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ABSTRACT

Let f : V −→ V be a Cohomological Expanding Mapping1 of a smooth complex com-1

pact homogeneous manifold with dimC(V) = k ≥ 1 and Kodaira Dimension ≤ 0. We2

study the dynamics of such mapping from a probabilistic point of view, that is, we de-3

scribe the asymptotic behavior of the orbit Of (x) = {fn(x), n ∈ N or Z} of a4

generic point. Using pluripotential methods, we construct a natural invariant canonical5

probability measure of maximum Cohomological Entropy µf such that χ−m2l (fm)∗Ω →6

µf as m → ∞ for each smooth probability measure Ω on V . Then we study the7

main stochastic properties of µf and show that µf is a measure of equilibrium, smooth, er-8

godic, mixing, K-mixing, exponential-mixing and the unique measure with maximum Co-9

homological Entropy. We also conjectured that µf := T+
l ∧ T

−
k−l, dimH(µf ) = Ψhχ(f)10

and dimH(SuppT+
l ) ≥ 2(k − l) + logχ2l

ψl
.11
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1 Introduction1

Let µ be the equilibrium measure associated with an endomorphism f . If ϕ is an observable, (ϕ ◦ fn)n≥02

can be seen as a sequence of dependent random variables. As the measure is invariant, these variables are3

distributed in an identical way, that is, the Borel sets {ϕ ◦ fn < t} have the same measure µ for any fixed4

constant t. We recall some general facts of ergodic theory and probability theory. We refer to [47, 49] for5

the general theory.6

Consider a dynamic system associated with a map g : X → X , measurable against a σ-algebra F on X .
The direct image of a probability measure ν by g is the measure of probability g∗(ν) defined by

g∗(ν)(A) := ν(g−1(A))

for each measurable set A. Likewise, for any positive measurable function ϕ, we have

〈g∗(ν), ϕ〉 := 〈ν, ϕ ◦ g〉.

The measure ν is invariant if g∗(ν) = ν. When X is a compact metric space and g is continuous, the set
M(g) of invariant probability measures is convex, compact and not empty: for any sequence of probability
measures νN , the limit values of

1

N

N−1∑
j=0

(gn)∗(νN )

are invariant probability measures.7

A measurable set A is totally invariant if ν(A \ g−1(A)) = ν(g−1(A) \ A) = 0. An invariant probability8

measure ν is ergodic if any totally invariant set is of measure ν zero or complete . It is easy to show that9

ν is ergodic if and only if ϕ ◦ g = ϕ, for ϕ ∈ L1(ν), then ϕ is constant. Here, we can replace L1(ν) by10

Lp(ν) with 1 ≤ p ≤ +∞. The ergodicity of ν is also equivalent to the fact that it is extremal on M(g). We11

remember Birkhoff’s ergodic theorem, which is the analogue of the law of large numbers for independent12

random variables [49].13

Theorem 1.1 (Birkhoff). Let g : X → X be a measurable map as above. Suppose that ν is an invariant
ergodic probability measure . Let ϕ be a function on L1(ν). Then

1

N

N−1∑
n=0

ϕ(gn(x))→ 〈ν, ϕ〉

almost everywhere in relation to ν.14

When X is a compact metric space, we can apply Birkhoff’s theorem to continuous functions ϕ and deduce
that for ν almost all x

1

N

N−1∑
n=0

δgn(x) → ν,

where δx indicates the mass of Dirac at x. The sum

StN (ϕ) :=

N−1∑
n=0

ϕ ◦ gn

is called Birkhoff sum. Therefore, Birkhoff’s theorem describes the behavior of 1
N StN (ϕ) for an observ-15

able ϕ.16

A stronger notion than ergodicity is the notion of mixing. An invariant probability measure ν is mixing if
for each measurable set A,B

lim
n→∞

ν(g−n(A) ∩B) = ν(A)ν(B).

Clearly, mixing implies ergodicity. It is not difficult to see that ν is mixing if, and only if, for any test
functions ϕ,ψ on L∞(ν) or on L2(ν), we have

lim
n→∞

〈ν, (ϕ ◦ gn)ψ〉 = 〈ν, ϕ〉〈ν, ψ〉.

The Quantity
In(ϕ,ψ) := |〈ν, (ϕ ◦ gn)ψ〉 − 〈ν, ϕ〉〈ν, ψ〉|

2
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is called the correlation on time n of ϕ and ψ. Thus, mixing is equivalent to the convergence of In(ϕ,ψ)
to 0. We say that ν is K-mixing if for each ψ ∈ L2(ν)

sup
‖ϕ‖L2(ν)≤1

In(ϕ,ψ)→ 0.

Note that K-mixing is equivalent to the fact that the σ -algebra F∞ := ∩g−n(F) contains only sets zero1

and complete measures. This is the strongest form of mixing for observables on L2(ν). However, it is of2

interest to obtain quantitative information about the mixing speed for more regular observables, such as3

smooth functions or Hölder continuous.4

Now consider an endomorphism f of degree d ≥ 2 of Pk as above and its equilibrium measure µ. We know
that µ is totally invariant: f∗(µ) = dkµ. If ϕ is a continuous function, so

〈µ, ϕ ◦ f〉 = 〈d−kf∗(µ), ϕ ◦ f〉 = 〈µ, d−kf∗(ϕ ◦ f)〉 = 〈µ, ϕ〉.

We use the obvious fact that f∗(ϕ ◦ f) = dkϕ. Thus, µ is invariant.5

Mixing for measure µ was proved in [45].6

Theorem 1.2. Let f be an endomorphism of degree d ≥ 2 of Pk. So its measure of Greenµ is K-mixing.7

The equilibrium measure µ satisfies remarkable stochastic properties that are quite difficult to obtain in8

the real dynamic systems scenario. Pluripotential methods replace the delicate estimates used in some real9

dynamic systems.10

Consider a dynamic system g : (X,F, ν)→ (X,F, ν) as above, where ν is an invariant probability measure.11

Therefore, g∗ defines a linear operator of norm 1 on L2(ν). We say that g has the Jacobian limited if there12

is a constant κ > 0 such that ν(g(A)) ≤ κν(A) for each A ∈ F.13

When X is a complex mamifold, it is necessarily orientable .14

Let V be a smooth complex compact homogeneous manifold with dimC(V) = k ≥ 1 and Kodaira dimen-15

sion ≤ 0 and f : V −→ V be a dominant surjective meromorphic endomorphism, that is, whose Jacobian16

is not identically null in any local chart. Let ω be a (1, 1)-strictly positive Hermitian form on V. Let ` be a17

prime number.18

Definition 1.3. The i-th Cohomological Degree χi(f) of f is defined as the spectral radius of the pullback19

action f∗ in the cohomology group ` -adic étale Hi
ét(V,Q`) independent of ` by: (cf [3] [6] [1] [4] [5] for20

more details)21

χi(f) = ρ
(
f∗
∣∣
Hiét(V,Q`)

)
.

Definition 1.4. We define the (l, n)-th Cohomological Quotient ξnl (f) of f as follows:22

ξnl (f) =

ï
χ2l−1(f)

χ2l(f)

òn
Definition 1.5. The Cohomological Entropy of f is defined by23

hχ(f) = max
i

logχ2i(f).

Definition 1.6. We say that f is a Cohomological Expanding Mapping when f is dynamically compatible24

(that is (fn)∗ = (f∗)n ) and there is l ∈ {1, ..., k} such that :25

ξ−1
l (f) > 1.

