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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the
disease COVID-19 that has decimated the health and economy of our planet. The virus
causes the disease not only in people but also in companion and wild animals. People
with diabetes are at risk of the disease. As yet we do not know why the virus is highly
successful in causing the pandemic within 3 months of its first report. The structural
proteins of SARS include, membrane glycoprotein (M), envelope protein (E),
nucleocapsid protein (N) and the spike protein (S). The structure and function of the most
abundant structural protein of SARS-CoV-2, the membrane (M) glycoprotein is not fully
understood. Using in silico analyses we determined the structure and potential function
of the M protein. In silico analyses showed that the M protein of SARS-CoV-2 has a triple
helix bundle, form a single 3-transmembrane domain (TM), and are homologous to the
prokaryotic sugar transport protein semiSWEET. SemiSWEETs are related to the PQ-
loop family that function as cargo receptors in vesicle transport, mediates movement of
basic amino acids across lysosomal membranes, and is also involved in phospholipase
flippase function. The advantage and role of sugar transporter-like structure in viruses is
unknown. Endocytosis is critical for the internalization and maturation of RNA viruses,
including SARS-CoV-2. Sucrose is involved in endosome and lysosome maturation and
may also induce autophagy, pathways that help in the entry of the virus. It could be
hypothesized that the semiSWEET sugar transporters could be used in multiple pathways
that may aid in the rapid proliferation and replication of the virus. Biological experiments

would validate the presence and function of the semiSWEET sugar transporter.
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Introduction

The Covid-19 disease is currently responsible for the pandemic that has decimated the
health and economy of every country. COVID-19 is regarded as a respiratory disease
that manifests with fever, cough, shortness of breath or difficulty breathing, chills, muscle
pain, headache, sore throat, loss of taste and smell. Other symptoms include diarrhea,
nausea and vomiting (Yang et al. 2020; Effenberger et al. 2020). The prolonged pandemic
has resulted in social distancing, travel restrictions, decreased trade, high unemployment,
commodity price decline, and financial stress that has impacted the global economy.
COVID-19 disease is caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), a member of the betacoronavirus genus (Wang et al. 2020). Currently,
the disease has resulted in a mortality of around 5-7 percent. As yet, there are no
effective drugs available for treatment of the disease nor vaccines available commercially

to protect against the virus.

The major structural proteins of SARS-CoV-2 are spike (S), membrane (M), envelop (E),
and the nucleocapsid (N) proteins (Shereen et al. 2020; Chan et al. 2020). The spike
protein of SARS-CoV-2 uses the host angiotensin-converting enzyme 2 (ACE2) as the
entry receptor (Wrapp et al. 2020). Hence, the research community has an interest in

studying the spike protein for drug and vaccine development.

The most abundant structural protein of coronaviruses is the M glycoprotein; it spans the
membrane bilayer, leaving a short NH2-terminal domain outside the virus and a long
COOH terminus (cytoplasmic domain) inside the virion (Mousavizadeh and Ghasemi,
2020). As the M proteins cooperates with the S protein, mutations may influence host cell
attachment and entry of the viruses (Bianchi et al. 2020). The function of the M protein is
also not fully understood. It is also not clearly understood how SARS-CoV-2 mediates

sugar uptake and also the sugar transporters involved in the process.

Sugars will eventually be exported transporters (SWEETs) and SemiSWEETs are sugar
transporters in eukaryotes and prokaryotes, respectively. SWEET proteins were first

identified in plants as the novel family of sugar transporters that mediates the
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translocation of sugars across cell membranes (Chen et al. 2010, Feng and Frommer,
2015; Jia et al. 2018; Jeena et al. 2019). Sugar transporters are essential for the
maintenance of blood glucose levels in animals, nectar production, phloem loading, seed
and pollen development in plants, and also in pathogen nutrition (Chen et al. 2010; Jeena
et al. 2019). Engineering of SWEET mutants using genomic editing tools mediated

resistance to pathogens (Chen, 2014).

