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Abstract 

Abiogenic hydrocarbons are fundamentally important for understanding the deep 

microbial communities and the origin of life. The generation of abiogenic hydrocarbons was 

proposed to be limited to ultramafic-hosted hydrothermal systems, fueled by the 

serpentinization product H2. Here, we present the discharge of short-chain alkanes from an 

andesitic rock-hosted Lutao geothermal field in the north Luzon arc, carrying abiotic chemical 
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and isotopic signals. These abiogenic hydrocarbons were generated from CO2-H2O-rich fluid 

inclusions, where the long-term storage since Lutao volcanism (~ 1.3 Ma) allowed overcoming 

the sluggish kinetics of CO2 to CH4 reduction at temperatures of 174 - 206 oC. Natural 

abiogenic production of hydrocarbons, therefore, can be more ubiquitous than previously 

thought. The hypothesis regarding the origin of methane in Earth’s early atmosphere and its 

implication to the origin of life may require reconsideration. 

Keywords: abiotic; hydrothermal; methane; clumped isotope 

Introduction 

Methane and other light hydrocarbons within Earth’s interior are generated by either 

abiotic or biotic pathways. Studying the origin of abiotic hydrocarbons is especially crucial 

for diverse topics such as the global carbon cycle and the origin of life 1–3. In natural settings, 

Fischer-Tropsch type (FTT) reaction is one of the most profound processes to produce abiotic 

hydrocarbons in hydrothermal/geothermal systems 4. It requires H2 as a reactant, which is 

usually provided by the serpentinization of ultramafic rocks with abundant olivine or 

pyroxene 5. However, laboratory studies indicated that the production rate of abiogenic 

hydrocarbons highly relies on catalysts such as transition metals and chromite 6,7. Multiple 

pieces of evidence suggested that naturally abiogenic formation of methane from FTT 

reactions were sluggish 8,9. An alternative process is that the formation of abiogenic 

hydrocarbons was disconnected with active hydrothermal circulation. Abiotic methane was 

mostly released from methane-rich inclusions, which were generated from the respeciation of 

C-O-H fluids during magma cooling 10. This process has been suggested to be responsible for 
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the abiotic methane released from the ultramafic-hosted Rainbow, Lost City, and Von Damm 

hydrothermal fields 11,12. A recent study further testified that abiotic methane formation in 

olivine-hosted inclusions is a widespread process 13. 

Results and Discussion 

Abiogenic hydrocarbons released from an andesite-hosted hydrothermal system 

Nevertheless, no matter the abiogenic hydrocarbons were produced from FTT reaction 

during hydrothermal circulation or fluid inclusions disconnected with circulation, ultramafic 

rocks or serpentinization were recognized as a key role in the formation of abiogenic 

hydrocarbons 14. Here, we present geochemical evidence for abiotic hydrocarbons 

discharging from hot springs of the andesitic rock hosted sediment starved Lutao geothermal 

system. Lutao is a volcanic island tectonically belongs to the Luzon volcanic arc 

(Supplementary Fig. S1). N2 and CH4 dominated the discharged bubbling gas, showing 

concentrations of 806-837 and 96-172 mmol/mol, respectively (Supplementary Table S1 and 

S2). When we plot the log10(Cn/n) against the carbon number (n), which is called the 

Anderson-Schulz-Flory (ASF) plot, it displays a near linear trend with a chain growth 

probability α of 0.1 at n=3-5 (Fig. 1). This trend is produced by either the polymerization of 

kinetically controlled FTT reactions or random breakage of thermogenic hydrocarbons 15. 

The Lutao hydrocarbons showed relatively higher C1 but lower C2 values than that predicted 

by the linear ASF plot. It may be ascribed to the molecular fractionation that commonly 

occurred for surface gas seeps 16. Alternatively, it is also a common result of kinetically 

controlled polymerization that has been reported in the field of chemical engineering 17. The 
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relationships among hydrocarbons all show strong linear correlations with R2 > 0.9 

(Supplementary Fig. S2). It is suggested that these hydrocarbons may originate from the same 

source without significant secondary alterations during hydrothermal circulation, including 

microbial oxidation, gas diffusion, or mixing between different sources. 

