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ABSTRACT

Let f : V — 'V be a Cohomological Expanding Mappin{l of a smooth complex com-
pact homogeneous manifold with dimc (V) = k > 1 and Kodaira Dimension < 0. We
study the dynamics of such mapping from a probabilistic point of view, that is, we de-
scribe the asymptotic behavior of the orbit O;(z) = {f"(z),n € N or Z} of a
generic point. Using pluripotential methods, we construct a natural invariant canonical
probability measure of maximum Cohomological Entropy /5 such that x5, (f™)*Q —
. as m — oo for each smooth probability measure {2 on V . Then we study the
main stochastic properties of 1y and show that ¢ is a measure of equilibrium, smooth, er-
godic, mixing, K-mixing, exponential-mixing and the unique measure with maximum Co-
10 homological Entropy. We also conjectured that s := T," AT}, dimy (ps) = Uhy(f)

1" and dimy (SuppZ;") > 2(k — 1) + 10%}%'
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1 1 Introduction

Let p be the equilibrium measure associated with an endomorphism f. If ¢ is an observable, (¢ o f™),>0
can be seen as a sequence of dependent random variables. As the measure is invariant, these variables are
distributed in an identical way, that is, the Borel sets {¢ o f™ < t} have the same measure y for any fixed
constant t. We recall some general facts of ergodic theory and probability theory. We refer to [47,49)]] for
the general theory.

o O A W N

Consider a dynamic system associated with a map g : X — X, measurable against a o-algebra F on X.
The direct image of a probability measure v by ¢ is the measure of probability g.(v) defined by

9:(V)(4) := v(g~(4))
for each measurable set A. Likewise, for any positive measurable function ¢, we have
(9«(¥), ) := (v, 0 0 g).

The measure v is invariant if g.(v) = v. When X is a compact metric space and ¢ is continuous, the set
M(g) of invariant probability measures is convex, compact and not empty: for any sequence of probability
measures vy, the limit values of

=

1«
% D2 (")

j=0
7 are invariant probability measures.
8 A measurable set A is totally invariant if v(A\ g=(A)) = v(g~(A) \ A) = 0. An invariant probability
9 measure v is ergodic if any totally invariant set is of measure v zero or complete . It is easy to show that
10 v is ergodic if and only if ¢ 0 g = ¢, for ¢ € L'(v), then ¢ is constant. Here, we can replace L!(v) by
11 LP(v) with 1 < p < 4o00. The ergodicity of v is also equivalent to the fact that it is extremal on M(g). We
12 remember Birkhoff’s ergodic theorem, which is the analogue of the law of large numbers for independent
13 random variables [49].

Theorem 1.1 (Birkhoff). Let g : X — X be a measurable map as above. Suppose that v is an invariant
ergodic probability measure . Let o be a function on L*(v). Then

| N1
¥ 2 P (@) = ()
n=0
14 almost everywhere in relation to v.

When X is a compact metric space, we can apply Birkhoff’s theorem to continuous functions ¢ and deduce

that for v almost all x
1 Nl
N Z 59”(1) — U,
n=0

where §,, indicates the mass of Dirac at 2. The sum

N-1

St () =Y pog"

n=0

15 is called Birkhoff sum. Therefore, Birkhoft’s theorem describes the behavior of % St (¢) for an observ-
16 able .

A stronger notion than ergodicity is the notion of mixing. An invariant probability measure v is mixing if
for each measurable set A, B
lim v(g7"(A) N B) = v(A)v(B).

n— oo

Clearly, mixing implies ergodicity. It is not difficult to see that v is mixing if, and only if, for any test
functions ¢, v on L>(v) or on L?(v), we have

Jim (v, (p o g")¥) = (v, ) (v, ).

The Quantity
In(,¥) = (v, (p 0 g")¥) — (v, o) (v, ¥)
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is called the correlation on time n of ¢ and . Thus, mixing is equivalent to the convergence of I, (¢, 1)
to 0. We say that v is K-mixing if for each ¢ € L?(v)

sup  In(p, ) — 0.
”‘PHLQ(u)Sl

Note that K-mixing is equivalent to the fact that the o -algebra F, := Ng~"(F) contains only sets zero
and complete measures. This is the strongest form of mixing for observables on L?(v). However, it is of
interest to obtain quantitative information about the mixing speed for more regular observables, such as
smooth functions or Holder continuous.

L R

Now consider an endomorphism f of degree d > 2 of P* as above and its equilibrium measure 1. We know
that y is totally invariant: f*(u) = d* . If ¢ is a continuous function, so

(o fy =(d " (), oo f) = {m,d™ " fulwo ) = ().
5 We use the obvious fact that f, (¢ o f) = d¥. Thus, p is invariant.

6 Mixing for measure ;. was proved in [45]].
7 Theorem 1.2. Let f be an endomorphism of degree d > 2 of P¥. So its measure of Greeny is K-mixing.

8 The equilibrium measure p satisfies remarkable stochastic properties that are quite difficult to obtain in
9 the real dynamic systems scenario. Pluripotential methods replace the delicate estimates used in some real
10 dynamic systems.

11 Consider a dynamic system g : (X,JF,v) — (X, F,v) as above, where v is an invariant probability measure.
12 Therefore, g* defines a linear operator of norm 1 on L?(v). We say that g has the Jacobian limited if there
13 is a constant x > 0 such that v(g(A)) < kv(A) foreach A € F.

14 When X is a complex mamifold, it is necessarily orientable .

15 Let V be a smooth complex compact homogeneous manifold with dimc(V) = k > 1 and Kodaira dimen-
16 sion < 0 and f : V — 'V be a dominant surjective meromorphic endomorphism, that is, whose Jacobian
17 is not identically null in any local chart. Let w be a (1, 1)-strictly positive Hermitian form on V. Let £ be a
18 prime number.