We will write χi for χi(f) and ξnl for ξnl (f) if there is no confusion.26

27

Let (M,F,m) be a probability space and g : M →M be a measurable map that preserves m, that is, m is
g∗ - invariant: g∗m = m. The measure m is ergodic if for any measurable set A such that g−1(A) = A,
we have m(A) = 0 or m(A) = 1. This is equivalent to the property that m is extremal on the convex set
of invariant probability measures (if m is mixing, so it is ergodic). When m is ergodic, Birkhoff’s theorem
implies that if ψ is an observable on L1(m) then

lim
n→∞

1

n

[
ψ(x) + ψ(g(x)) + · · ·+ ψ(gn−1(x))

]
= 〈m,ψ〉

for m - almost all x.28

3
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Suppose now that 〈m,ψ〉 = 0. Then, the previous limit is equal to 0. The theorem of limit central (TLC),
when it occurs, provides the speed of this convergence. We say that ψ satisfies the TLC if there is a constant
σ > 0 such that

1√
n

[
ψ(x) + ψ(g(x)) + · · ·+ ψ(gn−1(x))

]
converges in distribution for the Gaussian random variable N(0, σ) of mean 0 and variance σ. Remember
that ψ is a coboundary whether there is a function ψ′ on L2(µ) such that ψ = ψ′ −ψ′ ◦ g. In that case, it is
easy to see that

lim
n→∞

1√
n

[
ψ(x) + ψ(g(x)) + · · ·+ ψ(gn−1(x))

]
= lim
n→∞

1√
n

[
ψ′(x)− ψ′(gn(x))

]
= 0

in distribution. Therefore, ψ does not satisfy the TLC (sometimes it is said that ψ satisfies the TLC by1

σ = 0).2

The TLC can be deduced from strong mixing, see [11, 46, 48]. In the following result, Et(ψ|Fn) indicates3

the expectation of ψ in relation to Fn, that is, ψ 7→ Et(ψ|Fn) is the orthogonal projection of L2(m) in the4

subspace generated by the measurable functions Fn.5

Theorem 1.7 (Gordin). Consider the decreasing sequence Fn := g−n(F), n ≥ 0, of algebras. Let ψ be a
function with real value on L2(m) such that 〈m,ψ〉 = 0. Suppose that∑

n≥0

‖Et(ψ|Fn)‖L2(m) <∞.

So, the positive number σ defined by

σ2 := 〈m,ψ2〉+ 2
∑
n≥1

〈m,ψ(ψ ◦ gn)〉

is finite. It vanishes if and only if ψ is a coboundary. Furthermore, when σ 6= 0, then ψ satisfies the TLC6

with variance σ.7

Note that σ is equal to the limit of n−1/2‖ψ + · · · + ψ ◦ gn−1‖L2(m). The last expression is equal to8

‖ψ‖L2(m) if the family (ψ ◦ gn)n≥0 is orthogonal on L2(m).9

We refer to [47, 49] for the notion of Lyapunov exponent.10

Definition 1.8. An invariant positive measure is hyperbolic if its Lyapunov exponents are non-zero.11

A function quasi-p.s.h. on V is a function of V on [−∞,∞), which is locally the sum of a plurisubharmonic12

function and a smooth function. For a given (1, 1) -continuous form η, denote by PSH0(η) the set of quasi-13

p.s.h. functions ϕ such that ddcϕ+η ≥ 0 and supV ϕ = 0. Equip PSH0(η) with induced distance of L1(V)14

using natural inclusion PSH0(η) ⊂ L1(V).15

Remember from [22] that a complex measure µ on V is considered PC if each quasi-p.s.h. function is16

µ-integrable and for each sequence (ϕn)n∈N of quasi-p.s.h. functions converging to ϕ on L1 , so that17

ddcϕn + η ≥ 0 for some smooth form η independent of n, we have 〈µ, ϕn〉 → 〈µ, ϕ〉.18

A pluripolar set on V is a subset of V contained on {ϕ = −∞} for some quasi-p.s.h. function ϕ. By [29],19

any locally pluripolar set on V is pluripolar. This result implies in particular that there are abundantly20

quasi-p.s.h singular functions on V. Note that every PC measure has no mass on pluripolar sets.21

22

Next, we will consider the dynamics of f with ξ−1
l (f) > 1.23

Here is the first Main Result.24

Theorem 1.9. Let V be a smooth compact complex homogeneous manifold with dimC(V) = k ≥ 1 and25

Kodaira dimension ≤ 0 and f : V −→ V a Cohomological Expanding Mapping. Let ν be a complex26

measure with density L2k+1 on V such that ν(V) = 1. Let ω be a (1, 1)-strictly positive Hermitian form on27

V. So the sequence 1
χm2l

(fm)∗ν converges weakly to a measure of probability PC µf with Cohomological28

Entropy ≥ logχ2l independent of ν as m → ∞ so that χ−1
2l f

∗µf = µf = f∗µf and if f is holomorphic,29

then for each Hermitian metric ω on V, µf is Hölder continuous on PSH0(ω).30

The Hölder continuity of µf on PSH0(ω) for f holomorphic implies that µf is moderate in the sense that
there are constants ε,M > 0 such that for each ϕ ∈ PSH0(ω), we have∫

V

e−εϕdµf ≤M.

4
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We remember a new class of functions called weakly d.s.h. that replace the role of d.s.h functions1

(differences of two functions quasi-psh) in case of Kähler. These functions enjoy a compactness property2

similar to that of the d.s.h functions and the pull-backs of d.s.h functions by meromorphic maps are weakly3

d.s.h. We obtain the property of exponential mixing of µf4

5

Here is the second Main Result.6

Theorem 1.10. Let V, f, χ2l, µf be as in Theorem 1.9. So µf is exponential mixing in the sense that for
each constant 0 < α ≤ 1, there is a constant Aα such that∣∣〈µf , (ψ ◦ fm)ϕ〉 − 〈µf , ψ〉〈µf , ϕ〉

∣∣ ≤ Aαξmα2l ‖ψ‖∞‖ϕ‖Cα

for each m ≥ 0, each ψ ∈ L∞(V) and every function Hölder continuous ϕ of order α. In particular, µf is7

K-mixing.8

If a real function Hölder continuous ϕ is not a coboundary, i.e, there is not ψ ∈ L2(V) with ϕ = ψ ◦f −ψ,
and satisfies 〈µ, ϕ〉 = 0, then µf satisfies the central limit theorem, which means that there is a constant
σ > 0 such that for each interval I ⊂ R, we have

lim
p→∞

µf

ß
1
√
p

p−1∑
j=0

ϕ ◦ f j ∈ I
™

=
1√
2πσ

∫
I

e−x
2/(2σ2)dx.

The expression 〈µf , (ψ ◦fm)ϕ〉−〈µf , ψ〉〈µf , ϕ〉 is called the Correlation of orderm between the observ-9

ables ϕ and ψ. The measure µf is said mixing if this correlation converges to 0, when m tends to infinity,10

for smooth observables (or equivalently, observables continuous, limited or L2(µf ) ).11

Remember that f∗ϕ is defined by
f∗ϕ(x) :=

∑
y∈f−1(x)

ϕ(y)

where the points on f−1(x) are counted with multiplicities (there are exactly χ2k points). Also define the
Perron-Frobenius Operator by

Λϕ := χ−1
2k f∗ϕ.

As µf is totally invariant, this is the adjoint operator of f∗ on L2(µf ).12

2 First Main Result13

In this section, we will prove the Theorem 1.9. For a current T of order 0 defined in a manifold V,we denote14

by ‖T‖V the mass of T on V. Let’s write . (resp. &) for ≤ (resp. ≥) module a multiplicative constant15

independent of involving terms in inequality.16

Theorem 2.1 (Theorem 1.9 ” First Main Result ”). Let V be a smooth compact complex homogeneous17

manifold with dimC(V) = k ≥ 1 and Kodaira dimension ≤ 0 and f : V −→ V a Cohomological18

Expanding Mapping. Let ν be a complex measure with density L2k+1 on V such that ν(V) = 1. Let19

ω be a (1, 1)-strictly positive Hermitian form on V. So the sequence 1
χm2l

(fm)∗ν converges weakly to a20

measure of probability PC µf with Cohomological Entropy ≥ logχ2l independent of ν as m→∞ so that21

χ−1
2l f

∗µf = µf = f∗µf and if f is holomorphic, then for each Hermitian metric ω on V, µf is Hölder22

continuous on PSH0(ω).23

Let Br be the ball centered on 0 of radius r of Ck, where r ∈ R+. For r := 1 we put B := B1. The24

following result is very important.25

Lemma 2.2. (Classical) Let r ∈ (0, 1). So, for each (1, 1)-closed real current R of order 0 defined on B,26

there is a function UR on L1+1/(2k)(Br) so that the following three properties are verified:27

(i)
R = ddcUR

on Br,28

(ii)
‖UR‖L1+1/(2k)(Br) ≤ cr‖R‖B

for some constant cr independent of R,29

5
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(iii) if (Rn)n∈N is a sequence of (1, 1)-closed real currents of order 0 of uniformly limited mass, converging1

weakly to R on B so URn → UR on L1+1/(2k)(Br).2

Proof. The new point is the estimate for the norm L1+1/(2k) of the potential UR and its continuity on R.3

These properties will be obtained by carefully examining the steps in the usual construction of UR, cf [15, p.4

135] [5], [3], [8], [7] for example.5

LetR be a (1, 1)-real current closed on B. Let x ∈ Ck be the canonical coordinate system. Let ρ be a smooth
function supported compactly on B and

∫
B ρdx = 1. For y ∈ B, let Ay : B → B be the diffeomorphism

defined by

Ay(x) := x+
1

2
(1− ‖x‖)y

for x ∈ B. Since Ay is homotopic to A0 := id through homotopy Hy : [0, 1] × B → B defined by
Hy(t, x) := Aty(x) for t ∈ [0, 1], the average

R′ :=

∫
B

(A∗yR)ρ(y)dy

is a smooth closed form that is cohomologous to R. Precisely, by the formula of homotopy, we have

R−R′ = dL1, where L1 = L1(R) :=

∫
B

(Hy)∗([0, 1]⊗R)ρ(y)dy.