In eukaryotes, SWEET can discriminate and transport the uptake of mono and
disaccharides across the plasma membrane by allowing solutes to permeate across
biological membranes following a concentration gradient (Chen et al. 2010; Chen, 2014;
Han et al. 2017). Eukaryotic SWEETs are composed of seven transmembrane helices
(TMHSs) that contain a pair of three transmembrane repeats, which are connected by an
additional helix, while SemiSWEETs, the homologs of SWEETS in prokaryotes, contain
three TMHs (Xuan et al. 2013; Feng and Frommer, 2015). The human genome contains

only one SWEET gene and may be involved in glucose transport (Chen et al. 2010).

The prokaryotic semiSWEETs may be involved in the metabolism and transport of sugar
synthesis. The semiSWEETSs of prokaryotes are more diverse than SWEETSs in plants;
they seldom have homologs sharing >50% identity (Jia et al. 2018). The limited number
of semiSWEET homologs suggest that they are not as important as the SWEETSs in
eukaryotes (Jia et al. 2018).

It is clearly not understood the function and role of the M proteins of the SARS-CoV-2
during host infection. Here, we report that the M proteins of SARS-CoV-2 are structurally
similar to semiSWEET sugar transport proteins of prokaryotes based on in silico

analyses.
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Materials and Methods
SARS-CoV-2 protein structure

The structural protein sequences of the SARS-CoV-2 were downloaded from Pubmed
(https://www.ncbi.nIm.nih.gov/pubmed), protein database. The structural proteins include
Membrane protein (Accession No. QJA17755), Envelope protein (Accession No.
QJA17754), Spike protein (Accession No. QHR63290), Nucleocapsid protein (Accession
No. QJC20758).

Protein modeling

Swiss model is a server that is used for 3D structure prediction. Homology modeling was
constructed using Swiss model server (http//swissmodel.expasy.org/) with default

settings. The M protein sequence of SARS-CoV-2 was entered in FASTA format.

Residue-based diagram of proteins, also called snake diagrams or protein plots, are 2D
representations of a protein sequence that contains information about properties such as
secondary structure (Skrabanek et al. 2003). To determine snake diagram model of
protein we used Protter (http://wlab.ethz.ch/protter). Protter is an open-source tool that
supports interactive protein data analysis and hypothesis generation by visualizing both
annotated sequence features and experimental proteomic data in the context of protein

topology.

Sequence alignment

Clustal W2 is a server for multiple sequence alignment which is also used for phylogenetic
tree analysis. Multiple sequence alignment between M protein of SARS-CoV-2 and
semiSWEET sequences from different microorganisms was performed using the
clustalW2 server (http:/www.ebi.ac.uk/tools/msa/clustalW2/).

d0i:10.20944/preprints202004.0512.v3


https://www.ncbi.nlm.nih.gov/pubmed
http://wlab.ethz.ch/protter
https://doi.org/10.20944/preprints202004.0512.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 May 2020 doi:10.20944/preprints202004.0512.v3

Results

The S protein of SARS-CoV-2 binds to ACEZ2 receptors of the host for cell entry and may
be a key target for drugs and vaccines. Hence the S protein of SARS-CoV-2 virus is well
characterized. The SARS-CoV-2 is one of the most successful virus as it caused a
pandemic within just two months of its first report in Wuhan, China. As yet, we do not yet
know why the virus is successful in inducing a pandemic leading to millions of infection

and thousands of death.

Three-dimensional (3D) protein structures provide valuable insights into the molecular
basis of protein function (Schweede et al. 2003). Using in silico techniques the structure

and potential function of the M protein of the SARS-CoV-2 virus is elucidated.

The structural protein sequence of the membrane protein (M) of SARS-CoV-2 was
downloaded from NCBI protein database (Fig. 1). The FASTA sequence of the M protein
was entered into the Swiss model server. Based on the sequence, the structure of the
molecule was predicted as bidirectional sugar transporter SWEET2b. The ribbon

representation, spacefill and surface models of the M protein is shown in Fig. 2.