19 Definition 1.3. The i-th Cohomological Degree x;(f) of f is defined as the spectral radius of the pullback
20 action f* in the cohomology group ¢ -adic étale H/,(V, Q) independent of ¢ by: (cf []§|] || for
21 more details)

Xz(f) = p(f*}Héi[(V,Q[,))'
22 Definition 1.4. We define the (I, n)-th Cohomological Quotient £'(f) of f as follows:

w0 -]

23 Definition 1.5. The Cohomological Entropy of f is defined by

h(f) = maxlog x2i(f)-

24 Definition 1.6. We say that f is a Cohomological Expanding Mapping when f is dynamically compatible
25 (thatis (f™)* = (f*)™)and thereis! € {1, ..., k} such that :

&> 1

26 We will write x; for x;(f) and & for & (f) if there is no confusion.
27

Let (M, J,m) be a probability space and g : M — M be a measurable map that preserves m, that is, m is
g« - invariant: g,m = m. The measure m is ergodic if for any measurable set A such that g=*(A4) = A,
we have m(A) = 0 or m(A) = 1. This is equivalent to the property that m is extremal on the convex set
of invariant probability measures (if m is mixing, so it is ergodic). When m is ergodic, Birkhoff’s theorem
implies that if ¢ is an observable on L!(m) then

tim o) +0(g(@)) + -+ (g™ (@)] = (m,w)

n—oo N

28 for m - almost all x.
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Suppose now that (m, ) = 0. Then, the previous limit is equal to 0. The theorem of limit central (TLC),
when it occurs, provides the speed of this convergence. We say that i) satisfies the TLC if there is a constant
o > 0 such that

1 n—1
T [Y@) +ple@) + (e @)

converges in distribution for the Gaussian random variable N(0, ') of mean 0 and variance . Remember
that 1) is a coboundary whether there is a function 1)’ on L?(p) such that 1) = 1)’ — 1)’ o g. In that case, it is
easy to see that

tim = [1(e) + (0(a)) + -+ (" @) = lim = [o/@) — 0 (g"@)] = 0

n—oQ n

1 in distribution. Therefore, 1) does not satisfy the TLC (sometimes it is said that 1) satisfies the TLC by
2 o=0).

3 The TLC can be deduced from strong mixing, see , . In the following result, Et(|F,,) indicates
4 the expectation of v in relation to F,, that is, 1) — Et(¢)|F,,) is the orthogonal projection of L2(m) in the
5 subspace generated by the measurable functions J,.

Theorem 1.7 (Gordin). Consider the decreasing sequence F,, := g~ "™(F), n > 0, of algebras. Let 1) be a
function with real value on L?(m) such that (m, ) = 0. Suppose that

> IE]Fn) || 22(m) < o0
n>0
So, the positive number o defined by
0% = (m, %) +2 (m,P(og"))
n>1

6 is finite. It vanishes if and only if 1 is a coboundary. Furthermore, when o #+ 0, then v satisfies the TLC
7 with variance o.

s Note that o is equal to the limit of n=1/2[|¢) + -+ + ¥ 0 " 1||12(,,). The last expression is equal to
o ||[¥]lL2(m) if the family (¢ 0 g™),,>0 is orthogonal on L?(m).

10 We refer to [47,49] for the notion of Lyapunov exponent.
11 Definition 1.8. An invariant positive measure is hyperbolic if its Lyapunov exponents are non-zero.

12 A function quasi-p.s.h. on 'V is a function of V on [—00, c0), which is locally the sum of a plurisubharmonic
13 function and a smooth function. For a given (1, 1) -continuous form 7, denote by PSH( () the set of quasi-
14 p.s.h. functions ¢ such that dd°p+n > 0 and supy, ¢ = 0. Equip PSH((n) with induced distance of L*(V)
15 using natural inclusion PSHo(n) C L(V).

16 Remember from that a complex measure ;2 on 'V is considered PC if each quasi-p.s.h. function is
17 p-integrable and for each sequence (i, )nen Of quasi-p.s.h. functions converging to ¢ on L' , so that
18 dd®pp + 1 > 0 for some smooth form 7 independent of n, we have (i, ) — (i, ©).

19 A pluripolar set onV is a subset of V contained on {¢ = —oo} for some quasi-p.s.h. function ¢. By ,
20 any locally pluripolar set on V is pluripolar. This result implies in particular that there are abundantly
21 quasi-p.s.h singular functions on V. Note that every PC measure has no mass on pluripolar sets.

23 Next, we will consider the dynamics of f with & '(f) > 1.

24 Here is the first Main Result.

25 Theorem 1.9. Let V be a smooth compact complex homogeneous manifold with dimc(V) = k > 1 and
26 Kodaira dimension < 0 and f : V — V a Cohomological Expanding Mapping. Let v be a complex
27 measure with density L***1 on 'V such that v(V) = 1. Let w be a (1, 1)-strictly positive Hermitian form on
28 V. So the sequence x%’}( f™)*v converges weakly to a measure of probability PC s with Cohomological

29 Entropy > log x2; independent of v as m — oo so that Xgllf*,uf = puy = fopur and if f is holomorphic,
30 then for each Hermitian metric w on 'V, piy is Holder continuous on PSHy(w).

The Holder continuity of 1y on PSHo(w) for f holomorphic implies that 17 is moderate in the sense that
there are constants €, M > 0 such that for each ¢ € PSH(w), we have

/ e “Pduy < M.
v
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We remember a new class of functions called weakly d.s.h. that replace the role of d.s.h functions

1

2 (differences of two functions quasi-psh) in case of Kihler. These functions enjoy a compactness property
3 similar to that of the d.s.h functions and the pull-backs of d.s.h functions by meromorphic maps are weakly
4 d.s.h. We obtain the property of exponential mixing of u ¢

5

6 Here is the second Main Result.

Theorem 1.10. Let V, f, xo1, ji5 be as in Theorem[I.9, So iy is exponential mixing in the sense that for
each constant 0 < « < 1, there is a constant A, such that

g, (@0 F™)) = (g 0)ags 0| < Aady ™ [[$]loollell o
7 foreachm > 0, each v € L>(V) and every function Hélder continuous ¢ of order o In particular, jiy is
8 K-mixing.

If a real function Holder continuous ¢ is not a coboundary, i.e, there is not ) € L*(V) with p = 1po f — 1),
and satisfies (11, ¢) = 0, then iy satisfies the central limit theorem, which means that there is a constant
o > 0 such that for each interval I C R, we have

I { ie 1} / el
o he Zwof v :

o The expression (i, (o f™)@) — (1 s, P)( fifs ) is called the Correlation of order m between the observ-
10 ables ¢ and 1. The measure py is said mixing if this correlation converges to 0, when m tends to infinity,

11 for smooth observables (or equivalently, observables continuous, limited or L2(piy) ).

Remember that f, is defined by
fep(z) = D o(y)
yEf ()
where the points on f~!(z) are counted with multiplicities (there are exactly Y2 points). Also define the
Perron-Frobenius Operator by
Ap = Xg, fap-
12 As iy is totally invariant, this is the adjoint operator of f* on L?(py).