Thermogenic hydrocarbons, produced from the thermal cracking of organic matter, 

commonly display δ13C-CH4 values of -50 to -20‰ (VPDB), while microbial methane 

usually show δ13C values < -40‰ 18. The Lutao δ13C values of CH4 fall in a range between -

17.8 and -6.7‰ (Fig. 2), which is comparable to proposed abiogenic CH4 from ultramafic-

hosted Rainbow and Lost city hydrothermal systems 14,19. Abiogenic or microbial oxidation 

of CH4 would significantly increase the δ13C values of residual CH4 
20,21. In the Lutao gas, 

however, CO2 was in trace amount mostly less than 10 mmol/mol; the δ13C values of CO2 

were mostly lighter than -13‰, which is significantly lighter than magmatic CO2 (-4 ~ -7‰ 

VPDB) 22. It is suggested that the magmatic CO2 that commonly found in other hydrothermal 

systems has been dissolved or removed before venting. At a pH of 7.8 and temperature of 

90oC, the fractional dissolution will dissolve about 60% CO2 into the fluid phase and 40% 

remain in the gas phase. The δ13C fractionation between gaseous CO2 and dissolved 

carbonate would be ~ -1.8‰ 23. Therefore, the fractional dissolution and isotopic 

fractionation are not the main factors to produce the low content and light δ13C values of 

Lutao CO2. Consequently, the Lutao CO2 was mainly contributed by the oxidation of, i.e., 

hydrocarbons (mainly CH4). It is confirmed by the increasing δ13C(CH4) values with 

CO2/CH4 ratios (Supplementary Fig. S3), where the variations fit well with the modeled 
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results of methane oxidation using a fractionation factor ΔCO2-CH4 of -15 ~ -35‰ 18. The 

estimated endmember δ13C and δ2H values of CH4 were -19 to -15.5 ‰ VPDB and -90 to - 

75‰ VSMOW, respectively, both of which fall in the typical range of abiogenic methane. 

Most samples showed low CH4-CO2 conversion ratio of <10%. 

Another compelling evidence for the abiogenic origin of Lutao hydrocarbons is the 

isotope reversal of δ13C values (Table 1 and Fig. 2). The δ13C values of thermogenic 

hydrocarbons usually become increasingly enriched in 13C with increasing chain length 

because the decomposition of organic matter preferentially at 12C-12C bonds with weaker 

bond strength than 12C-13C bonds. A reversed isotopic trend (δ13C1 > δ13C2 >δ13C3) is a 

plausible indicator of abiogenic hydrocarbons 14,24. The isotope reversal of abiogenic 

hydrocarbons has been observed in the Murchison meteorite and Kidd Creek, Precambrian 

shield 25,26, and also during the sparking experiment in a methane atmosphere 27. Although 

gas diffusive migration or mixing between thermogenic gases with different sources or 

thermal maturities may also create an isotopic reversal of δ13C values 28,29, the δ13C(CH4) 

values (< -25‰) of these gases all fall in the range of typical thermogenic CH4. The δD 

values of Lutao hydrocarbons show a similar inversed trend that decreased from -55~-90‰ 

of CH4 to -60~-185‰ of C2H6 and -163 ~ -168‰ of C3H8 (Supplementary Fig. S4). This 

trend is like the abiogenic hydrocarbons occurred in the Lost City hydrothermal system 14 and 

produced in a closed-system FTT synthesis 30. Furthermore, if we plot the δD values of Lutao 

hydrocarbons against their δ13C values (Supplementary Fig. S5), it displays a pattern that falls 

outside of the range of typical biotic hydrocarbons 16. An increasing maturity, gas diffusion, 
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or hydrocarbon oxidation may increase both the δ13C and δD values of residual hydrocarbons. 

However, the significant influence of these secondary processes has been precluded by the 

linear ASF distributions and the CO2-CH4 conversion ratio of <10%. Two Lutao samples, 

which showed considerably heavier δ13C and δD values of CH4 than other samples, may have 

experienced significant (microbial) methane oxidation (ΔH/ΔC=8.6, Supplementary Fig. S3) 

with respect to other samples 31. All the other samples with original δ13C(CH4) of -19 ~ -

15.5‰ are hard to be explained as a product of microbial oxidation.  

Disconnection with hydrotermal circulation 

Abiogenic hydrocarbons could be produced from mantle and magmatic processes, 

aqueous CO2 reduction and FTT reactions during hydrothermal circulation, or fluid 

inclusions 8,16. The calculated fO2 of andesite in North Luzon arc eliminated the possibility of 

methane directly originated from the mantle/magma, where the C-O-H fluids should be 

dominated by CO2 and H2O (Supplementary T2). Both aqueous CO2 reduction and FTT 

reactions during hydrothermal circulation require H2 as a reactant 7,16 but H2 was below 

detection limit in most Lutao samples. It implies that either Lutao hydrocarbons were not 

produced from the H2-involved CO2 reduction or FTT reaction, or H2 has been removed after 

these reactions, e.g., by microbial consumption 18,32. Even the only sample showing H2 

content of 0.99 ‰ was possibly a result of microbial production of hydrogen. In addition, 

experimental studies suggested that abiogenic production of hydrocarbon by FTT reactions 

would be sluggish without catalysts such as chromite, magnetite, and FeNi 6,8,33. Again, there 

is no evidence for such catalysts in the Lutao intermediate rock. Therefore, it is hard to 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2020                   



7 

 

conclude that the Lutao hydrocarbons were generated from the FTT reactions during active 

hydrothermal circulation. 