The sugar transporter SWEET of eukaryotes are generally composed of seven
transmembrane helices. Modeling proteins using residue-based diagram (snake
diagrams) helps understand its function. Hence, we used Protter

(http://wlab.ethz.ch/protter) to model the M protein.

The M glycoprotein is the most abundant envelope protein of SARS-CoV-2. In silico
analyses of the M protein of SARS-CoV-2 using Protter demonstrated that it has a triple
helix bundle, and formed a single 3-transmembrane domain (TM). In addition, the M
glycoprotein has a short amino terminal outside the membrane and a long carboxy-
terminal domain inside the membrane (Fig. 3A). The SWISS-MODEL predicted the M
glycoprotein as SWEET2b. However, the M protein only has three transmembrane

helices, not six or seven transmembrane helices observed in the SWEET sugar
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transporters of eukaryotes. Hence, the M glycoprotein structure of SARS-CoV-2 may be
considered as semiSWEET. To confirm accuracy of the study, we also modeled the E, N
and S proteins of SARS-CoV-2. The modeling showed that the E protein has long outer
amino terminal, a single helix and a short inner carboxy-terminal (Fig. 3B). The N protein
had its entire structure inside the membrane (Fig. 3C). Whereas, the S protein had the
majority of its structure outside the membrane with only a short carboxy-terminal inside

the membrane (Fig. 3D).

The SemiSWEET sugar transporter of prokaryotes are more diverse than SWEET
counterpartin plants. In the prokaryotes the semiSWEET seldom share identity. We used
Clustal W2 to determine sequence homology of the sugar transporters of multiple
microorganisms. The sequence of semiSWEET of the M glycoprotein of SARS had an
identity of 26% with the semiSWEET of Rhizobiales and 20% with Streptococcus
pneumoniae demonstrating that the semiSWEET of the SARS-CoV-2 may be highly
conserved (Fig. 4A, B).

Discussion

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 is spreading at an
alarming rate and has resulted in an unprecedented health emergency all over the world
(Ghosh et al. 2020). The rapid spread of SARS-CoV-2 justifies the global effort to identify
effective preventive strategies and optimal medical management (Castagnoli et al. 2020).
As yet there are no effective vaccine to protect against COVID-19 nor effective approved
drugs to treat patients with the disease. The development of antivirals is an urgent priority
to combat the disease (Ghosh et al. 2020). Understanding the biochemical events of
the coronavirus replication cycle may provide a number of attractive targets for drug
development (Ghosh et al. 2020). Current strategies involve developing drug and vaccine
candidates against spike (S) protein of the virus. The rationale being that neutralizing
antibodies against the S protein prevent uptake of the virus via the human ACE2 receptor

d0i:10.20944/preprints202004.0512.v3
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(Le et al. 2020). Identifying drug targets that blunt the activity of the virus may lead to
effective treatments for COVID-19.

Viruses are non-living entities, without any organelles devoid of their own metabolism,
though they have the capability to dramatically modify the host cellular metabolism upon
entry. Viruses upregulate consumption of glucose and converge on similar metabolic
pathways for anabolism (Thaker et al. 2019). Virus-induced metabolism may provide free
nucleotides for rapid viral genome replication, increased amino acid production for rapid
virion assembly, and high amounts of ATP for the high energy costs of genome replication
and packaging. The mechanism for increased glucose uptake by the virus is still not

clearly understood.

Glucose is the energy source of cells and tissues. Cellular uptake of glucose is a
fundamental process for metabolism, growth, and homeostasis. Glucose is a polar
molecule that does not readily diffuse across the hydrophobic plasma membrane of the
cells. Glucose molecules are transported through the glucose transporters that include,
GLUTs, the sodium-driven glucose symporters SGLTs, STP, and SWEETs (Deng and
Yan, 2016). SWEETs are seen in plants and animals. SWEET induction by plant
pathogens leads to secretion of sucrose that is used by these microorganisms for

nutrition/reproduction (Bezrutczyk et al. 2017).