13 2 First Main Result

14 In this section, we will prove the Theorem 1.9. For a current T of order 0 defined in a manifold V, we denote
15 by ||T'||v the mass of T" on V. Let’s write < (resp. 2) for < (resp. >) module a multiplicative constant
16 independent of involving terms in inequality.

17 Theorem 2.1 (Theorem 1.9 ” First Main Result ”). Let V be a smooth compact complex homogeneous
18 manifold with dim¢(V) = k > 1 and Kodaira dimension < 0 and f : V — V a Cohomological
19 Expanding Mapping. Let v be a complex measure with density L***1 on 'V such that v(V) = 1. Let
20 w be a (1,1)-strictly positive Hermitian form on V. So the sequence x%’i( f™)*v converges weakly to a

21 measure of probability PC uy with Cohomological Entropy > log x2; independent of v as m — oo so that

22 Xo [y = iy = fupy and if f is holomorphic, then for each Hermitian metric w on V, iy is Holder
23 continuous on PSHy(w).

24 Let B, be the ball centered on 0 of radius r of C*, where 7 € R*. For r := 1 we put B := Bj. The
25 following result is very important.

26 Lemma 2.2. (Classical) Let r € (0,1). So, for each (1, 1)-closed real current R of order 0 defined on B,
27 there is a function U on L'/ (2K) (B,.) so that the following three properties are verified:

(1)
R =ddUg
28 onB,,
(i1)
IURl p1+1/co s,y < el Rlls
(Br)
29 for some constant c, independent of R,
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1 (i44) if (Rn)nen s a sequence of (1, 1)-closed real currents of order 0 of uniformly limited mass, converging
2 weakly to R on BsoUg, — Ugon L'TY/(F)(B,).

s Proof. The new point is the estimate for the norm L'*'/(2%) of the potential Ug and its continuity on R.
4 These properties will be obtained by carefully examining the steps in the usual construction of Ug, cf p-
s 135] [5], [3], [8]l, [7)] for example.

Let Rbea (1,1)-real current closed on B. Let 2 € CF be the canonical coordinate system. Let p be a smooth
function supported compactly on B and |, gpdr = 1.Fory € B, let A, : B — B be the diffeomorphism
defined by

1
Ay(z) =2+ 5 (1~ )y
for x € B. Since A, is homotopic to Ay := id through homotopy H, : [0,1] x B — B defined by
Hy(t, ) := Ay (x) for ¢t € [0, 1], the average

R = [ (5R)p()dy
B
is a smooth closed form that is cohomologous to R. Precisely, by the formula of homotopy, we have

R—R =dL,, where L, = L1(R) := /B(Hy)*([a 1] @ R)p(y)dy.

6 Note that

IR || L) S IRlB |1 L1lls S IR (2.1

Since R’ is a smooth closed form on B, we can use an explicit formula (cf [15, p. 13]) to define a smooth
form Ly = Lo(R’) on B such that

R =dLy, |Lz|lp~s) S 1R L= s)-
7 This combined with (2.I)) shows that for L3 := L; + Lo, we have

R=dLs, |Lslls < [IRlls 22)
s and L3 continuously depends on R. So if (R, )»en is a sequence of (1, 1)-currents of order 0 with uniformly
o limited mass, converging towards R so L3(R,,) is also of uniformly limited mass and converges to Ls(R).

10 Since R is a (1,1)-real form, L3 is a 1-real form. We decompose Ls in the sum of one (1,0)-form and a
11 (0, 1)-form as

Ly =L 4 000 (2.3)

12 such that Lél’o) = L:(),O’l) and Lgl’o), Lgo’l) are currents of order 0. We deduce from 1| that

1LY S ||Rlls 2.4)

13 For a bidirectional reason and the fact that R = dLs, we have 5L§)0’1) = 0. It is known that there is a

14 distribution v defined in an open neighborhood of B, with Jv = L:(;O’l). We will briefly remember how to
15 build such a v as a function of Léo’l). The reference is [15, p. 28].

16 Let p be the function as above. We can assume p = 1 on an open neighborhood of 5,.. By the Koppelman
17 formula, we have

pL (z) = 5/BK1(w,y) AP (y) +/BK2(1:,y) N p(y) AL (y). 2.5

18 We do not give explicit formulas here for K, K5 but we emphasize only that K7, Ky are the products of
19 ||z — y||~2**! with smooth forms on C*.
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Denote by I, I the first and second integrals, respectively, on the right side of (2.3). We have
oI, + Ir = pLL
S (0,1)
1 whichis equal to Ly on B,.
2 By the type of singularity of K} and the fact that Léo’l) is of order 0, we see that I; is a form with coefficients
3 in LT/ (k) (B) with
I0llzisen < 1L s < 1 R]s 2.6)

4 by . On the other hand, as dp = 0 on an open neighborhood of B,., the current I is smooth on 3, for
5 some r’ > r. Following exactly the arguments in [15, p. 29], we get a smooth function I3 on 5, for some
6 1’ > rsuch that I = 0I5 on B, and

sl s,y < ILS"V s S I Rlls @)
by (2.4)and I3 : R — I3(R) € L*°(B,) is continuous. So if v := (I3 + I3) then
Léo’l) =0v
on B,.. This together with (2.3) gives ~
L3 = (% + 017.

We deduce from this and (2.2) that -
R=dL3 =90(v —0).
Consequently Ug := 27 Im v satisfies R = dd°Ug (remember that dd® = (i/7)09) and

NURI L1412 sy S IHallpreren s,y + 3l pren g,y S 1Rl s

7 by and (2.7).
It remains to prove the property of continuity of Ur. We saw that I3, L3 are continuous on R. We just need
to check this property to I7. Let (R,,) be the sequence as defined above. Let’s show that I1(R,,) — I;(R)

on L+1/(2k)(B). For the continuity property above of L, we have that S,, := pL{"""(R,,) is of uniformly
limited mass and converges to S := pLéO’l) (R) when n — co. Write

Kl(xv y) = Hl‘ - yH_Qk—HK{(m7 Y),
where K (z,y) is a smooth form. For every small constant £ > 0, let

Ky e(2,y) = max{||z — y|l, e} " K] (2, y)

which is a continuous form. Since ¢ — 0, we have K .(-,y) — K;(-,y) on L'*1/(2k)(B) uniformly on
y € B. So when n — oo,

| i) - Kaoa) A (Sa0) - S) 0
{yeB}
on L'+1/(2k)(B) because the mass of S,, is uniformly limited. On the other hand,

/ Kio(2,9) A (Sa() — S@))
{yeB}

8 converges uniformly to 0 as ¢ is fixed because K . is continuous. We deduce that I; (R,,) — I;(R) on
o L'*1/(2k) (). This completes the proof. [ |

10 Definition 2.3. Let V be a complex manifold. A function of V to [—o0, 00) is said function quasi-p.s.h.
11 if it can be written locally as the sum of a plurisubharmonic function (p.s.h.) and other smooth. For each
12 (1, 1)-continuous form 7, a function quasi-p.s.h. ¢ is 7-p.s.h. if dd°p + 1 > 0. Through the partition of the
13 unit, each function quasi-p.s.h. is 7-p.s.h. for some smooth form 7. For a given form 7), denote by PSH(#)
14 the set of functions quasi-p.s.h. ¢ for which dd®p + 1 > 0.