The radiocarbon test on the methane in two Lutao samples indicated that both samples 

present 14C contents of below detection limit (fraction of modern carbon <0.0044, or age > 

43500 BP) (Table 2). Consequently, the carbon source cannot be the modern seawater 

carbonate that is actively circulating the Lutao geothermal system, neither the radiocarbon-

rich Holocene-elevated coral reef that covers the geothermal field 34. This result again 

indicated that the formation of Lutao hydrocarbons was disconnected from active 

hydrothermal circulation. 

Potential source from fluid inclusions 

Alternatively, the Lutao short-chain alkanes may have been leached from fluid 

inclusions of plutonic rocks. During the Lutao volcanism at 1.3 Ma, magmatic C-O-H fluids 

(dominated by CO2 and H2O) were trapped in the intrusive rocks, which later achieved 

equilibrium (the equilibration may take over geological time scale to overcome the sluggish 

kinetic barrier) with geothermal gradients and formed alkane-rich inclusions (Supplementary 

Fig. S6). Under such circumstance, (1) the formation temperature of methane should be 

identical to the temperature of C-O-H fluids at equilibrium as well as that of water/rock 

reaction. This is the case for the Lutao methane which was formed at 174 – 206oC (Table 2) 

calculated from the methane isotopologue (Δ13CH3D) abundance. This temperature range is 

close to the temperature of CO2-CH4 pair (180 – 206oC, Fig. 3) when achieving both 

chemical and isotopic equilibriums 15,35, and similar to the temperature of W/R reaction (150 
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– 175oC) estimated from the Si-geothermometer. The δ2H values of Lutao methane were -80 

~ -90‰, also match that predicted by the D/H fractionation model with an initial magmatic 

H2O/CO2 ratio of 2 (Supplementary Fig. S7). All these results suggested that the C-O-H 

fluids have reached both chemical and isotopic equilibrium with temperature gradient in a 

closed environment. This hypothesis also works for the methane released from the other low-

temperature vapor spring (the HWC vent) at Lutao field, although whether the HWC methane 

has experienced anaerobic oxidation is still uncertain (Supplementary T4).(2) If Lutao 

hydrocarbons were leached from the fluid inclusions in the host rock, then both the crustal 

component for the Lutao helium and the CH4 abundance will increase with enhanced W/R 

reaction. The measured CH4/
3He ratios of Lutao gas samples decreased linearly with R/Ra 

values (i.e., increasing of crustal contributions) (Fig. 4), further testified the hypothesis that 

Lutao abiogenic methane was released from fluid inclusions. A rough estimation suggested 

that the annual methane flux is about 1000 – 1500 m3, which only consumes 8.1 ~ 9.6*10-4 

km3 host rock (Supplementary T5). Therefore, the Lutao host rock could sustain the 

continuous releasing of abiotic methane. 

Similar processes have been reported in the Von Damm field, the SWIR, Rainbow, and 

Lost City hydrothermal systems 10–13. These fields, however, mostly associated with 

ultramafic/alkaline rocks or significant serpentinization, where H2 with abundant 

concentrations played a vital role in the formation of methane. The Lutao andesite and its 

plutonic diorite, on the contrary, are dominated by felsic minerals (plagioclase and 

amphibole). The average olivine content is about 1.4% and the FeO content fall in a range of 
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4% ~ 9% (Supplementary T1). Based on thermodynamic calculations (Supplementary T6), 

the Lutao methane may be produced from a one-step respeciation of C-O-H fluids (equation 

1), or a two-step process started with serpentinization of olivine and pyroxene at the initial 

stage of magma cooling to <400 oC (equation 2) and followed by Sabatier reaction (equation 

3). However, massive serpentinization is questionable due to the small amount of both olivine 

and pyroxene. Fe(II)-bearing minerals with FeO content of 4% ~ 9% in the Lutao host rock 36 

may have provided a redox environment to make these reactions thermodynamically more 

favorable. In addition, although these reactions are kinetically sluggish without proper 

catalysts 8,9, the long-term processing (over geological time scale) may have helped to 

overcome this kinetic barrier and make the C-O-H fluids in the inclusions to achieve 

equilibrium. H2 was not produced from the one-step reaction and could have been largely 

consumed if methane was formed through the two-step mechanism 10,13. Therefore, H2 was 

almost absent in the Lutao gas samples. 

