The world has been evolving with new technologies and advances day-by-day. With the advent of various learning technologies in every field, the research community is able to provide solution in every aspect of life with the applications of Artificial Intelligence, Machine Learning, Deep Learning, Computer Vision, etc. However, with such high achievements, it is found to lag behind the ability to provide explanation against its prediction. The current situation is such that these modern technologies are able to predict and decide upon various cases more accurately and speedily than a human, but failed to provide an answer when the question of why to trust its prediction is put forward. In order to attain a deeper understanding into this rising trend, we explore a very recent and talked-about novel contribution which provides rich insight on a prediction being made -- ``Explainability.'' The main premise of this survey is to provide an overview for researches explored in the domain and obtain an idea of the current scenario along with the advancements published to-date in this field. This survey is intended to provide a comprehensive background of the broad spectrum of Explainability.
Keywords:
Subject:
Computer Science and Mathematics - Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.