15 Definition 2.4. A locally integrable function ¢ on 'V is said weakly d.s.h. if dd°p is a current of order 0 on
16 V. Let W be the complex vector space of all functions weakly d.s.h. on V.
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Definition 2.5. Every function quasi-p.s.h is weakly d.s.h.. A subset of V is a pluripolar set if it is contained
on {p = —oo} for some function quasi-p.s.h. ¢. If V is compact, each locally pluripolar set is pluripolar
by [29]. We use a specific case of this result: each analytic proper subset of a compact manifold V is
pluripolar, cf Lemma[2.TT]above.

L

Now consider that 'V is compact. Let pg be a smooth probability measure on V. We use this measure to
6 define norms L? on V. For ¢ € W, put

(%)

lelhe = [ o] + e, e8)

v
7 where || - ||y is the mass of a current on V. Let’s write from now || - || instead of || - ||y if there is no confusion.
s The function || - || is a norm on ‘W because if dd°p = 0 then ( must be a constant. The norm || - ||w

9 is similar to the norm of the space of functions d.s.h. in case of Kéihler introduced by Dinh-Sibony [22].
10 However, we do not know whether these two norms are equivalent in this case.

11 We introduce the topology on W in the following way: we say that ¢, € W converges to ¢ € W when
12 n — oo if ¢, — @ as current and ||, ||w is uniformly limited.

13 We have the following compactness result.

14 Lemma 2.6. Let V be a compact complex manifold . There is a constant c so that for each function weakly
15 d.s.honVwith [, edpug = 0, we have

1@l a1 vy < cllddp]lv. 2.9)

16 Furthermore, given a positive constant A, the set Wy of functions weakly quasi-p.s.h. ¢ with fv wdpg =0
17 such that ||dd®p|| < A is compact on L'/ R (V).

18 A direct consequence of Lemma[2.6is that if ¢,, — ¢ on W then ¢,, — ¢ on L'+1/(¥) In case of Kihler,
19 a similar version of inequality (2.9) for functions d.s.h. with norm L” in place of norm L'*'/(¥) and
20 |- ||« in place of || - ||v was proven on [22] using cohomological tools for functions d.s.h. . His proof uses
21 cohomological arguments that are not applicable to prove (2.9) for weakly functions quasi-p.s.h. .

22 Proof. Consider a function weakly quasi-p.s.h. ¢ with ||dd°p|| < A. Let (W;) be an open (finite) cover of
23V where the W; are local charts of 'V biholomorph to the unit ball of C*. Since ||dd°p| < A, by Lemma
24 we have 7; € L'/ (W;) for which dd°t; = dd°p on W; and

||Tj||L1+1/(2k)(Wj) S A (2.10)

25 Therefore, ¢ — 7; can be represented by a pluriharmonic function on W;. For simplicity, we identified this
26 function with (¢ — 7;). We deduce that ¢ € L1/ (k) (V).

We now assume, on the contrary, that (2.9) is not valid, it means that there is a sequence of non-null functions
weakly quasi-p.s.h. ¢, with [}, ¢, dpo = 0 and

00 > [@nllLr+1/er vy = nllddon|v.

27 Multiplying ¢, by a positive constant, we can assume that

llenll pri/em vy = 1. (2.11)

28 So we have

lddenll < 1/n. (2.12)
29 Note that we still have fv @ndpg = 0. Let 7' be the function 7; for ¢, in place of ¢. Put T}, := dd®yp,.
30 These currents of order 0 are of uniformly limited mass and converge to 0 by (2.12). The Lemma 2.2 tells
st us that 7}* converges to 0 on L1H1/(2k) (W), for each Wi € W;. We can also provide that (W) continue
s2 to be a cover of V. For simplicity, we can assume that WJ’ = W; for each j.

Now remember that ¢,, — 77" is pluriharmonic on W;. The last function is of L'/ k) _norm limited on

W; because of (2.10) and (2.11). The average equality for pluriharmonic functions implies that (¢, — 7}')

is of C'-norm uniformly limited on compact subsets of W; onn € N for each I € N. We deduce that,
extracting a subsequence, we can assume that ¢, — 7;* converging uniformly to a pluriharmonic function

77° on compact subsets of W; when n — oo. Since ||7}[| L1410 (w,) — 0, we get that

o — 5% em LUTY/ER W),
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1 This produces this function 7°° := 77° on W; for each j is a well-defined pluriharmonic function on V.
2 Since V is compact, 7 is a constant. This combined with fv wndpy = 0 gives 7°° = 0. We proved that
s @, — 0on L'/ (V) consequently ||, || 1141/ 26 — 0, a contradiction. Therefore, (2.9) is verified.

4 To prove the second desired statement, we again use the function 7; above. We have that ¢ — 7; is pluri-
s harmonic on W; and by (2.9), the L'TY/(*).norm of ¢ is also < A. Then the L'*1/(2*)_norm of the
6 pluri-harmonic function (¢ — 7;) is < A. It follows that its C'-norm is also < A . Therefore, we can extract
7
8

a convergent subsequence of ( — 7;) for ¢ € W on €'. This combined with the L'*1/(2%) continuity of 7;
on 7" implies the desired statement. This completes the proof.