12FeO + CO2 + 2H2O = CH4 +4Fe3O4   (1) 

6FeO + 2H2O = 2H2 +2Fe3O4     (2) 

CO2 + 4H2 = CH4 + 2H2O     (3) 

Implications 

Lutao field may be one of many but yet undiscovered felsic rock-hosted hydrothermal 

systems that discharge abiogenic hydrocarbons. For instance, the methane released from arc 

volcanic hydrothermal systems at the Mediterranean and continental serpentinized fields 

(Chimaera and Zambales Ophiolite) well follows the hypothesis that methane was produced 
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from CO2 in a closed system, i.e. in fluid inclusions (Fig. 3, Supplementary Fig. S7). The 

measured δ13C- and δD-methane values may represent hydrocarbon-rich inclusions 

equilibrated at different temperatures <200°C. Methane discharged from Mid-Ocean Ridge 

(MOR) type hydrothermal systems, however, does not fit our proposed model 

(Supplementary Fig. S8), and hydrogen isotope ratios of methane are possibly ascribed to the 

fast D/H exchange between equilibrated CH4 and vent fluids during fluid migration and 

venting 12.  

Our findings suggest that abiogenic production of hydrocarbons in host rocks should be 

a globally ubiquitous process rather than previously thought to be limited to ultramafic-

hosted/serpentinized fields, providing that magmatic C-O-H fluids have been trapped into 

Fe(II)-bearing intrusive rocks during volcanism. This process is fundamentally important for 

methane-related studies such as methane supply for deep microbial ecosystem, Earth’s carbon 

cycle, and source of methane in Earth’s early atmosphere as well as the origin of Martian 

methane. 

Methods 

Sampling 

We conducted five sampling campaigns in May 2012, Apr 2014, Sep 2014, May 2016, 

and Oct 2018, respectively. During the previous three sampling campaigns, the bubbling gas 

was collected by self-made piston gas samplers with an inner diameter of 40 mm, a length of 

145 mm, and a volume of 182 mL. The sampler was firstly filled by vent fluids and was then 

turned upside down and immersed in a container filled with vent fluids. The bubbles 
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discharged from the hot spring were collected using a glass funnel connected to a silicon tube 

by the displacement of water. The sampler was sealed by a gas-tight cap after the gas 

sampling. Potential contamination during hot gas sampling was precluded by using Teflon as 

the materials of the whole sampler, pre-cleaning by HNO3, and absent using of lubricating 

grease. 

In May 2016 and Oct 2018, the gas samples were collected by low-permeability glass 

bottles with a volume of about 100 mL. The sampling procedure was identical to that 

conducted in 2012 and 2014. After the sampler was filled with bubbling gas, the sampler was 

sealed by a butyl rubber stopper and an aluminum seal. After sampling, several selected 

samples were sterilized by adding 1 mL 1% HgCl2 solutions, in order to study the effect of 

microbial oxidation on the chemical and isotopic compositions of hydrocarbons. 

 

Analyzing methods 

The gas compositions of non-hydrocarbons were measured at the Key Laboratory of 

Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of 

Science (CAS) by a MAT 271 (Finnigan, USA) mass spectrometer (MS). The operating 

conditions were: ionization energy of 86 eV, emission current of 40 mA, ion source 

temperature of 95 oC, injection volume of 1 mL, and scanning using selected ion monitoring. 

The detection limit for all gas species was 0.001 mmol/mol. The precision of this analysis 

was about 3%. 
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For the 2012-2014 samples, the low-molecular-weight hydrocarbon abundances were 

determined in CAS using a GC-9160 (Shanghai Ouhua, China) gas chromatograph (GC), 

equipped with one thermal conductivity detector (TCD) and two flame ionization detectors 

(FID). The temperature programming was: 35 oC for 5 min, and 10 min at 200 oC, with a 

temperature increase of 10 oC min-1. The overall precision is about 5%. The hydrocarbon 

concentrations of the 2016 samples were measured in Helmholtz-Zentrum für 

Ozeanforschung Kiel (GEOMAR) using a Shimadzu gas chromatograph (GC2014) equipped 

with flame ionization detector and thermal conductivity detector, and a HayeSepTM Q 

80/100 column with a length of 2 m and diameter of 1/8’’. A precision of ±2-10% was 

achieved when measuring standard hydrocarbon mixtures and synthetic air. 

The isotopes of He and Ne of all samples were analyzed in CAS by an MM5400 mass 

spectrometer (Micromass, UK). The voltage and emission current were kept at 9.0 kV and 

800 mA, respectively. The air from the top of GaoLan Mountain (Lanzhou, China) was 

chosen as the reference material to check the accuracy and precision of the analyses. The 

helium isotopic characteristics (R = 3He/4He) were corrected by assuming that all 20Ne was 

originated from air contamination. The equation is expressed as follows 37: 

Rc = (Rm – Ra*r)/(1 – r)    (4) 

r = (4He/20Ne)a/(
4He/20Ne)m    (5) 

where the subscripts c, m, and a denote the corrected value, measured value, and air value, 

respectively.  
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The stable carbon isotopic compositions (δ13C) of the 2012-2014 samples were 

determined in CAS by a DeltaPlus XP mass spectrometer (Thermo Fisher Scientific, USA). 