Note that6

‖R′‖L∞(B) . ‖R‖B, ‖L1‖B . ‖R‖B. (2.1)

Since R′ is a smooth closed form on B, we can use an explicit formula (cf [15, p. 13]) to define a smooth
form L2 = L2(R′) on B such that

R′ = dL2, ‖L2‖L∞(B) . ‖R′‖L∞(B).

This combined with (2.1) shows that for L3 := L1 + L2, we have7

R = dL3, ‖L3‖B . ‖R‖B (2.2)

and L3 continuously depends onR. So if (Rn)n∈N is a sequence of (1, 1)-currents of order 0 with uniformly8

limited mass, converging towards R so L3(Rn) is also of uniformly limited mass and converges to L3(R).9

Since R is a (1, 1)-real form, L3 is a 1-real form. We decompose L3 in the sum of one (1, 0)-form and a10

(0, 1)-form as11

L3 = L
(1,0)
3 + L

(0,1)
3 (2.3)

such that L(1,0)
3 = L

(0,1)
3 and L(1,0)

3 , L
(0,1)
3 are currents of order 0. We deduce from (2.2) that12

‖L(0,1)
3 ‖B . ‖R‖B (2.4)

For a bidirectional reason and the fact that R = dL3, we have ∂̄L(0,1)
3 = 0. It is known that there is a13

distribution v defined in an open neighborhood of Br with ∂̄v = L
(0,1)
3 . We will briefly remember how to14

build such a v as a function of L(0,1)
3 . The reference is [15, p. 28].15

Let ρ be the function as above. We can assume ρ ≡ 1 on an open neighborhood of Br. By the Koppelman16

formula, we have17

ρL
(0,1)
3 (x) = ∂̄

∫
B
K1(x, y) ∧ ρ(y)L

(0,1)
3 (y) +

∫
B
K2(x, y) ∧ ∂̄ρ(y) ∧ L(0,1)

3 (y). (2.5)

We do not give explicit formulas here for K1,K2 but we emphasize only that K1,K2 are the products of18

‖x− y‖−2k+1 with smooth forms on Ck.19

6
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Denote by I1, I2 the first and second integrals, respectively, on the right side of (2.5). We have

∂̄I1 + I2 = ρL
(0,1)
3

which is equal to L(0,1)
3 on Br.1

By the type of singularity ofK1 and the fact thatL(0,1)
3 is of order 0,we see that I1 is a form with coefficients2

in L1+1/(2k)(B) with3

‖I1‖L1+1/(2k)(B) . ‖L
(0,1)
3 ‖B . ‖R‖B (2.6)

by (2.4). On the other hand, as ∂̄ρ ≡ 0 on an open neighborhood of Br, the current I2 is smooth on Br′ for4

some r′ > r. Following exactly the arguments in [15, p. 29], we get a smooth function I3 on Br′ for some5

r′ > r such that I2 = ∂̄I3 on Br and6

‖I3‖L∞(Br) ≤ ‖L
(0,1)
3 ‖B . ‖R‖B (2.7)

by (2.4) and I3 : R 7→ I3(R) ∈ L∞(Br) is continuous. So if v := (I1 + I3) then

L
(0,1)
3 = ∂̄v

on Br. This together with (2.3) gives
L3 = ∂̄v + ∂v̄.

We deduce from this and (2.2) that
R = dL3 = ∂∂̄(v − v̄).

Consequently UR := 2π Im v satisfies R = ddcUR (remember that ddc = (i/π)∂∂̄) and

‖UR‖L1+1/(2k)(Br) . ‖I1‖L1+1/(2k)(Br) + ‖I3‖L1+1/(2k)(Br) . ‖R‖B
by (2.6) and (2.7).7

It remains to prove the property of continuity of UR. We saw that I3, L3 are continuous on R. We just need
to check this property to I1. Let (Rn) be the sequence as defined above. Let’s show that I1(Rn) → I1(R)

on L1+1/(2k)(B). For the continuity property above of L3, we have that Sn := ρL
(0,1)
3 (Rn) is of uniformly

limited mass and converges to S := ρL
(0,1)
3 (R) when n→∞. Write

K1(x, y) = ‖x− y‖−2k+1K ′1(x, y),

where K ′1(x, y) is a smooth form. For every small constant ε > 0, let

K1,ε(x, y) := max{‖x− y‖, ε}−2k+1K ′1(x, y)

which is a continuous form. Since ε → 0, we have K1,ε(·, y) → K1(·, y) on L1+1/(2k)(B) uniformly on
y ∈ B. So when n→∞,∫

{y∈B}

(
K1,ε(x, y)−K1(x, y)

)
∧
(
Sn(y)− S(y)

)
→ 0

on L1+1/(2k)(B) because the mass of Sn is uniformly limited. On the other hand,∫
{y∈B}

K1,ε(x, y) ∧
(
Sn(y)− S(y)

)
converges uniformly to 0 as ε is fixed because K1,ε is continuous. We deduce that I1(Rn) → I1(R) on8

L1+1/(2k)(B). This completes the proof. �9

Definition 2.3. Let V be a complex manifold. A function of V to [−∞,∞) is said function quasi-p.s.h.10

if it can be written locally as the sum of a plurisubharmonic function (p.s.h.) and other smooth. For each11

(1, 1)-continuous form η, a function quasi-p.s.h. ϕ is η-p.s.h. if ddcϕ+ η ≥ 0. Through the partition of the12

unit , each function quasi-p.s.h. is η-p.s.h. for some smooth form η. For a given form η, denote by PSH(η)13

the set of functions quasi-p.s.h. ϕ for which ddcϕ+ η ≥ 0.14

Definition 2.4. A locally integrable function ϕ on V is said weakly d.s.h. if ddcϕ is a current of order 0 on15

V. Let W be the complex vector space of all functions weakly d.s.h. on V.16

7
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Definition 2.5. Every function quasi-p.s.h is weakly d.s.h.. A subset of V is a pluripolar set if it is contained1

on {ϕ = −∞} for some function quasi-p.s.h. ϕ. If V is compact, each locally pluripolar set is pluripolar2

by [29]. We use a specific case of this result: each analytic proper subset of a compact manifold V is3

pluripolar, cf Lemma 2.11 above.4

Now consider that V is compact. Let µ0 be a smooth probability measure on V. We use this measure to5

define norms Lp on V. For ϕ ∈W, put6

‖ϕ‖W :=

∣∣∣∣ ∫
V

ϕdµ0

∣∣∣∣+ ‖ddcϕ‖V, (2.8)

where ‖·‖V is the mass of a current on V. Let’s write from now ‖·‖ instead of ‖·‖V if there is no confusion.7

The function ‖ · ‖W is a norm on W because if ddcϕ = 0 then ϕ must be a constant. The norm ‖ · ‖W8

is similar to the norm of the space of functions d.s.h. in case of Kähler introduced by Dinh-Sibony [22].9

However, we do not know whether these two norms are equivalent in this case.10

We introduce the topology on W in the following way: we say that ϕn ∈ W converges to ϕ ∈ W when11

n→∞ if ϕn → ϕ as current and ‖ϕn‖W is uniformly limited.12

We have the following compactness result.13

Lemma 2.6. Let V be a compact complex manifold . There is a constant c so that for each function weakly14

d.s.h ϕ on V with
∫
V
ϕdµ0 = 0, we have15

‖ϕ‖L1+1/(2k)(V) ≤ c‖ddcϕ‖V. (2.9)

Furthermore, given a positive constant A, the set W0 of functions weakly quasi-p.s.h. ϕ with
∫
V
ϕdµ0 = 016

such that ‖ddcϕ‖ ≤ A is compact on L1+1/(2k)(V).17

A direct consequence of Lemma 2.6 is that if ϕn → ϕ on W then ϕn → ϕ on L1+1/(2k). In case of Kähler,18

a similar version of inequality (2.9) for functions d.s.h. with norm Lp in place of norm L1+1/(2k) and19