9 [ |

10 We equip the vector space B of Borel’s measurable functions on V with the pointwise convergence topology:
11 h, — hif h, converges pointwise to h at almost all points (with respect to the Lebesgue measure). Let P
12 be a continuous linear endomorphism of the last vector space. Define Wp to be the set of ¢ € W for which

13 PpeW.
14 Lemma 2.7. There is a constant c such that

1PellLivren < e(llellw + [ldd*(Pe)l)), 2.13)
15 for any o € Wp. In particular, there is a constant ¢’ such that

IPollLivisen < c(llddel + |dd°(Py)|) (2.14)

16 for each ¢ € Wp N Wqy. Furthermore, if p, € Wp N Wy — ¢ as currents when n — oo such that
17 (ldd®on|| + [|dd°(Py)||) are uniformly bounded, then Pp,, — Py on L**1/ (k).

18 Proof. The Inequality (2.14) is a direct consequence of (2.13) and of Lemma 2.6. Now suppose there is a
19 sequence () C Wp for which

[Ponllpreen =1, [lellw + [|dd°(Peq)[| < 1/n. (2.15)

20 Applying compactness property in Lema 2.6 for the sequence (P, )necn, We see that by extracting a sub-
21 sequence from ¢, if necessary, the sequence P, converges on L'*1/(2%) for a function weakly d.s.h ¢o/,_.
22 Consequently,

lelallLisen =1, |dd°ol || = 0. (2.16)
23 Therefore ¢/ is a constant. As the convergence on L' implies the convergence almost always of a subse-
24 quence, we can also assume that P,, converges almost always to ¢’_.

25 On the other hand, the inequality of (2.13) allows us to use the compactness property in the Lemma 2.6
26 again for (,,). Therefore, we can extract a subsequence of (¢,,) converging to o, := 0 on L'*1/(2%) and
27 almost always. Thus Py,, converges almost always to Py, because of the continuity of P. It follows that
28 . = Pys = 0, note here P(0) = 0 by the linearity of P. This is a contradiction because of . Thus
29 (2.13) follows. The last desired statement follows directly from the arguments above. This completes the
30 proof.

31 [ |

Leta € C*, r be aconstant on (0, |a|) and § > 0 a constant. Assume that P(1) = a, where 1 is the constant
function equal to 1 on V. Define W', ; to be the set of all ¢ € B such that P"¢ € W for each n > 0 and

[dd*(P"p)|| < or"

for each n > 0, here P denotes the identity map. By the linearity of P, every constant function belongs to
WE,. s- We equip WE, 5 with the topology induced from there on W. Note that W, 5 is closed on W and

,r—mpm( (Igo,r,é) C W%o,r,é

32 for every positive integer m. So Wy, s N Wy is compact and P (W%, ;) is contained in the complex

33 vector subspace W%, s of W generated by W%, 5.

34+ Proposition 2.8. There is a continuous linear functional function pp : Wg¥,. s — C such that for each

I,2k+1 W

35 complex measure v with density onV,v(V) = 1 and for each ¢ € Wp, 5, we have

<a_”(P”)*V,Lp> — {up, o). 2.17)
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1 Here for Q : B — B, by definition, (Q.v, ¢) := (v, Q) for ¢ € B such that Q¢ is v-integrable.

2 Proof. Remember that 19 is a form of smooth probability volume on V. We just need to construct yp on
3 Wg, s and prove (E.17 for ¢ € Wg, 5. The extension of up to W3, ; is done automatically using the
4 linearity of (P™),v and (2.17).

Letp € WP, 5. Put by := / + Pdpo and g 1= ¢ — by. We define two sequences ¢y, by, as follows. Put

b, = bn(@) = / (Pﬁﬂn—l)d/J/O; On = Ppn_1 — by
X

s forn > 1. We have r "¢, € Wy N'WF, 5 and dd°(P™p;,) = dde(P™*"p) for each n, m. By Lemma
6 [277] we have

lenll /e < e((ldd(Pen-1)ll + lldd“pnll),  [bn] < c(lldd*(Pon-1)|| + ldd°pn_]]) (2.18)

7 for some constant ¢ independent of n, ¢. It follows that
[@nllLisisen < c(lldd*(Pe)| + [[dd* (P o)) < ed(r +1)r" ™ [by| < ed(r+1)r" 1 (2.19)

s forn > 1. Since P(1) = a we have P(b,,) = ab,, for each n. Using this, it gives

a "P"p =Dby+a "Ppy = by +a "P" 1 (Ppo) =by+a"'by +a P Ly (2.20)

=.o=byt+atby+---a""b, +a "o, (2.21)

Put b/, = b/ (¢) := by +a~1by +---a~"b,, that converges to a number b’ (depending on ) by (2.19) and
the fact that |a| > . We deduce from (2.20) that

la™" P — by, | < la|™"|¢nl-

9 This combined with the first inequality of (2.19) implies that a~" Py converges to b, on L'T1/(2¥)_ Pre-
10 cisely, we have

Hainpngo — b/n||L1+1/(2k) S/ 5|a|7”r”. (2.22)

Since ¥(X) = 1, we have
(@ (P") v, 9) — b, = {v,a~"Pp — B).
11 Using this, (2.22)) and Holder’s inequality imply that (a="™(P™).v, p) converges to b, = b/ () because
12 v has L2**1 density. Define (up,p) := b’ (p) that is independent of v. Then, we obtain the desired
13 convergence for up.

14 Consider a sequence ¢, — ¢ on Wg, ;. Let Enm, ©nm Tespectively the b,, and ,, for ¢, in place of .
15 By the last statement of the Lemma 2.7, bpm — by, when m — oo for each n and (2.19) still applies to
16 Dy, Pnm in place of b, @,. We infer that b, — b, and a " @pm — 0 on L1/ F) when m — oo.
17 Thus, (up, m) — (tp, @) when m — oo. In other words, pp is continuous. This completes the proof.

18 [ |

19 Let V be a complex compact manifold and f be a meromorphic self-map on V. Denote by I' the graph of f
20 on'V xVand 7y, 7y the restrictions to I" of natural projections of V x 'V for the first and second components
21 respectively.

22 Let ® be a form with measurable coefficients on V. We say that ® € L' if its coefficients are L' functions
23 (in relation to the Lebesgue measure on V). If €2 is a dense open subset of Zariski of V such that 72 is a
24 unrestricted cover on {2, the form f,® := (o |7r;1 (0))+(] ®) is a measurable form on . Consequently f,
25 is a measurable form on V independent of 2. We can verify that f, : B — B is continuous. Consequently,
26 f. is an example of the map P considered above.

27 If f,® € L', then we can define f,® to be a current of order 0 induced by f,® on V. This definition is
28 independent of the choice of (2. Note that the pull-back by f of smooth functions or smooth forms is always
29 on L. The following is similar to the results on [9,[23].