The carbon species were separated by a Carbobond chromatographic column (30 m * 0.53 

mm * 20 μm) following the temperature program: 50 oC for 5 min and 15 min at 200 oC, with 

a temperature increase of 20 oC min-1. The separated gases were oxidized to CO2 by CuO at 

900 oC and were then analyzed for δ13C values. The 2016 samples were analyzed in 

GEOMAR by using continuous flow GC combustion - Isotope Ratio Mass Spectrometry. 

Single gas components were separated in a Thermo Trace GC with a packed Shin Carbon 

Column using He as the carrier gas. The subsequent conversion of hydrocarbons to CO2 was 

conducted in a Ni/Pt combustion furnace at 1150 °C. The 13C/12C-ratio of produced CO2 was 

determined by a Thermo MAT253 isotope ratio mass spectrometer. The results were reported 

with respect to Vienna Pee Dee Belemnite (vPDB), and the measurement uncertainties 

calculated from duplicate analyses of the samples and reference materials were less than 

0.5‰. 

The deuterium isotope (δ2H) of the 2012-2014 samples was also analyzed in CAS using 

a MAT253 (Finnigan, USA) mass spectrometer. The low-molecular-weight hydrocarbons 

were separated by an Al2O3 chromatographic column (50 m * 0.53 mm * 20 μm) with an 

initial temperature of 45 oC for 5 min and 200 oC for 5 min at a heating rate of 25 oC min-1. 

The separated gas was transformed to H2 by a ceramic reaction tube at 1450 oC. Then the 

generated H2 was analyzed for δ2H values, which was reported with respect to Vienna - 

Standard Mean Ocean Water (vSMOW). The measurement uncertainties were less than 10‰. 
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The 2016 samples were analyzed by GEO-data GmbH (Garbsen, Germany) using a 

continuous flow isotope ratio analysis method. The hydrocarbons were separated by a 

Hewlett-Packard HP 9890 Series II equipped with a 10 m long 16” SS- tube filled with Shin 

Carbon. Temperature program: 70 °C/ hold 5 min, heat to 320 °C at a rate of 22 °C per min 

and hold 20 min. The separated hydrocarbons were reduced to H2 and C in an empty ceramic 

tube at 1300 oC. The gas cleaning was carried out with Molsieve 5A. The cleaned H2 was 

transferred into the mass spectrometer (CF-IRMS, PDZ EUROPA 2020) with a long-spur fly 

tube via an open split interface. The reproducibility of the δ2H values was about ± 2‰. 

The δ13C, δ2H, and methane isotopologue abundances (Δ13CH3D) of the 2018 samples 

were measured in the stable isotope laboratory of Massachusetts Institute of Technology, 

using a tunable infrared laser direct absorption spectroscopy, following the methods of 38,39. 

The measurement uncertainties for δ13C and δ2H were ± 0.2‰ and ± 0.1‰, respectively. 

The radiocarbon activity of methane in two selected samples was determined by an 

Accelerator Mass Spectrometry in Beta Analytic Inc. (Miami, USA). The measurements were 

conducted according to ISO/IEC 17025: 2005 Testing accreditation PJLA#59423 standards. 

The reported values were calculated relative to NIST SRM-4990B and corrected for isotopic 

fractionation. The results are reported using the direct analytical measured fraction modern 

(Fm) with one relative standard deviation. 

 

Data availability 
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The data sets in this study are available as Supplementary Information and from 

the corresponding authors. 

 

References 

1. Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. 

Microbiol. 6, 805–814 (2008). 

2. Schrenk, M. O., Brazelton, W. J. & Lang, S. Q. Serpentinization, carbon, and deep life. Rev. Mineral. 

Geochem. 75, 575–606 (2013). 

3. Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–

64 (2017). 

4. Bradley, A. S. & Summons, R. E. Multiple origins of methane at the Lost City Hydrothermal Field. Earth 

Planet. Sci. Lett. 297, 34–41 (2010). 

5. McCollom, T. M. & Seewald, J. S. Abiotic synthesis of organic compounds in deep-sea hydrothermal 

environments. Chem. Rev. 107, 382–401 (2007). 

6. Foustoukos, D. I. & Seyfried, W. E. Hydrocarbons in hydrothermal vent fluids: The role of chromium-

bearing catalysts. Science 304, 1002–1005 (2004). 