‖ · ‖∗ in place of ‖ · ‖V was proven on [22] using cohomological tools for functions d.s.h. . His proof uses20

cohomological arguments that are not applicable to prove (2.9) for weakly functions quasi-p.s.h. .21

Proof. Consider a function weakly quasi-p.s.h. ϕ with ‖ddcϕ‖ ≤ A. Let (Wj) be an open (finite) cover of22

V where the Wj are local charts of V biholomorph to the unit ball of Ck. Since ‖ddcϕ‖ ≤ A, by Lemma23

2.2, we have τj ∈ L1+1/(2k)(Wj) for which ddcτj = ddcϕ on Wj and24

‖τj‖L1+1/(2k)(Wj) . A. (2.10)

Therefore, ϕ− τj can be represented by a pluriharmonic function on Wj . For simplicity, we identified this25

function with (ϕ− τj). We deduce that ϕ ∈ L1+1/(2k)(V).26

We now assume, on the contrary, that (2.9) is not valid, it means that there is a sequence of non-null functions
weakly quasi-p.s.h. ϕn with

∫
V
ϕndµ0 = 0 and

∞ > ‖ϕn‖L1+1/(2k)(V) ≥ n‖ddcϕn‖V.
Multiplying ϕn by a positive constant, we can assume that27

‖ϕn‖L1+1/(2k)(V) = 1. (2.11)

So we have28

‖ddcϕn‖ ≤ 1/n. (2.12)
Note that we still have

∫
V
ϕndµ0 = 0. Let τnj be the function τj for ϕn in place of ϕ. Put Tn := ddcϕn.29

These currents of order 0 are of uniformly limited mass and converge to 0 by (2.12). The Lemma 2.2 tells30

us that τnj converges to 0 on L1+1/(2k)(W ′j), for each W ′j b Wj . We can also provide that (W ′j) continue31

to be a cover of V. For simplicity, we can assume that W ′j = Wj for each j.32

Now remember that ϕn − τnj is pluriharmonic on Wj . The last function is of L1+1/(2k)-norm limited on
Wj because of (2.10) and (2.11). The average equality for pluriharmonic functions implies that (ϕn − τnj )

is of Cl-norm uniformly limited on compact subsets of Wj on n ∈ N for each l ∈ N. We deduce that,
extracting a subsequence, we can assume that ϕn − τnj converging uniformly to a pluriharmonic function
τ∞j on compact subsets of Wj when n→∞. Since ‖τnj ‖L1+1/(2k)(Wj) → 0, we get that

ϕn → τ∞j em L1+1/(2k)(Wj).

8
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This produces this function τ∞ := τ∞j on Wj for each j is a well-defined pluriharmonic function on V.1

Since V is compact, τ∞ is a constant. This combined with
∫
V
ϕndµ0 = 0 gives τ∞ = 0. We proved that2

ϕn → 0 on L1+1/(2k)(V), consequently ‖ϕn‖L1+1/(2k) → 0, a contradiction. Therefore, (2.9) is verified.3

To prove the second desired statement, we again use the function τj above. We have that ϕ − τj is pluri-4

harmonic on Wj and by (2.9), the L1+1/(2k)-norm of ϕ is also . A. Then the L1+1/(2k)-norm of the5

pluri-harmonic function (ϕ− τj) is . A. It follows that its Cl-norm is also . A . Therefore, we can extract6

a convergent subsequence of (ϕ− τj) for ϕ ∈W on Cl. This combined with the L1+1/(2k) continuity of τj7

on T implies the desired statement. This completes the proof.8

�9

We equip the vector space B of Borel’s measurable functions on V with the pointwise convergence topology:10

hn → h if hn converges pointwise to h at almost all points (with respect to the Lebesgue measure). Let P11

be a continuous linear endomorphism of the last vector space. Define WP to be the set of ϕ ∈W for which12

Pϕ ∈W.13

Lemma 2.7. There is a constant c such that14

‖Pϕ‖L1+1/(2k) ≤ c
(
‖ϕ‖W + ‖ddc(Pϕ)‖

)
, (2.13)

for any ϕ ∈WP . In particular, there is a constant c′ such that15

‖Pϕ‖L1+1/(2k) ≤ c
(
‖ddcϕ‖+ ‖ddc(Pϕ)‖

)
(2.14)

for each ϕ ∈ WP ∩ W0. Furthermore, if ϕn ∈ WP ∩ W0 → ϕ as currents when n → ∞ such that16 (
‖ddcϕn‖+ ‖ddc(Pϕn)‖

)
are uniformly bounded, then Pϕn → Pϕ on L1+1/(2k).17

Proof. The Inequality (2.14) is a direct consequence of (2.13) and of Lemma 2.6. Now suppose there is a18

sequence (ϕn) ⊂WP for which19

‖Pϕn‖L1+1/(2k) = 1, ‖ϕ‖W + ‖ddc(Pϕn)‖ ≤ 1/n. (2.15)

Applying compactness property in Lema 2.6 for the sequence (Pϕn)n∈N, we see that by extracting a sub-20

sequence from ϕn if necessary, the sequence Pϕn converges on L1+1/(2k) for a function weakly d.s.h ϕ′∞.21

Consequently,22

‖ϕ′∞‖L1+1/(2k) = 1, ‖ddcϕ′∞‖ = 0. (2.16)
Therefore ϕ′∞ is a constant. As the convergence on L1 implies the convergence almost always of a subse-23

quence, we can also assume that Pϕn converges almost always to ϕ′∞.24

On the other hand, the inequality of (2.15) allows us to use the compactness property in the Lemma 2.625

again for (ϕn). Therefore, we can extract a subsequence of (ϕn) converging to ϕ∞ := 0 on L1+1/(2k) and26

almost always. Thus Pϕn converges almost always to Pϕ∞ because of the continuity of P. It follows that27

ϕ′∞ = Pϕ∞ = 0, note here P (0) = 0 by the linearity of P. This is a contradiction because of (2.16). Thus28

(2.13) follows. The last desired statement follows directly from the arguments above. This completes the29

proof.30

�31

Let a ∈ C∗, r be a constant on (0, |a|) and δ > 0 a constant. Assume that P (1) = a, where 1 is the constant
function equal to 1 on V. Define W∞P,r,δ to be the set of all ϕ ∈ B such that Pnϕ ∈W for each n ≥ 0 and

‖ddc(Pnϕ)‖ ≤ δrn

for each n ≥ 0, here P 0 denotes the identity map. By the linearity of P, every constant function belongs to
W∞P,r,δ. We equip W∞P,r,δ with the topology induced from there on W. Note that W∞P,r,δ is closed on W and

r−mPm(W∞P,r,δ) ⊂W∞P,r,δ

for every positive integer m. So W∞P,r,δ ∩W0 is compact and Pm(W∞P,r,δ) is contained in the complex32

vector subspace ‹W∞P,r,δ of W generated by W∞P,r,δ.33

Proposition 2.8. There is a continuous linear functional function µP : ‹W∞P,r,δ → C such that for each34

complex measure ν with density L2k+1 on V, ν(V) = 1 and for each ϕ ∈ ‹WP,r,δ, we have35 〈
a−n(Pn)∗ν, ϕ

〉
→ 〈µP , ϕ〉. (2.17)

9
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Here for Q : B→ B, by definition, 〈Q∗ν, ϕ〉 := 〈ν,Qϕ〉 for ϕ ∈ B such that Qϕ is ν-integrable.1

Proof. Remember that µ0 is a form of smooth probability volume on V. We just need to construct µP on2

W∞P,r,δ and prove (2.17) for ϕ ∈ W∞P,r,δ. The extension of µP to ‹W∞P,r,δ is done automatically using the3

linearity of (Pn)∗ν and (2.17).4

Let ϕ ∈W∞P,r,δ. Put b0 :=
∫
X
ϕdµ0 and ϕ0 := ϕ− b0. We define two sequences ϕn, bn as follows. Put

bn = bn(ϕ) :=

∫
X

(Pϕn−1)dµ0, ϕn := Pϕn−1 − bn

for n ≥ 1. We have r−nϕn ∈ W0 ∩W∞P,r,δ and ddc(Pmϕn) = ddc(Pm+nϕ) for each n,m. By Lemma5

2.7, we have6

‖ϕn‖L1+1/(2k) ≤ c
(
(‖ddc(Pϕn−1)‖+ ‖ddcϕn−1‖

)
, |bn| ≤ c

(
‖ddc(Pϕn−1)‖+ ‖ddcϕn−1‖

)
(2.18)

for some constant c independent of n, ϕ. It follows that7

‖ϕn‖L1+1/(2k) ≤ c
(
‖ddc(Pnϕ)‖+ ‖ddc(Pn−1ϕ)‖) ≤ cδ(r + 1)rn−1, |bn| ≤ cδ(r + 1)rn−1 (2.19)

for n ≥ 1. Since P (1) = a we have P (bn) = abn for each n. Using this, it gives8

a−nPnϕ = b0 + a−nPnϕ0 = b0 + a−nPn−1(Pϕ0) = b0 + a−1b1 + a−nPn−1ϕ1 (2.20)

= · · · = b0 + a−1b1 + · · · a−nbn + a−nϕn. (2.21)

Put b′n = b′n(ϕ) := b0 + a−1b1 + · · · a−nbn that converges to a number b′∞ (depending on ϕ) by (2.19) and
the fact that |a| > r. We deduce from (2.20) that

|a−nPnϕ− b′n| ≤ |a|−n|ϕn|.