The bacterial ancestors of SWEET, known as semiSWEET are the smallest of the sugar
transporters and assemble into dimers (Xuan et al. 2013; Chen et al. 2015; Lee et al.
2015). In fact, eukaryotic SWEETs consist of two SemiSWEET-like units fused via an
inversion linker transmembrane helix (Jia et al. 2018). The diverse gene neighbors of
semiSWEETs suggest that semiSWEETs may transport diverse substrates and play
several physiological roles in different organisms (Jia et al. 2018). The SWEETSs and their
bacterial homologues, SemiSWEETSs, are related to the PQ-loop family, characterized by
highly conserved proline and glutamine residues (PQ-loop motif) (Lee et al. 2015). The

PQ-loop family exhibits diverse activities; they function as cargo receptors in vesicle
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transport, mediates movement of basic amino acids across lysosomal membranes, and
is also involved in phospholipase flippase function (Saudek, 2012; Yamamoto et al. 2017;

Kawano-Kawada et al. 2019). As yet there are no reports of sugar transporters in viruses.

It is not known how SARS-CoV-2 has been successful to spread all over the world within
three months of its first report in Wuhan, China. ldentifying the mechanisms of how
viruses alter cellular metabolism and where in the virus life cycle these metabolic changes
are necessary will provide an understanding of virus replication needs and potentially
provide cellular targets for inhibition of these viruses. In this paper using in silico data
analysis we demonstrate that the structure of the membrane (M) glycoprotein of SARS-

CoV-2 resemble the semiSWEET sugar transporter of the prokaryotes.

Clues to the viral metabolism can be understood from the patient population at risk of
infection. It is known that people with diabetes are more prone to COVID-19 disease
(Bornstein et al. 2020). It has been demonstrated that SARS coronavirus enters islets
and damages islets causing acute diabetes (Yang et al. 2010). As people with diabetes

have high glucose, the environment may favor proliferation of viruses.

Virus uses multiple mechanisms for the uptake of glucose. Human
cytomegalovirus (HCMV), a herpesvirus, induces the sugar transporter, GLUT4 to
increase glucose uptake during infection (Yu et al. 2011). Whereas, transmissible
gastroenteritis virus (TGEV), a coronavirus induces multiple sugar transporters EGFR,
SGLT1 and GLUT2 for glucose uptake (Dai et al. 2016). Rhinoviruses (RVs) are
responsible for the majority of upper airway infections and they enhance the expression
of the PI3K-regulated glucose transporter GLUT1; glucose deprivation from medium and
via glycolysis inhibition by 2-deoxyglucose (2-DG) impairs viral replication (Gualdoni et
al. 2018).

Sucrose is used for energy metabolism by cells. In addition, sucrose is also used for
endosome and lysosome maturation, autophagosomes and also to induce autophagy (Hu
et al. 2015; Higuchi et al. 2015; Yang and Shen, 2020). Coronaviruses, including SARS,

d0i:10.20944/preprints202004.0512.v3
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SARS-CoV-2 use endosome for cellular entry, and they are known to manipulate
autophagosome and autolysosome for viral dissemination in the cell (Burkard et al. 2014;
Yang and Shen, 2020).

The membrane (M) glycoprotein is the most abundant envelope protein of coronaviruses
(deHaan et al. 1999). In silico analysis showed that the M protein of SARS-CoV-2
resembles the sugar transporter, SWEET. Further analysis by residue-based structure
demonstrated that the protein has the characteristic structure of semiSWEET, the sugar
transporter of prokaryotes. To our knowledge this is the first report of the presence of a
sugar transporter in a virus membrane. It is known that the prokaryotes have diverse
sugar transporters. In our analysis, the SARS-CoV-2 sequence of semiSWEET has no

homology to other prokaryotes.

An advantage of the virus having a sugar transporter in its membrane is that it may
influence energy metabolism. How, the virus utilizes sugar molecules is unknown. In
addition, it could be hypothesized that the sucrose transporters of the virus membrane
may influence sucrose entry into the endosome, lysosome or autophagosome that are
manipulated by the virus, thereby aiding the virus release into cells. Thus, the presence
of a semiSWEET glucose transporter in the M protein of the virus may be an efficient

mechanism that may induce its rapid proliferation.