7. McCollom, T. M. Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth’s Deep Subsurface. 

Rev. Mineral. Geochem. 75, 467–494 (2013). 

8. Bradley, A. S. The sluggish speed of making abiotic methane. Proc. Natl. Acad. Sci. 113, 13944–13946 

(2016). 

9. McCollom, T. M. Abiotic methane formation during experimental serpentinization of olivine. Proc. Natl. 

Acad. Sci. 113, 13965–13970 (2016). 

10. Kelley, D. S. & Fruh-Green, G. L. Abiogenic methane in deep-seated mid-ocean ridge environments: 

Insights from stable isotope analyses. J. Geophys. Res.-Solid Earth 104, 10439–10460 (1999). 

11. McDermott, J. M., Seewald, J. S., German, C. R. & Sylva, S. P. Pathways for abiotic organic synthesis at 

submarine hydrothermal fields. Proc. Natl. Acad. Sci. 112, 7668–7672 (2015). 

12. Wang, D. T., Reeves, E. P., McDermott, J. M., Seewald, J. S. & Ono, S. Clumped isotopologue constraints 

on the origin of methane at seafloor hot springs. Geochim. Cosmochim. Acta 223, 141–158 (2018). 

13. Klein, F., Grozeva, N. G. & Seewald, J. S. Abiotic methane synthesis and serpentinization in olivine-hosted 

fluid inclusions. Proc. Natl. Acad. Sci. 116, 17666–17672 (2019). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2020                   



16 

 

14. Proskurowski, G. et al. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319, 

604–607 (2008). 

15. Giggenbach, W. F. Relative importance of thermodynamic and kinetic processes in governing the chemical 

and isotopic composition of carbon gases in high-heatflow sedimentary basins. Geochim. Cosmochim. Acta 

61, 3763–3785 (1997). 

16. Etiope, G. & Lollar, B. S. Abiotic Methane on Earth. Rev. Geophys. 51, 276–299 (2013). 

17. Van Der Laan, G. P. & Beenackers, A. A. C. M. Kinetics and Selectivity of the Fischer–Tropsch Synthesis: 

A Literature Review. Catal. Rev. 41, 255–318 (1999). 

18. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. 

Chem. Geol. 161, 291–314 (1999). 

19. Charlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P. & Holm, N. Geochemistry of high H2 and CH4 vent 

fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36° 14′ N, MAR). Chem. Geol. 

191, 345–359 (2002). 

20. Barker, J. F. & Fritz, P. Carbon isotope fractionation during microbial methane oxidation. Nature 293, 

289–291 (1981). 

21. McCollom, T. M., Lollar, B. S., Lacrampe-Couloume, G. & Seewald, J. S. The influence of carbon source 

on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. Geochim. 

Cosmochim. Acta 74, 2717–2740 (2010). 

22. Sano, Y. & Marty, B. Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274 

(1995). 

23. Zhang, J., Quay, P. D. & Wilbur, D.O. Carbon isotope fractionation during gas-water exchange and 

dissolution of CO2. Geochim. Cosmochim. Acta 59, 107–114 (1995). 

24. Fiebig, J. et al. Isotopic patterns of hydrothermal hydrocarbons emitted from Mediterranean volcanoes. 

Chem. Geol. 396, 152–163 (2015). 

25. George Yuen, Neal Blair, David J. Des Marais & Sherood Chang. Carbon isotope composition of low 

molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature 307, 252–

254 (1984). 

26. Lollar, B. S., Westgate, T. D., Ward, J. A., Slater, G. F. & Lacrampe-Couloume, G. Abiogenic formation of 

alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 416, 522–524 

(2002). 

27. Des Marais, D. J., Donchin, J. H., Nehring, N. L. & Truesdell, A. H. Molecular carbon isotopic evidence 

for the origin of geothermal hydrocarbons. Nature 292, 826 (1981). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2020                   



17 

 

28. Tilley, B. & Muehlenbachs, K. Isotope reversals and universal stages and trends of gas maturation in 

sealed, self-contained petroleum systems. Chem. Geol. 339, 194–204 (2013). 

29. Shuai, Y. et al. Methane clumped isotopes in the Songliao Basin (China): New insights into abiotic vs. 

biotic hydrocarbon formation. Earth Planet. Sci. Lett. 482, 213–221 (2018). 

30. Wei, Z. et al. Isotopic Composition of Abiogenic Gas Produced in Closed-System Fischer-Tropsch 

Synthesis: Implications for the Origins of the Deep Songliao Basin Gases in China. Geofluids 2019, 

2823803 (2019). 

31. Wang, D. T., Welander, P. V. & Ono, S. Fractionation of the methane isotopologues 13CH4, 12CH3D, and 

13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath). Geochim. Cosmochim. 