10
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1 Lemma 2.9. For each quasi-p.s.h. function o on V, we have f.p € L' and if ddp + 1 > 0 for some
2 (1,1)-continuous formn > 0, then dd°(f«p) + f«n > 0. In particular,

(f")ep € Wp, NW. (2.23)

s The inclusion (2.23)) explains the crucial roles of Wy, , W in this study.

Proof. Leto : TV — T be a desingularization of I". Let §2 be as above. Put w; :=m; oo for j =1,2. Since
 is quasi-p.s.h., ¢ o 7} is also. Thus, ¢ o m; = o, (p o 7)) ison L' (I'¢). Since
[ fxellzr) = ll(m2)(w o m)llie) S leomllLir),
4 we get the first desired statement.

By [2], [4] and the fact that > 0, there is a decreasing sequence of smooth functions quasi-p.s.h ¢,
converging pointwise to ¢ such that dd°p,, + n > 0 for each n. By Lebesgue’s dominated convergence
theorem, the sequence (,, o 7} converges on L! to ¢ o }. It follows that the sequence of positive smooth
forms dd®(p,, o 7]) + 7"y converges weakly to dd®(p o 7}) 4+ 71*n). Thus, the last current is also positive.
Now note that

(m3)s (dd“ (o my) + 7i') = dd*((73) 71" @) + (m5)umy'n = dd®((m2) 77 p) + (m2)umin
5 because 7} and 7} have no mass in zero Lebesgue measure sets. Therefore dd°(f.¢) + f«n > 0.

6 Note that f.n has finite mass on V. We infer that f, € W. In other words, ¢ € Wy, N'W. Applying this to
7 f™ instead of f and using the formula that (f™).¢ = f.(f™" ). as functions in some suitable open dense
8 subset of V, we get (2.23). This completes the proof.

9 [ |

10 Lemma 2.10. Let 'V be a compact complex manifold of dimension k and f : V — 'V be a Cohomological
11 Expanding Mapping. Let © be a function quasi-p.s.h. on'V with dd°p + 1 > 0 for some (1, 1)-continuous
12 formn. So there is a constant A independent of v, 1) for which

1dd(f")«pll < Axzp-1lInllze 2.24)
13 foreachn > 1.
Proof. Replacing 7 by a strictly positive smooth form that dominates it, we can assume that 7 > 0. Let w

be a metric of Gauduchon on V, this means that w is a Hermitian metric and dd°w®~! = 0, cf [?]. Let T,
be the graph of f™ and 7y ,,, 72, the natural maps of I, for the first and second components of V x V. By

Lemma the current dd®(f™). + (f™).7 is positive. So, using dd°w*~1 = 0 gives

dd(f™)eip + (F™)antll S (dd°(f™)wip + (F)um, w1 = ((f™)ums 1) S ("), 071
This combined with the definition of x2,—1(f) gives

[dd®(f™)wsp + (f")unll < Alx2r-1)" [0l o=

14 The desired inequality follows immediately. This completes the proof.

16 We come now to the end of the proof of the first main result.

End of Proof of Theorem 1.9. &' (f) > 1. Put
P:=f., a:=xua, 71:=x2-1, 0:=A,

17 where A is the constant on Lemma[2.10} Let ¢ be a function quasi-p.s.h. whith dd°¢p + 7 > 0 for some
18 (1,1)-continuous form n > 0 such that ||n||r~ < 1. We have P(1) = a and p € WF,. ; by Lemma 2.10.

19 Every function quasi-p.s.h. is on W%’ _ ;. Since v does not have mass in proper analytical subsets of V, Note
20 that

<(fm)*l/7 50> = <V’ (fm)*(P> = <V’ Pm‘P> (2.25)

11
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because we only need to consider integrals on a dense open subset of Zariski of V. Applying Proposition
for P, we get a continuous functional p1p on W 5 such that

X" (") ) = {pp. ),
1 foreach p € W, 5. Choosing v > 0, we see that (up, p) > 0if ¢ > 0. Let 1y be the probability measure

2 onVdefined by (i, @) := (up, @) for each smooth function ¢. Remember here that smooth functions are
3 quasi-p.s.h. on V. Let’s prove that ;1; = pp for each function quasi-p.s.h. ¢.

4 Consider a sequence of smooth functions quasi-p.s.h ¢! with dd°p!, + n > 0 decreasing to ¢, we have
5 {ugp, ¢l = (up, e, and (ug, ©).) — (ur, @) by Lebesgue’s monotonous convergence theorem. This
6 combined with the continuity of yp gives (s, ¢) = (up, ). So we have

Jim (o)™ (f™)'v — g, 0) = 0 (2.26)

7 for each function quasi-p.s.h. ¢ on V.

8 As the functions quasi-p.s.h are p - integrable, 1y has no mass on pluripolar sets. By Lemma 2.11 below,
9 proper analytic subsets of V are pluripolar. This implies that 1 has no mass on proper analytic subsets of
10 V. We deduce that the pull-back f*uy is well defined. Here we just take the pull-back of 1y on an open
11 subset of Zariski €2 of V where 75 is a non-branched cover. It can be seen that this definition is independent
12 of the choice of 2 and if (P, ). cn is a sequence of positive measures without mass on the proper analytical
13 subsets of V and converging to p ¢, then f*®,, converges to f* s because the mass of f*®,, converges to
14 that of f*puy, cf for example Lema 3.6]. The Equality

Xa' [ ip = my 2.27)
15 is obtained by applying the pull-back f* for convergence x5, (f™)*v — s, where v is a smooth measure

16 of probability. Once we have f. f* = x2; on Borel’s measurable functions, we get f.uy = uy, in other
17 words, f17 is invariant by f.

18 Let I be the indeterminacy set of f. Put Z := U,,ezf"(I;). The measure y; has no mass on Z. The
19 cohomological entropy of sy is by definition 1y\ z /iy in relation to f|y\ . For Parry’s inequality ,
20 using f*pus = xaptf, we deduce that the cohomological entropy of 1 is at least log x2;.

21 Suppose now that f is holomorphic. To prove that ¢ is Holder continuous on PSH(w), we use a known
22 idea of [24]. Without loss of generality, we can assume that ||w||~ < 1. Let ¢, ¢ be two functions quasi-
23 p.s.h. on PSH(w). Remember that they are on W%, ;.