This combined with the first inequality of (2.19) implies that a−nPϕ converges to b′∞ on L1+1/(2k). Pre-9

cisely, we have10

‖a−nPnϕ− b′n‖L1+1/(2k) . δ|a|−nrn. (2.22)

Since ν(X) = 1, we have
〈a−n(Pn)∗ν, ϕ〉 − b′n = 〈ν, a−nPnϕ− b′n〉.

Using this, (2.22) and Hölder’s inequality imply that 〈a−n(Pn)∗ν, ϕ〉 converges to b′∞ = b′∞(ϕ) because11

ν has L2k+1 density. Define 〈µP , ϕ〉 := b′∞(ϕ) that is independent of ν. Then, we obtain the desired12

convergence for µP .13

Consider a sequence ϕ̃m → ϕ on W∞P,r,δ. Let b̃nm, ϕ̃nm respectively the bn and ϕn for ϕ̃m in place of ϕ.14

By the last statement of the Lemma 2.7, b̃nm → bn when m → ∞ for each n and (2.19) still applies to15

b̃nm, ϕ̃nm in place of bn, ϕn. We infer that b̃′nm → b′n and a−nϕ̃nm → 0 on L1+1/(2k) when m → ∞.16

Thus, 〈µP , ϕ̃m〉 → 〈µP , ϕ〉 when m→∞. In other words, µP is continuous. This completes the proof.17

�18

Let V be a complex compact manifold and f be a meromorphic self-map on V. Denote by Γ the graph of f19

on V×V and π1, π2 the restrictions to Γ of natural projections of V×V for the first and second components20

respectively.21

Let Φ be a form with measurable coefficients on V. We say that Φ ∈ L1 if its coefficients are L1 functions22

(in relation to the Lebesgue measure on V). If Ω is a dense open subset of Zariski of V such that π2 is a23

unrestricted cover on Ω, the form f∗Φ := (π2|π−1
2 (Ω))∗(π

∗
1Φ) is a measurable form on Ω. Consequently f∗Φ24

is a measurable form on V independent of Ω. We can verify that f∗ : B→ B is continuous. Consequently,25

f∗ is an example of the map P considered above.26

If f∗Φ ∈ L1, then we can define f∗Φ to be a current of order 0 induced by f∗Φ on V. This definition is27

independent of the choice of Ω. Note that the pull-back by f of smooth functions or smooth forms is always28

on L1. The following is similar to the results on [9, 23].29
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Lemma 2.9. For each quasi-p.s.h. function ϕ on V, we have f∗ϕ ∈ L1 and if ddcϕ + η ≥ 0 for some1

(1, 1)-continuous form η > 0, then ddc(f∗ϕ) + f∗η ≥ 0. In particular,2

(fn)∗ϕ ∈Wf∗ ∩W. (2.23)

The inclusion (2.23) explains the crucial roles of Wf∗ ,W in this study.3

Proof. Let σ : Γ′ → Γ be a desingularization of Γ. Let Ω be as above. Put π′j := πj ◦ σ for j = 1, 2. Since
ϕ is quasi-p.s.h., ϕ ◦ π′1 is also. Thus, ϕ ◦ π1 = σ∗(ϕ ◦ π′1) is on L1(Γf ). Since

‖f∗ϕ‖L1(Ω) = ‖(π2)∗(ϕ ◦ π1)‖L1(Ω) . ‖ϕ ◦ π1‖L1(Γ),

we get the first desired statement.4

By [2], [4] and the fact that η > 0, there is a decreasing sequence of smooth functions quasi-p.s.h ϕn
converging pointwise to ϕ such that ddcϕn + η ≥ 0 for each n. By Lebesgue’s dominated convergence
theorem, the sequence ϕn ◦ π′1 converges on L1 to ϕ ◦ π′1. It follows that the sequence of positive smooth
forms ddc(ϕn ◦ π′1) + π′∗1 η converges weakly to ddc(ϕ ◦ π′1) + π′∗1 η. Thus, the last current is also positive.
Now note that

(π′2)∗(dd
c(ϕ ◦ π′1) + π′∗1 η) = ddc

(
(π′2)∗π

′∗
1 ϕ
)

+ (π′2)∗π
′∗
1 η = ddc

(
(π2)∗π

∗
1ϕ
)

+ (π2)∗π
∗
1η

because π∗1ϕ and π∗1η have no mass in zero Lebesgue measure sets. Therefore ddc(f∗ϕ) + f∗η ≥ 0.5

Note that f∗η has finite mass on V. We infer that f∗ϕ ∈W. In other words, ϕ ∈Wf∗ ∩W. Applying this to6

fn instead of f and using the formula that (fn)∗ϕ = f∗(f
n−1)∗ϕ as functions in some suitable open dense7

subset of V, we get (2.23). This completes the proof.8

�9

Lemma 2.10. Let V be a compact complex manifold of dimension k and f : V −→ V be a Cohomological10

Expanding Mapping. Let ϕ be a function quasi-p.s.h. on V with ddcϕ+ η ≥ 0 for some (1, 1)-continuous11

form η. So there is a constant A independent of ϕ, η for which12

‖ddc(fn)∗ϕ‖ ≤ Aχn2l−1‖η‖L∞ (2.24)

for each n ≥ 1.13

Proof. Replacing η by a strictly positive smooth form that dominates it, we can assume that η > 0. Let ω
be a metric of Gauduchon on V, this means that ω is a Hermitian metric and ddcωk−1 = 0, cf [?]. Let Γn
be the graph of fn and π1,n, π2,n the natural maps of Γn for the first and second components of V× V. By
Lemma 2.9, the current ddc(fn)∗ϕ+ (fn)∗η is positive. So, using ddcωk−1 = 0 gives

‖ddc(fn)∗ϕ+ (fn)∗η‖ . 〈ddc(fn)∗ϕ+ (fn)∗η, ω
k−1〉 = 〈(fn)∗η, ω

k−1〉 . 〈(fn)∗ω, ω
k−1〉

This combined with the definition of χ2l−1(f) gives

‖ddc(fn)∗ϕ+ (fn)∗η‖ ≤ A(χ2l−1)n‖η‖L∞ .

The desired inequality follows immediately. This completes the proof.14

�15

We come now to the end of the proof of the first main result.16

End of Proof of Theorem 1.9. ξ−1
l (f) > 1. Put

P := f∗, a := χ2l, r := χ2l−1, δ := A,

where A is the constant on Lemma 2.10. Let ϕ be a function quasi-p.s.h. whith ddcϕ + η ≥ 0 for some17

(1, 1)-continuous form η > 0 such that ‖η‖L∞ ≤ 1. We have P (1) = a and ϕ ∈ W∞P,r,δ by Lemma 2.10.18

Every function quasi-p.s.h. is on ‹W∞P,r,δ. Since ν does not have mass in proper analytical subsets of V, Note19

that20

〈(fm)∗ν, ϕ〉 = 〈ν, (fm)∗ϕ〉 = 〈ν, Pmϕ〉 (2.25)

11
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because we only need to consider integrals on a dense open subset of Zariski of V. Applying Proposition
2.8 for P , we get a continuous functional µP on ‹W∞P,r,δ such that