Acta 192, 186–202 (2016). 

32. Kelley, D. S. et al. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science 307, 

1428–1434 (2005). 

33. Horita, J. & Berndt, M. E. Abiogenic methane formation and isotopic fractionation under hydrothermal 

conditions. Science 285, 1055–1057 (1999). 

34. Shen, C.-C., Wu, C.-C., Dai, C.-F. & Gong, S.-Y. Variable uplift rate through time: Holocene coral reef 

and neotectonics of Lutao, eastern Taiwan. J. Asian Earth Sci. 156, 201–206 (2018). 

35. Horita, J. Carbon isotope exchange in the system CO2-CH4 at elevated temperatures. Geochim. Cosmochim. 

Acta 65, 1907–1919 (2001). 

36. Chen, J. & Lin, F. Geochemistry of Lutao andesites. Acta Ocean. Taiwanica 11, 49–69 (1980). 

37. Poreda, R. & Craig, H. Helium isotope ratios in circum-Pacific volcanic arcs. Nature 338, 473–478 (1989). 

38. Ono, S. et al. Measurement of a Doubly Substituted Methane Isotopologue, 13CH3D, by Tunable Infrared 

Laser Direct Absorption Spectroscopy. Anal. Chem. 86, 6487–6494 (2014). 

39. Wang, D. T. et al. Nonequilibrium clumped isotope signals in microbial methane. Science 348, 428–431 

(2015). 

40. Fiebig, J., Woodland, A. B., Spangenberg, J. & Oschmann, W. Natural evidence for rapid abiogenic 

hydrothermal generation of CH4. Geochim. Cosmochim. Acta 71, 3028–3039 (2007). 

41. Fiebig, J., Tassi, F., D’Alessandro, W., Vaselli, O. & Woodland, A. B. Carbon-bearing gas 

geothermometers for volcanic-hydrothermal systems. Chem. Geol. 351, 66–75 (2013). 

42. Douglas, P. M. J. et al. Methane clumped isotopes: Progress and potential for a new isotopic tracer. Org. 

Geochem. 113, 262–282 (2017). 

43. Etiope, G., Schoell, M. & Hosgörmez, H. Abiotic methane flux from the Chimaera seep and Tekirova 

ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications 

for Mars. Earth Planet. Sci. Lett. 310, 96–104 (2011). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2020                   



18 

 

44. Young, E. D. et al. The relative abundances of resolved (CH2D2)-C-12 and (CH3D)-C-13 and mechanisms 

controlling isotopic bond ordering in abiotic and biotic methane gases. Geochim. Cosmochim. Acta 203, 

235–264 (2017). 

45. Abrajano, T. A. et al. Geochemistry of Reduced Gas Related to Serpentinization of the Zambales Ophiolite, 

Philippines. Appl. Geochem. 5, 625–630 (1990). 

 

Acknowledgments 

The authors thank the Green Island Marine Research Station, Academia Sinica for the help 

on accommodation and sampling. We are appreciated for the help on sampling by Bing-Jye 

Wang, Yu-Chang Chang, and Hao Zheng. This research is supported by the National Natural 

Science Foundation of China (No. 41806051), the Aim for the Top University Program of 

Taiwan (03C0302), and Chinese Government Scholarship (201406325045).  

Author Contributions 

X.G.C. and C.T.A.C. conceived the idea and designed the work; X.G.C., P.S.L., and Y.Y. 

collected the samples; M.Z.Y., M.S., and S.O. analyzed the chemical and isotopic 

compositions of the samples; X.G.C., P.S.L., and Y.Y. interpreted the data; X.G.C., M.Z.Y., 

and C.T.A.C. wrote the manuscript. X.G.C. oversaw the overall structure of the manuscript as 

well as fieldwork and laboratory analysis. All authors reviewed the manuscript. 

Competing interests: The authors declare no competing interests.  

 

Figures and Figure legends 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2020                   



19 

 

 

Fig. 1 Linear-log relationships between Cn/n (Cn is the concentration of hydrocarbon with 

carbon number n) and carbon number (n). α is the Andersen-Schulz-Flory distribution factor 

which was calculated as α = Cn/Cn-1. 
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Fig. 2 Variation of δ13C values (per mil, VPDB) with carbon number (n) for Lutao alkanes. 
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Fig. 3 Variation of δ13C(CH4) (‰ VPDB, gray area) at CH4-CO2 chemical/isotopic 

equilibrium as a function of temperature, assuming that CH4 was totally derived from CO2-

H2O fluids in a closed system. The modelling and calculations are shown in the 

Supplementary T3. Gas data from: 

(1) LD: this study. Temperatures were calculated from methane isotopologue (Δ13CH3D) abundances. 