Let b, (), b, (1) be as in the proof of the proposition 2.8. Let J; be the Jacobian of f. We have
[fsp = fitbllLr = sup  [(fuo = futh, huo)| = sup [{p =0, (ho f)f" po)l

llAllLee <1 llAllLee <1

what is
< g llze<lle = ¢l
Applying the latest inequality to f™ in place of f gives

[bn(#) = b ()] < 2| T¢I Ml — Pl 21

Put
M+1 oo
A= X (@) = ba ()], Azi= D Xy baly) — ba(¥)]-
n=0 n=M+1

Using (2.20) gives

M
(p o —v) = AL+ Agy A <Y g 2" | TgllEe lle — @l [Ao] S (xar-1) X
n=0

Consider the case where 2||.J¢ ||z~ < x2;. We have |A;| < M|l — 1||:. Choosing M to be the smallest
integer for which M > —log||¢ — ||/ log T, where 7 := x2;/(Xx2i—1), we get that

g, =) < [Ai] + 1 42] S Nl = Wll37°
which implies that yf is Holder continuous in that case. It remains to treat the case 2||Jy|| L > x21. We
have
[Ar| < M2 XM Tl Nl = Wlles + 7.

Choose M := —log || — ¥|| 1/ log(2x5," || T4 || 1 ). We see that

log 7/ log(2x5, || ¢ | oo
[A] + [ As| S —log [l — wllpallp — w7/ o8B I,
24 Consequently, 17 is also Holder continuous in this case. This completes the proof. |

12
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Now we would like to say something about Theorem [I.10] If we try to imitate the arguments in the proof
of [22, Teorema. 1.3] to prove Theorem 1.10, we are led to estimate |{us,|¢n|)|. The measure i still
satisfies the property that for each w-p.s.h. function ¢ with supy, ¢ = 0 is of L!(p)-norm uniformly
limited, cf [22, Proposition 2.3]. But unlike the case of Kéhler, we don’t know if ¢, is the difference of two
w-p.s.h functions. So this explains why we cannot directly apply the approach in [22] to obtain a correlation
decay for pif.

7 Lemma 2.11. Any proper analytic subset V' of a complex compact manifold 'V is a pluripolar set on'V.

o o A~ W N =

8 Proof. We use here the idea in [22] where the authors prove the same result when V is Kéhler. Suppose
9 now that V' is smooth and codimV > 2 (otherwise the problem is trivial). Let o : V — 'V be the explosion
10 of V along V. Denote by V the exceptional hypersurface.

—~

11 Let w be a positive-defined Hermitian form on V. Let &y, be a form of Chern of O(—V") whose restriction to

12 each fiber of V' & P(F) is strictly positive. Choosing w if necessary, we can assume that & := o*w + @y, >
13 0. Since 0,&y = 0,& — w, the closed current 0.y, is quasi positive. Thus, there is a function quasi-p.s.h.

14 (on V such that
o =ddp+n (2.28)
15 for some smooth closed form 7. Multiplying @y, by a strictly positive constant, we have 0 *0.&), = O+ [f/\]
16 Thus |¢ o o(Z) — log dist(Z, ?)| is a limited function on V. As a consequence,
|o(z) — logdist(z, V)| <1 (2.29)
17 on compact subsets of V. Consequently, V' is contained in {¢ = —oo}. Thus V is pluripolar in this case.

18 By the construction above, we can build a Hermitian metric in the explosion V of V alongo V' as the sum
19 of a pull-back of a Hermitian on V and an appropriate form of Chern of O(—V). Thus, if ¢’ : V' — Visa
20 composition of explosions along smooth submanifolds, so there’s a form (1, 1) closed and smooth 7" on V'
21 and a Hermitian metric w on 'V such that & = ¢"*w + n’ is a Hermitian metric on V'.

22 Now consider the general situation where V' is an analytical subset of V. As a finite union of pluripolar

23 sets is again pluripolar, it is enough to prove that the regular part RegV of V is a pluripolar set because
24 we can write V' as a finite union of the regular parts of suitable analytical subsets of V. By Hironaka’s

25 desingularization, there is a composition ¢’ : V' — V of explosions along smooth submanifolds that do not
26 cross RegV (or their inverse images) so that the strict transformation V’ of V' is smooth.

Let &', w, n be as above. For the above arguments, V' c {@' = —oo} for some function quasi-p.s.h. ¢’ on
V' and dd°@’ + @' > 0. Put S := o’.(dd°® + 1) whichis a (1,1) - current closed on V and S + w > 0.
We can write

S =dd°¢os+ns, o =dd9+n
for some smooth closed forms ng, n. We have

dd°ps +ns +w >0, ddp+1n+w > 0.

Thus g, ¢ are quasi-p.s.h. functions on V. In addition, we also have

vs = oL (') + 1 + a smooth function

27 on an open neighborhood of RegV" in which ¢’ is biholomorph. Consequently, RegV C {¢y = —oo}.
28 This completes the proof.

29 [ |

30 3 Second Main Result

31 In this section, we prove the Theorem 1.10. Our idea is to consider suitable test functions in the Sobolev
32 space W12, This approach is inspired by [21].

33 Fix a smooth volume form fo on V and we use this form to define the norm in space L?(V). Let W2 be
a4 the function space with real value ¢ € L?(V) such that dp has L? coefficients. Remember the following
s inequality of Poincaré-Sobolev: for ¢ € W2 with [}, ¢dug = 0, we have

lellze < cllde| Lz, 3.1
36 for some constant ¢ independent of ¢, cf for example or . Note that the term ||d||% , is comparable
37 to the mass of the positive current i0¢ A Jp. We have the following lemma.

13
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Lemma 3.1. ( [2], Pro. 3.1]) Let I be a compact subset of V (2k — 1)- Hausdor{f’s zero dimensional
measure . Let @ be a function with real value L}, (V\I). Suppose that the coefficients of dp are in L*(V\I).
Then o € W12 and there is a compact subset M of V\I and a constant ¢ > 0 both independent of ¢ such
that

lellzrevy < clllellzrany + ldell L vy)-

1 Definition 3.2. Let W be the subset of W12 consisting of ¢ such that there are m; € N, a (1,1)-
2 continuous form 7 and a functlon n-p.s.h. 1) satisfying

10 N < dde((f™)ut)) 4+ (f™)un (3.2)

3 ascurrents. A size representative of ¢ is m := (mg,m1), where mg is an upper limit of ||| L.

4 If V is Kihler, W*1 ? coincides with the space W*l 2 considered in [21] that is independent of f. In this

5 context, the space W2 is studied in detail in and used in for the study of correspondences on
6 Riemann surfaces with two equal dynamic degrees. Let §;” L(f) > 1. We have the following observation.