〈χ−m2l (fm)∗ν, ϕ〉 → 〈µP , ϕ〉,

for each ϕ ∈ ‹W∞P,r,δ. Choosing ν ≥ 0, we see that 〈µP , ϕ〉 ≥ 0 if ϕ ≥ 0. Let µf be the probability measure1

on V defined by 〈µf , ϕ〉 := 〈µP , ϕ〉 for each smooth function ϕ. Remember here that smooth functions are2

quasi-p.s.h. on V. Let’s prove that µf = µP for each function quasi-p.s.h. ϕ.3

Consider a sequence of smooth functions quasi-p.s.h ϕ′m with ddcϕ′m + η ≥ 0 decreasing to ϕ, we have4

〈µf , ϕ′m〉 = 〈µP , ϕ′m〉 and 〈µf , ϕ′m〉 → 〈µf , ϕ〉 by Lebesgue’s monotonous convergence theorem. This5

combined with the continuity of µP gives 〈µf , ϕ〉 = 〈µP , ϕ〉. So we have6

lim
m→∞

〈χ−m2l (fm)∗ν − µf , ϕ〉 = 0 (2.26)

for each function quasi-p.s.h. ϕ on V.7

As the functions quasi-p.s.h are µf - integrable, µf has no mass on pluripolar sets. By Lemma 2.11 below,8

proper analytic subsets of V are pluripolar. This implies that µf has no mass on proper analytic subsets of9

V. We deduce that the pull-back f∗µf is well defined. Here we just take the pull-back of µf on an open10

subset of Zariski Ω of V where π2 is a non-branched cover. It can be seen that this definition is independent11

of the choice of Ω and if (Φm)m∈N is a sequence of positive measures without mass on the proper analytical12

subsets of V and converging to µf , then f∗Φm converges to f∗µf because the mass of f∗Φm converges to13

that of f∗µf , cf for example [28, Lema 3.6]. The Equality14

χ−1
2l f

∗µf = µf (2.27)

is obtained by applying the pull-back f∗ for convergence χ−m2l (fm)∗ν → µf , where ν is a smooth measure15

of probability. Once we have f∗f∗ = χ2l on Borel’s measurable functions, we get f∗µf = µf , in other16

words, µf is invariant by f .17

Let If be the indeterminacy set of f. Put Z := ∪m∈Zfm(If ). The measure µf has no mass on Z. The18

cohomological entropy of µf is by definition 1V\Zµf in relation to f |V\Z . For Parry’s inequality [24, 27],19

using f∗µf = χ2lµf , we deduce that the cohomological entropy of µf is at least logχ2l.20

Suppose now that f is holomorphic. To prove that µf is Hölder continuous on PSH(ω), we use a known21

idea of [24]. Without loss of generality, we can assume that ‖ω‖L∞ ≤ 1. Let ϕ,ψ be two functions quasi-22

p.s.h. on PSH(ω). Remember that they are on W∞P,r,δ.23

Let bn(ϕ), bn(ψ) be as in the proof of the proposition 2.8. Let Jf be the Jacobian of f. We have
‖f∗ϕ− f∗ψ‖L1 = sup

‖h‖L∞≤1

|〈f∗ϕ− f∗ψ, hµ0〉| = sup
‖h‖L∞≤1

|〈ϕ− ψ, (h ◦ f)f∗µ0〉|

what is
≤ ‖Jf‖L∞‖ϕ− ψ‖L1 .

Applying the latest inequality to fn in place of f gives
|bn(ϕ)− bn(ψ)| ≤ 2n‖Jf‖nL∞‖ϕ− ψ‖L1 .

Put

A1 :=

M+1∑
n=0

χ−n2l [bn(ϕ)− bn(ψ)], A2 :=

∞∑
n=M+1

χ−n2l [bn(ϕ)− bn(ψ)].

Using (2.20) gives

〈µf , ϕ− ψ〉 = A1 +A2, |A1| ≤
M∑
n=0

χ−n2l 2n‖Jf‖nL∞‖ϕ− ψ‖L1 , |A2| . (χ2l−1)Mχ−M2l .

Consider the case where 2‖Jf‖L∞ ≤ χ2l. We have |A1| ≤ M‖ϕ − ψ‖L1 . Choosing M to be the smallest
integer for which M ≥ − log ‖ϕ− ψ‖L1/ log τ, where τ := χ2l/(χ2l−1), we get that

|〈µf , ϕ− ψ〉| ≤ |A1|+ |A2| . ‖ϕ− ψ‖1−εL1

which implies that µf is Hölder continuous in that case. It remains to treat the case 2‖Jf‖L∞ ≥ χ2l. We
have

|A1| ≤M2Mχ−M2l ‖Jf‖
M
L∞‖ϕ− ψ‖L1 + τ−M .

Choose M := − log ‖ϕ− ψ‖L1/ log(2χ−1
2l τ‖Jf‖L∞). We see that

|A1|+ |A2| . − log ‖ϕ− ψ‖L1‖ϕ− ψ‖log τ/ log(2χ−1
2l τ‖Jf‖L∞ )

L1 .

Consequently, µf is also Hölder continuous in this case. This completes the proof. �24
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Now we would like to say something about Theorem 1.10. If we try to imitate the arguments in the proof1

of [22, Teorema. 1.3] to prove Theorem 1.10, we are led to estimate |〈µf , |ϕn|〉|. The measure µf still2

satisfies the property that for each ω-p.s.h. function ϕ with supV ϕ = 0 is of L1(µf )-norm uniformly3

limited, cf [22, Proposition 2.3]. But unlike the case of Kähler, we don’t know if ϕn is the difference of two4

ω-p.s.h functions. So this explains why we cannot directly apply the approach in [22] to obtain a correlation5

decay for µf .6

Lemma 2.11. Any proper analytic subset V of a complex compact manifold V is a pluripolar set on V.7

Proof. We use here the idea in [22] where the authors prove the same result when V is Kähler. Suppose8

now that V is smooth and codimV ≥ 2 (otherwise the problem is trivial). Let σ : V̂→ V be the explosion9

of V along V. Denote by “V the exceptional hypersurface.10

Let ω be a positive-defined Hermitian form on V. Let ω̂h be a form of Chern ofO(−“V ) whose restriction to11

each fiber of “V ≈ P(E) is strictly positive. Choosing ω if necessary, we can assume that ω̂ := σ∗ω+ ω̂h >12

0. Since σ∗ω̂h = σ∗ω̂ − ω, the closed current σ∗ω̂h is quasi positive. Thus, there is a function quasi-p.s.h.13

ϕ on V̂ such that14

σ∗ω̂h = ddcϕ+ η (2.28)
for some smooth closed form η.Multiplying ω̂h by a strictly positive constant, we have σ∗σ∗ω̂h = ω̂h+[“V ].15

Thus
∣∣ϕ ◦ σ(x̂)− log dist(x̂,“V )| is a limited function on V̂. As a consequence,16

|ϕ(x)− log dist(x, V )| . 1 (2.29)
on compact subsets of V. Consequently, V is contained in {ϕ = −∞}. Thus V is pluripolar in this case.17

By the construction above, we can build a Hermitian metric in the explosion V̂ of V alongo V as the sum18

of a pull-back of a Hermitian on V and an appropriate form of Chern of O(−“V ). Thus, if σ′ : V̂′ → V is a19

composition of explosions along smooth submanifolds, so there’s a form (1, 1) closed and smooth η′ on V̂′20

and a Hermitian metric ω on V such that ω̂′ = σ′∗ω + η′ is a Hermitian metric on V̂′.21

Now consider the general situation where V is an analytical subset of V. As a finite union of pluripolar22

sets is again pluripolar, it is enough to prove that the regular part RegV of V is a pluripolar set because23

we can write V as a finite union of the regular parts of suitable analytical subsets of V. By Hironaka’s24

desingularization, there is a composition σ′ : V̂′ → V of explosions along smooth submanifolds that do not25

cross RegV (or their inverse images) so that the strict transformation “V ′ of V is smooth.26

Let ω̂′, ω, η be as above. For the above arguments, “V ′ ⊂ {ϕ̂′ = −∞} for some function quasi-p.s.h. ϕ̂′ on
V̂′ and ddcϕ̂′ + ω̂′ ≥ 0. Put S := σ′∗(dd

cϕ̂′ + η′) which is a (1, 1) - current closed on V and S + ω ≥ 0.
We can write

S = ddcϕS + ηS , σ∗η
′ = ddcψ + η

for some smooth closed forms ηS , η. We have
ddcϕS + ηS + ω ≥ 0, ddcψ + η + ω ≥ 0.