Generally, the enveloped viruses, including SARS-CoV-2, use a two-step procedure to
release their genetic material into the cell — 1) they bind to specific surface receptors of
the target cell membrane and 2) they fuse the viral and cell membranes. This second step
may occur at the cell surface or after internalization of the virus particle by endocytosis.
Currently, it is not known how the M proteins of the virus is fused to the host cell
membrane. If the M proteins are fused to host cell membrane, it could theoretically

function as a sugar transporter.

People with diabetes are at risk of COVID-19 infection may be due to the high proliferation

of the virus due to unmetabolized glucose. A characteristic of some COVID-19 patients
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is coagulopathy (Tang et al. 2020a). Anticoagulant therapy with low molecular weight
heparin had better prognosis in severe COVID-19 patients that were associated with high
mortality (Tang et al. 2020b). Platelets, produced by the megakaryocytes of the bone
marrow is responsible for blood clotting. Glucose is taken up through the platelets
mediated through the glucose transporters GLUT1 and GLUT3. Lack of glucose
transporters in the platelets reduce its counts and increase clearance of platelets (Fidler
et al. 2017). Normal glucose reduces platelet activation; whereas, hyperglycemia
increases platelet glucose metabolism thereby contributing to increased platelet

activation and thrombosis in animal models of diabetes (Fidler et al. 2019).

Some of the COVID -19 patients have lungs that are not effectively oxygenating the blood
(hypoxia), but feel alert and healthy and hardly gasp for breath. Glucose transport is
acutely stimulated by hypoxic conditions, and the response is mediated by enhanced
function of the facilitative glucose transporters GLUT (Zhang et al. 1999; Wood et al.
2007). Prolonged exposure to hypoxia results in enhanced transcription of the GLUT1
glucose transporter gene, with little or no effect on transcription of other GLUT genes
(Zhang et al. 1999).

Several pulmonary disorders are associated with a decrease in alveolar oxygen tension
and Alveolar epithelial cells (AEC) exhibits different adaptive mechanisms to cope with
oxygen deprivation. Under hypoxia, because of inhibition of oxidative phosphorylation,
adenosine triphosphate supply is dependent on the ability of cells to increase anaerobic
glycolysis. Hypoxia induces stimulation of Na-independent glucose transport and
increase in 2-deoxy-D-glucose (DG) uptake; it also induces the glucose transporter,
GLUT1 at both protein and mRNA levels (Ouiddir et al. 1999). HIF-1a regulates the
activity of glucose transporters, GLUT, that are responsible for glucose uptake. Hypoxia-
inducible factors (HIFs) are oxygen-sensitive transcription factors that allow adaptation to
hypoxic environments (Sadlecki et al. 2014). HIF-1a reduces acute lung injury by

optimizing carbohydrate metabolism in the alveolar epithelium (Eckle et al. 2013).
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An early characteristic of COVID-19 patients is loss of smell. The glucose receptors,
GLUT is expressed in taste receptor cells (Merigo et al. 2011). Glucose receptors are
expressed in the olfactory bulb and its changes may influence olfaction (Al Koborssy et
al. 2014). Whereas, Villar et al. (2017) demonstrated that glucose removal and the

inhibition of glycolysis or oxidative phosphorylation inhibits odor.
The current data described in this paper are based on in silico analyses. However, further

biological experiments are required to validate the presence and function of the virus

membrane sugar transporter.
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Fig.1. The protein sequence of the M glycoprotein of SARS-CoV-2. The sequence was
downloaded from NCBI protein database.

