil
variables and Vinegar variables must be separated to forge arbitrary signa-
tures. Its improvement by Kipnis, Patarin, and Goubin to attack the UOV
scheme [2] proposes finding some hidden invariant subspaces from the public
polynomials that will allow for separation of the Oil variables and Vinegar
variables and forging an arbitrary signature.
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The Rainbow Band Separation attack and its generalization [1, 1] need
to use the missing cross-terms of the variables to find an equivalent set of
keys, in order to forge an arbitrary signature.
Therefore, none of these attacks pose a real security threat to our new pro-
posed scheme, due to its structural design whihc focuses on polynomials,
rather than variables.

For the MinRank attack, an attacker needs to find a non-trivial linear
combination of matrices with minimal rank associated with the components
of the set of public polynomials. After finding these low-rank linear combi-
nations, the linear map L2 can be recovered and, therefore, the secret key of
the scheme is exposed. For the High-Rank Attack, the attacker tries to find
linear combinations corresponding to variables with minimum appearances
in the central map to recover the linear map L1 and, subsequently, the secret
key of the scheme as well.
however, as in the previous cases, the structural design of the new scheme
uses a product of randomly chosen affine linear polynomials and, hence, the
entries of the matrix P are random multivariate quadratic polynomials. This
guarantees that the rank of any non-trivial linear combination of matrices
associated with the public polynomials will be close to n. Furthermore, as all
variables appear in each of the central polynomials approximately the same
number of times, neither of the two rank attacks can be used against our
new scheme.
Considering the above arguments, we can conclude that the most likely
successful attack against our new scheme must be a direct attack and, so,
we can choose the parameters accordingly to guarantee acceptable security,
due to the following observation: Let us assume that an attacker wants to
solve the equation (y1, y2, . . . , ym) = F̄(x1, x2, . . . , xn) to find the signature
x1, x2, . . . , xn of the message y1, y2, . . . , ym. Assume that an oracle O gives
the attacker the values (ȳ1, ȳ2, . . . , ȳn) (without knowing L2, one of the se-
cret keys) and they can obtain the matrix

H =

 ȳ1 ȳ2 ... ȳs
ȳs+1 ȳs+2 ... ȳ2s

...
...

...
...

ȳ(s−1)s+1 ȳ(s−1)s+2 ... ȳs2

 .

At this point, the attacker still needs to find a way to get the entries of the
matricesM−1. Even if they succeed in finding the entries of the matrixM−1H
without knowing M−1 explicitly, to be able to forge a signature, they will
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still need to solve the system P = M−1H, which is a system of multivariate
quadratic equations with randomly chosen coefficients.

5. Conclusion

We have proposed a new multivariate signature scheme whose central map
is obtained from the multiplication of matrices with random multivariate
polynomials as entries. This implies that the central map is composed of
cubic polynomials which are the sum of the products of completely randomly
chosen affine linear polynomials, with no specific form. Multiplication from
the left by the block matrix M causes any tentative factorization of the
polynomials in the central matrix extremely difficult. Due to its structural
design, the only feasible attack against this new scheme is the direct attack,
and we conjecture that its security can be reduced to the NP-hard problem
of solving a non-linear system of equations. Finally, we need to mention
that this paper focuses more on the design and the theoretical approach of
the scheme, and further study to establish the provable security, determine
secure parameters, and analyze the efficiency of the proposed scheme will be
the object of future research.
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