Thus ϕS , ψ are quasi-p.s.h. functions on V. In addition, we also have
ϕS = σ′∗(ϕ̂

′) + ψ + a smooth function
on an open neighborhood of RegV in which σ′ is biholomorph. Consequently, RegV ⊂ {ϕ′S = −∞}.27

This completes the proof.28

�29

3 Second Main Result30

In this section, we prove the Theorem 1.10. Our idea is to consider suitable test functions in the Sobolev31

space W 1,2. This approach is inspired by [21].32

Fix a smooth volume form µ0 on V and we use this form to define the norm in space L2(V). Let W 1,2 be33

the function space with real value ϕ ∈ L2(V) such that dϕ has L2 coefficients. Remember the following34

inequality of Poincaré-Sobolev: for ϕ ∈W 1,2 with
∫
V
ϕdµ0 = 0, we have35

‖ϕ‖L2 ≤ c‖dϕ‖L2 , (3.1)
for some constant c independent of ϕ, cf for example [26] or [25]. Note that the term ‖dϕ‖2L2 is comparable36

to the mass of the positive current i∂ϕ ∧ ∂̄ϕ. We have the following lemma.37

13
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Lemma 3.1. ( [21, Pro. 3.1]) Let I be a compact subset of V (2k − 1)- Hausdorff’s zero dimensional
measure . Let ϕ be a function with real value L1

loc(V\I). Suppose that the coefficients of dϕ are in L2(V\I).
Then ϕ ∈ W 1,2 and there is a compact subset M of V\I and a constant c > 0 both independent of ϕ such
that

‖ϕ‖L1(V) ≤ c(‖ϕ‖L1(M) + ‖dϕ‖L1(V)).

Definition 3.2. Let W 1,2
∗,f be the subset of W 1,2 consisting of ϕ such that there are m1 ∈ N, a (1, 1)-1

continuous form η and a function η-p.s.h. ψ satisfying2

i∂ϕ ∧ ∂̄ϕ ≤ ddc
(
(fm1)∗ψ

)
+ (fm1)∗η (3.2)

as currents. A size representative of ϕ is m := (m0,m1), where m0 is an upper limit of ‖η‖L∞ .3

If V is Kähler, W 1,2
∗,f coincides with the space W 1,2

∗ considered in [21] that is independent of f . In this4

context, the space W 1,2
∗ is studied in detail in [10] and used in [16] for the study of correspondences on5

Riemann surfaces with two equal dynamic degrees. Let ξ−1
l (f) > 1. We have the following observation.6

Lemma 3.3. Let ϕ ∈W 1,2
∗,f and m = (m0,m1) be a size representative of ϕ. So we have

‖dϕ‖L2 ≤ Am1/2
0 (χ2l−1)m1/2

for some constant A independent of ϕ.7

Proof. Let η be as on (3.2). Let ω be a Hermitian metric on V with ddcωk−1 = 0. Testing ddc
(
(fm1)∗ψ

)
+8

(fm1)∗η with this form, we see that the norm of ddc
(
(fm1)∗ψ

)
+ (fm1)∗η is equal to

∫
V

(fm1)∗η ∧ ωk−19

which is limited by Am0(χ2l−1)m1 for some constant A independent of η,m0,m1. The desired inequality10

then follows. This completes the proof.11

�12

Let ϕ ∈W 1,2
∗,f . Define ϕ+ := max{ϕ, 0} a ϕ− := max{−ϕ, 0}. Consider a Lipschitz function χ : R→ R.

We have ∂(χ ◦ ϕ) = (χ′ ◦ ϕ)∂ϕ. This can be seen using a sequence of smooth functions, converging to ϕ
on W 1,2. We deduce that

i∂(χ ◦ ϕ) ∧ ∂̄(χ ◦ ϕ) = (χ′ ◦ ϕ)2i∂ϕ ∧ ∂̄ϕ.
Consequently, χ ◦ ϕ ∈ W 1,2

∗,f . In particular, let χ(t) := |t|, max{t, 0} or max{−t, 0} for t ∈ R, we get the13

following crucial property.14

Lemma 3.4. For each ϕ ∈ W 1,2
∗,f , if m = (m0,m1) is a representative of size of ϕ, then m is also a size15

representative of |ϕ|, ϕ+ and ϕ−.16

We already know that the pushforward of a function quasi-p.s.h. by f is a function weakly d.s.h. The17

following result, which explains the role of W 1,2
∗ in this study, provides a more accurate description in the18

case of functions quasi-p.s.h limited.19

Lemma 3.5. Each function quasi-p.s.h limited is onW 1,2
∗,f and f∗ preservesW 1,2

∗,f . In addition, for each ϕ ∈20

W 1,2
∗,f , if m = (m0,m1) is a size representative of ϕ, then m′ := (dkm0,m1 + 1) is a size representative21

of f∗ϕ and22

‖f∗ϕ‖L2 ≤ c(‖ϕ‖L1 + ‖d(f∗ϕ)‖L2) (3.3)
for some constant c independent of ϕ.23

Proof. Let ϕ be a function quasi-p.s.h limited and f : V → V a dominant meromorphic map. Using the
identity

2i∂ϕ ∧ ∂̄ϕ = i∂∂̄ϕ2 − 2ϕi∂∂̄ϕ

we see that there is a (1, 1)-continuous form η and a function η-p.s.h. ψ for which i∂ϕ ∧ ∂̄ϕ ≤ ddcψ + η.24

Consequently ϕ ∈W 1,2
∗,f .25

Now let ϕ be an arbitrary element of W 1,2
∗,f . Let η and ψ be such that (3.2) holds. Fix a dense open sub-26

set of Zariski Ω of V in which f∗ϕ, (fm1)∗ψ, (f
m1)∗η are well-defined functions or forms and π1 is an27

unbranched cover on f−1(Ω). We have f∗ϕ ∈ L1
loc(Ω) and28

‖f∗ϕ‖L1(K) ≤ c‖ϕ‖L1 , (3.4)

14
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for any compact K on Ω and some constant c independent of ϕ. Note that V\Ω is a proper analytical subset
of V, Thus , is of Hausdorff (2k− 1)-dimensional and zero measure. On Ω, by Cauchy-Schwarz inequality,
we have

i∂(f∗ϕ) ∧ ∂̄(f∗ϕ)& ≤ χ2lf∗(i∂ϕ ∧ ∂̄ϕ) ≤ χ2lf∗
[
ddc
(
(fm1)∗ψ

)
+ (fm1)∗η

]
= χ2l[dd

c
(
(fm1+1)∗ψ

)
+ (fm1+1)∗η].

It follows that d(f∗ϕ) ∈ L2(Ω). For this and by Lemma 3.1, we get f∗ϕ ∈W 1,2. Thus, i∂(f∗ϕ) ∧ ∂̄(f∗ϕ)
has no mass on V\Ω. It follows that

i∂(f∗ϕ) ∧ ∂̄(f∗ϕ) ≤ χ2l1Ω[ddc
(
(fm1+1)∗ψ

)
+ (fm1+1)∗η] ≤ χ2l[dd

c
(
(fm1+1)∗ψ

)
+ (fm1+1)∗η]

because the last current is positive by Lemma 2.9. Combining this with (3.1) and (3.4) gives (3.3). The1

desired statement then follows. This completes the proof. �2

Let ϕ ∈ W 1,2
∗,f and m = (m0,m1) be a size representative of ϕ. Consider f∗ acting on Borel’s measurable

functions. Remember that f∗ preserves the set of constant functions. As in the last section, let b0 :=∫
V
ϕdµ0, and ϕ0 := ϕ− b0. We define two sequences ϕn, bn as follows. Put

bn = bn(ϕ) :=

∫
V

(f∗ϕn−1)dµ0, ϕn := f∗ϕn−1 − bn

for n ≥ 1.Note that ϕn differs from ((fn)∗ϕ) by a constant. Lemma 3.5 implies that mn := (χn2lm0,m1 +3

n) is a size representative of ϕn. This together with Lemma 3.4 imply that4

Lemma 3.6. mn := (χn2lm0,m1 + n) is also a size representative of |ϕn|, ϕ+
n and ϕ−n .5

By Lemma 3.3, we get6

‖dϕn‖L2Am
1/2
0 χ

n/2
2l (χ2l−1)(n+m1)/2(3.5)

Using (3.5), (3.1) and (3.3) give7

‖ϕn‖L2 ≤ Am1/2
0 χ

n/2
2l (χ2l−1)(n+m1)/2, |bn| ≤ Am1/2

0 χ
n/2
2l (χ2l−1)(n+m1)/2 (3.6)

for n ≥ 1 and some possible different constantA.Now we are in a situation very similar to the one in the last
section. Using arguments similar to those in the last section, we can show that limn→∞〈χ−n2l (fn)∗ωk, ϕ〉
exists and denote by b′∞(ϕ) its limit. In fact, we have

b′∞ =

∞∑
j=0

χ−j2l bj .