QJA17755.1 membrane glycoprotein
[Severe acute respiratory syndrome coronavirus 2]

1 madsngtitv eelkklleqw nlvigfiflt wicllgfaya nrnrflyiik liflwllwpv

61 tlacfvlaav yrinwitggi aiamaclvgl mwisyfiasf rifartrsmw sfnpetnill
121 nvplhgtiltrplleselvi gavilrghlriaghhlgrcd ikdlpkeitv atsrtlsyyk
181 Igasqrvagd sgfaaysryr ignykintdh ssssdniall vq

Fig. 2. Predicted M protein structure using the software SWISS-MODEL. The (A) ribbon
representation, (B) spacefill and (C) surface models of the M protein of SARS-CoV-2.
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Fig. 3A. Membrane topology of proteins (snake diagrams) determined using Protter. (A)
The membrane (M) glycoprotein of SARS-CoV-2 has a triple helix bundle, and formed a
single 3-transmembrane domain. (B) Snake diagram of envelope (E) protein, (C)
nucleocapsid (N) protein, and (D) spike protein (S).

SARS-CoV-2 membrane protein (M)

W H-glyco motif
© signal peptide
Heterm: Phobius
TMRs: Phobius
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Fig. 3B

SARS-CoV-2 envelope protein (E)
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Fig. 3C
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SARS-CoV-2 spike protein (S)

Tutte: Phstin
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Fig. 4A. Protein sequences were aligned using ClustalW. (A) Comparison of protein
sequence of the M protein of SARS-COV-2 with semiSWEET sugar transporter of
Rhizobiales. (B) Comparison of protein sequence of the M protein of SARS-COV-2 with
semiSWEET sugar transporter of Streptococcus pneumoniae.

CLUSTAL 0(1.2.4) multiple sequence alignment

WP_113585511.1 - MMV TVIGFGAAL CSTVSFMPQAWR VK TRDTSSL SAPMYAIN 43
QIA17755.1 MADSNGTITVEELKKLLEQWNLVIGFLFL- - - -~ - - TWICLLQFAYANRNRFLYIIK 50
WP_113585511.1 TIGFMLWLIYGVMLGQWPLI - -~ -- LTNGICLVLAAF -~ -~~~ ILTMTLASSK - - 85
QJA17755.1 LIFLWLLWPVTLACFVLAAVYRINWITGGIATAMACLVGLMWLSYF IASFRLFARTRS 108
WP_113585511.1 ----- S —— ITDALE-- 95
QJIA17755.1 MWSFNPETNILLNVPLHGTILTRPLLESELVIGAVILRGHLRIAGHHLGRCDIKDLPKET 168
WP_113585511.1 = oo oo 95
QJA17755.1 TVATSRTLSYYKLGASQRVAGDSGFAAYSRYRIGNYKLNTDHSSSSDNIALLVQ 222

WP_113585511.1: semiSWEET Rhizhobiales
QJA17755.1: Membrane protein SARS-CoV-2
Percent identity: 26.51
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Fig. 4B

CLUSTAL 0(1.2.4) multiple sequence alignment

WP_000580383.1 -------- MIGSIAAILT------ TFAFLPQVFR- - - - - oo - VK- - -TKDTGST 30
QIA17755.1 MADSNGTI TVEELKKLLEQWNLVIGFLFLTWICLLQFAYANRNRFLYIIKLIFLWLLWPV 60
- . 'E 3 * E3 . . s ¥ -
WP_000580383.1 ALGMYVMQVIGIALWLDHGIRIGDLPLILANSYSFLLSGI -~ - - === - === oo 70
QIA17755.1 TLACFVLAAVYRINWITGGIATAMACLVGLMLSYFIASFRLFARTRSMWSFNPETNILL 120
- % - ¥ . - ® . £33 * * . PE R .
WP_000580383.1 === --mmmm s ILFYK 75
QIA17755.1 NVPLHGTILTRPLLESELVIGAVILRGHLRIAGHHLGRCDIKDLPKEITVATSRTLSYYK 180
- - B
WP_000580383.1 LKYK == = === == m e mmm e 79
QJA17755.1 LGASQRVAGDSGFAAYSRYRIGNYKLNTDHSSSSDNIALLVQ 222
*

WP_000580383.1: semiSWEET Streptococcus pneumoniae
QJA17755.1: Membrane protein SARS-CoV-2
Percent identity: 20.25
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