(2) Arc volcanic systems:  

Nisyros, Pantelleria40–42: Temperatures were calculated from H2-H2O-CO-CO2-CH4 geoindicator or 

methane isotopologue (Δ13CH3D and Δ12CH2D2) abundances. 

La Solfatara, Ischia, and Vesuvio 40,41: Temperatures were calculated from H2-H2O-CO-CO2-CH4 

geoindicator. 
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(3) Continental fields:  

Chimaera 43,44: Temperatures were estimated from methane isotopologue abundances.  

Zambales Ophiolite 45: Temperatures were calculated from H2-H2O equilibrium. 

Yellowstone 42: Temperatures were estimated from methane isotopologue abundances. 

 

Fig. 4 Correlation between the R/Ra values and log10(CH4/
3He) values of Lutao gas samples. 

3He was used as a reference to indicate the relative CH4 concentration because it was 

exclusively derived from the mantle. Most Lutao samples show 4He/20Ne ratios of 

dramatically higher than the air value (0.316). Therefore, air contribution was neglectable for 

Lutao helium, which was mixed from mantle-derived and crustal helium. The percentage of 

crustal contribution increases with decreasing R/Ra ratios 37. 
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Table 1 Stable carbon, radiocarbon, and hydrogen isotope data of gas discharges from the 1 

Lutao hydrothermal system. All isotope data are in ‰ units; δ13C is reported as vPDB, δD as 2 

vSMOW. 3 

Date Sample 
δ13C-

CH4 

δ13C-

CO2 

δ13C-

C2H6 

δ13C-

C3H8 

δD-

CH4 

δD-

C2H6 

δD-

C3H8 

2012/5/5 012a1 -15.1 -13.4 -22.0 
    

2014/4/29 014a1 -15.9 -28.7 -19.4     

2014/4/29 014a2 -15.2 -23.8 -19.4     

2014/4/30 014a3 -16.5 -18.5 -20.1     

2014/9/22 014b1 -16.8 -21.7   -61 -74  

2014/9/22 014b3 -14.8 -17.5 -19.3 -18.2 -55 -88  

2014/9/22 014b4 -14.8 -13.1 -19.4 -14.6 -60 -86  

2014/9/22 014b5 -14.3 -14.9 -19.6 -13.7 -62 -85  

2014/9/23 014b6 -6.7 -19.1 -17.6  33 -61  

2014/9/23 014b7 -10.0 -18.0 -17.4 -13.2 -81 -93  

2016/5/20 016z1 -17.1 -14.0 -7.0 -14.0 -86 -180 -167 

2016/5/20 016z3 -17.8 -14.6 -16.6 -27.6 -88 -179 -165 

2016/5/20 016z4 -16.2 -15.2 -15.2 -15.3 -89 -180 -168 

2016/5/21 016z5 -16.4 -14.3 -15.0 -25.2    

2016/5/21 016z6 -16.9 -10.3 -12.9 -22.8    

2016/5/21 016z7 -17.2 -13.7 -16.8 -16.9    

2016/5/21 016z8 -16.2 -10.1 -13.3 -22.6 -89 -183 -168 

2016/5/22 016z9 -15.9 -8.3 -16.5 -26.0 -89 -185 -172 

2016/5/22 016z10 -16.4 -10.9 -15.6 -21.3    

2016/5/22 016z11 -17.8 -9.3 -15.2 -24.9 -89 -170 -163 

2018/10/30 018ZG6 -16.3    -78.8   

2018/10/30 018ZG10 -16.6    -80.5   

Measurement uncertainties:  4 

δ13C: 2012-2016 samples, ±0.5‰; 2018 samples, ±0.2‰ 5 

δD: 2012-2014 samples, ±10‰; 2016 samples, ±2‰; 2018 samples, ±0.1‰ 6 
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Table 2 Radiocarbon and methane isotopologue (Δ13CH3D) abundances of Lutao methane. 7 

Date Sample Δ13CH3D 95% c.i. Apparent T* 14C-CH4 (Fraction modern) 

2016/5/20 016z1 2.38 ±0.37 206+40/-33  

2016/5/21 016z5    <0.0044 

2016/5/21 016z7    <0.0044 

2016/5/22 016z10 2.68 ±0.23 179+21/-18  

2018/10/30 018ZG6 2.67 ±0.26 180+23/-21  

2018/10/30 018ZG10 2.74 ±0.31 174+27/-24  

2018/10/30 018WG3# 3.61 ±0.17 115±10  

2018/10/30 018WG4# 4.02 ±0.25 93+13/-12  

 8 

* Apparent Temperature (oC) was calculated using DFT model. 9 

# Both samples were collected from the HWC vapor spring. The source of methane 10 

discharged from the HWC vapor spring was discussed in the Supplementary T4. 11 
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