It follows that8

|b′∞(ϕ)| ≤ ‖ϕ‖L1 +Am
1/2
0 (χ2l−1)m1/2 (3.7)

for some constant A independent of ϕ. Clearly, if ϕ is a function quasi-p.s.h limited , b′∞ is equal to the
same number defined in the last section. So we have

〈µf , ϕ〉 = b′∞(ϕ)

for function quasi-p.s.h limited ϕ. Let W 1,2
∗∗,f the subset of W 1,2

∗,f consisting of functions that are continuous9

outside a closed pluripolar set. Note that f∗ preserves W 1,2
∗∗,f because f is a covering outside an analytical10

subset of V. We now affirm that11

Lemma 3.7. For ϕ ∈W 1,2
∗∗,f , we have 〈µf , ϕ〉 = b′∞(ϕ).12

Proof. The proof is similar to that on [21, Lemma 5.5]. We proved first that ϕ is µf -integrable. We
assume for a moment that ϕ ≥ 0. Let V be a closed pluripolar set such that ϕ is continuous outside of V.
Remember that µf has no mass on pluripolar sets, therefore, on V. Since χ−n2l (fn)∗ωk converges to µf as
positive measures and V\V is open, we have

〈µf , ϕ〉 ≤ lim inf
n→∞

〈χ−n2l (fn)∗ωk, ϕ〉 = lim
n→∞

n∑
j=0

χ−j2l bj + lim inf
n→∞

〈ωk, χ−n2l ϕn〉

15
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which is equal to b′∞(ϕ). Thus ϕ is µf -integrable if ϕ ≥ 0. In general, write ϕ = ϕ+ − ϕ− and applying1

the last property, show that ϕ is µf -integrable. If m = (m0,m1) is a size representative of ϕ, then we also2

get that3

|〈µf , ϕ| ≤ |b′∞(ϕ+)|+ |b′∞(ϕ−)| ≤ A(‖ϕ‖L1 +m
1/2
0 (χ2l−1)m1/2), (3.8)

for some constant c independent of ϕ. Now using f∗µf = χ2lµf gives4

|〈µf , ϕ〉 − b′∞(ϕ)| = |〈µf , χ−n2l (fn)∗ϕ− b′∞(ϕ)〉| ≤ |cn|+ |〈µf , χ−n2l ϕn〉|,
where cn := −

∑
j≥n+1 χ

−j
2l |bj |. Note that the first term on the right side of the last inequality tends to 0

because of (3.6). On the other hand, by (3.8) and Lemma 3.6, the second term is limited by

Aχ−n2l (‖ϕn‖L1 +m
1/2
0 χ

n/2
2l (χ2l−1)(m1+n)/2)

which tends to 0 when n→∞. This produces the desired equality. This completes the proof.5

�6

Theorem 3.8. Let V, f, χ2l, χ2l−1 be as above with ξ−1
l (f) > 1. So there is a constant A > 0 such that

In(ψ,ϕ) := |〈µf , (ψ ◦ fn)ϕ〉 − 〈µf , ψ〉〈µf , ϕ〉| ≤ A‖ψ‖∞An(ϕ),

where
An(ϕ) :=

[
‖ϕ‖L1 +m

1/2
0 (χ2l−1)m1/2

]
χ
−n/2
2l (χ2l−1)n/2,

for each ψ ∈ L∞(µf ), ϕ ∈W 1,2
∗∗,f and (m0,m1) a size representative of ϕ,7

Note that if ϕ is a function η-p.s.h. limited for some (1, 1)-continuous form η of L∞-norm ≤ 1, then there8

is a constant ‹m0 independent of ϕ such that (‹m0, 1) is a size representative of ϕ. Therefore, the above9

theorem gives a uniform correlation decay for each ϕ.10

Proof. Let the annotations be as above. In(ψ,ϕ + c) = In(ψ,ϕ) for each constant c because of the11

invariance of µf . We can assume that 〈µf , ϕ〉 = 0. By Lemma 3.7, we get b′∞(ϕ) = 0. Consequently,12

χ−n2l (fn)∗(ϕ) = cn + χ−n2l ϕn. Using f∗µf = χ2lµf gives13

In(ψ,ϕ) = χ−n2l |〈µf , ψ(fn)∗(ϕ)〉| = |〈µf , ψ(cn + χ−n2l ϕn)〉| ≤ |cn|+ χ−n2l |〈µf , |ϕn|〉|. (3.9)
Note that, as before, we have

|cn| ≤ AAn(ϕ)

for some constant A independent of ϕ. On the other hand, f∗ preserves W 1,2
∗∗,f , thus ϕn ∈ W 1,2

∗∗,f and so is
|ϕn|. By Lemma 3.6, (χn2lm0,m1 + n) is a size representative of |ϕn| if (m0,m1) is a size representative
of ϕ. Arguing as in the proof of Lemma 3.7 gives that

χ−n2l |〈µf , |ϕn|〉| ≤ AAn(ϕ)

for some constant A independent of ϕ. Hence the desired inequality follows. This completes the proof.14

�15

End of Proof of Theorem 1.10. The central limit theorem for µf is a direct consequence of its correlation
decay as shown in [21]. Therefore, it remains to prove the property of the correlation decay. By Theorem
3.8, for each C1 function ϕ on V, we have

I(ψ,ϕ) ≤ A‖ψ‖∞‖ϕ‖C1χ
−n/2
2l (χ2l−1)n/2.

This combined with the interpolation inequality for functional in Banach spaces C1, C0 provides the desired16

correlation decay for µf , cf [21].17

Remember that µf is K-mixing if for each ϕ ∈ L2(µf ), we have18

sup
ψ∈L2(µf )

In(ψ,ϕ)→ 0. (3.10)

Note that the operator χ−1
2l f∗can be extended to be a continuous linear operator onL2(µf ) because |f∗ϕ|2 ≤19

χ2lf∗(|ϕ|2). As above, to prove (3.10), we can assume that 〈µf , ϕ〉 = 0. Using (3.9) we have20

I(ψ,ϕ) ≤ ‖χ−n2l (fn)∗ϕ‖L2(µf ). (3.11)

Consider now ϕ to be a limited function on W 1,2
∗∗,f . The set of these functions is dense on L2(µf ). We have

‖χ−n2l (fn)∗ϕ‖L2(µf ) ≤ ‖ϕ‖∞‖χ−n2l (fn)∗ϕ‖L1(µf )

that tends to 0 by proof of theorem 3.8. This combined with (3.11) gives (3.10). The proof is completed. �21

16
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Remark 1. By inequality (3.6), we see that for each complex measure ν with density L2 and ν(X) = 1,1

χ−n2l (fn)∗ν converges weakly to µf .2

4 Conjectures3

Here is the First Conjecture.4

Conjecture 4.1. Let V, f, µf as in Theorem 1.9. Let ψ1, . . . , ψk be the Lyapunov exponents of µf and
Ψ =

∑
i

1
ψi

its inverse sum. So the Hausdorff dimension of µf satisfies

dimH(µf ) = Ψhχ(f).

Here is the Second Conjecture.5

Conjecture 4.2. Let V, f, µf be as in Theorem 1.9. So there are T+
l and T−k−l such that µf is defined by :

µf := T+
l ∧ T

−
k−l ,

where T+
l is a positive invariant closed current of bidegree (l, l), i.e.

1

χm2l
(fm)∗ωl −→ T+

l

and T−k−l designates a positive invariant closed current of (k − l, k − l), i.e.
1

χm2(k−l)
(fm)∗ω

k−l −→ T−k−l.

Here is the Third Conjecture.6

Conjecture 4.3. Let V, f, µf be as in Theorem 1.9 and T+
l as in Conjecture 4.2. Let ψ1, . . . , ψk be the7

Lyapunov exponents of µf with ψl = max1≤i≤k ψi. So the Hausdorff dimension of the Support of T+
l8

satisfies9

dimH(SuppT+
l ) ≥ 2(k − l) +

logχ2l

ψl
.
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hal.archives-ouvertes.fr/hal-02281122/, 2019.27

[7] J.P. Demailly. Complex analytic geometry. available at www.fourier.ujf grenoble.fr/demailly.28

[8] J.P. Demailly. Monge ampère operators, lelong numbers and intersection theory in complex analysis29

and geometry. Plemum Press, pages 115–193, 1993.30
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