Lemma 3.3. Let ¢ € VV*1 ? and m = (mg, my) be a size representative of . So we have

ldl 2 < Amg/* (xai—1)™/?

7 for some constant A independent of .

& Proof. Letnbe ason (3.2). Let w be a Hermitian metric on V with dd°w*~! = 0. Testing dd* ((f™").¢) +
o (f™),n with this form, we see that the norm of dd®((f™),¥) + (f™).nis equal to [1,(f™).nAwr!
10 which is limited by Amg(x2;—1)™* for some constant A independent of 7, mg, m1. The desired inequality
11 then follows. This completes the proof.

12 [ |

Letyp € W:? Define ¢ := max{p,0} a ¢~ := max{—¢, 0}. Consider a Lipschitz function y : R — R.
We have 9(x o ¢) = (X' o ¢)J¢. This can be seen using a sequence of smooth functions, converging to ¢
on W12, We deduce that

id(x o) NO(xop) = (X op)?*idp A dyp.
13 Consequently, y o ¢ € W*lf In particular, let x(¢) := [t|, max{¢t,0} or max{—t,0} for t € R, we get the
14 following crucial property.
15 Lemma 3.4. For each p € W*l]?, if m = (mg, mq) is a representative of size of p, then m is also a size
16 representative of ||, o and ¢~ .

17 We already know that the pushforward of a function quasi-p.s.h. by f is a function weakly d.s.h. The

18 following result, which explains the role of Wi in this study, provides a more accurate description in the
19 case of functions quasi-p.s.h limited.

20 Lemma 3.5. Each function quasi-p.s.h limited is on VV*1 ? and f, preserves W 2 In addition, foreach ¢ €

21 Wjﬁ, if m = (mg, m1) is a size representative of p, then m’ := (dpmg, my Jr 1) is a size representative

2 of fepand
[feellze < c(llellzr + [1d(fsp)l r2) 3.3)

23 for some constant c independent of .

Proof. Let ¢ be a function quasi-p.s.h limited and f : V — 'V a dominant meromorphic map. Using the
identity ~ ~ ~
2i0p A Dp = i00p? — 20iddp
24 we see that there is a (1, 1)-continuous form 7 and a function 7-p.s.h. v for which idp A dp < dd®y) + 1.
25 Consequently ¢ € W1’2.

26 Now let ¢ be an arbitrary element of W . Let ) and v be such that (3.2) holds. Fix a dense open sub-

27 set of Zariski Q of V in wh1ch fe, ( fml) ¥, (f™).n are well-defined functions or forms and 7 is an
28 unbranched cover on f~1(Q). We have f.p € L], () and

I feellLr )y < ellellz, 3.4

14
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for any compact K on 2 and some constant ¢ independent of . Note that V\(2 is a proper analytical subset
of V, Thus , is of Hausdorff (2k — 1)-dimensional and zero measure. On €2, by Cauchy-Schwarz inequality,

we have ~ ~
i0(f+p) NO(fap)& < X1 [+(i0p N Op) < xau fu [dd((f7)t0) + (F™) 1]

= xa[dd* ((f™F)up) + (S™H)un).

It follows that d(f.p) € L?(£2). For this and by Lemma we get f,p € W2, Thus, i0(f.@) A O(f.)
has no mass on V\<. It follows that
i0(fep) NO(fup) < xauLaldd® ((f™F1)u)) + (f™ )] < xarldd® ((f™ 1)) + (f™ )]

1 because the last current is positive by Lemma 2.9. Combining this with (3:1) and (3:4) gives (3.3). The
2 desired statement then follows. This completes the proof. |

Let p € VV*1 ? and m = (mg,m1) be a size representative of ¢. Consider f, acting on Borel’s measurable
functions. Remember that f, preserves the set of constant functions. As in the last section, let by :=
f\? wdpg, and g := ¢ — by. We define two sequences ¢,,, b, as follows. Put

bn = bn(‘p) = /V(f*@n—l)d:um Pn = f*‘ﬂn—l - bn

s forn > 1. Note that ¢y, differs from ((f™).¢) by a constant. Lemma[3.5]implies that m,, := (x5,mo, m1+
4 ) is a size representative of ,,. This together with Lemmaimply that

s Lemma 3.6. m,, := (x%,mo, m1 + n) is also a size representative of | o, |, o} and ¢, .

6 By Lemma[3.3] we get

dpnl| 12 Amg *xal? (xau_1) " H™D/2(3.5)

7 Using (3.5), (3.1) and (3.3) give
linllze < Amg/ x5/ (xar1) ™2, [ba| < Amg/ x5/ (xar 1) /2 (3.6)

for n > 1 and some possible different constant A. Now we are in a situation very similar to the one in the last
section. Using arguments similar to those in the last section, we can show that lim,, o (x5, (f™)*w", ¢)
exists and denote by b_(¢p) its limit. In fact, we have

o0
b, = Z X7 bj-
§=0

s It follows that o
Lo (0)] < llellzr + Amg’* (x21-1)™/? (3.7)

for some constant A independent of ¢. Clearly, if ¢ is a function quasi-p.s.h limited , b is equal to the
same number defined in the last section. So we have

(g, ) = b (9)

9 for function quasi-p.s.h limited ¢. Let VV*1 ’2f the subset of I/V*1 ? consisting of functions that are continuous

*
10 outside a closed pluripolar set. Note that f, preserves VV*1 ;2f because f is a covering outside an analytical
11 subset of V. We now affirm that

12 Lemma 3.7. For ¢ € W*l;?f, we have (jf, @) = b ().

Proof. The proof is similar to that on [21, Lemma 5.5]. We proved first that ¢ is i y-integrable. We
assume for a moment that ¢ > 0. Let V' be a closed pluripolar set such that ¢ is continuous outside of V.
Remember that 11y has no mass on pluripolar sets, therefore, on V. Since x5," (f ™)*wk converges to p f as
positive measures and V\V is open, we have

< limi —n(pnyk, k — —Jy. sos k ,—n
(pr ) < liminf (" (/") w®, 0) = lim Z(:)xm bj + liminf(w*, x5"¢n)
Jj=
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1 which is equal to b/ (). Thus ¢ is p-integrable if ¢ > 0. In general, write ¢ = ¢t — ¢~ and applying
2 the last property, show that ¢ is p ¢-integrable. If m = (mg, m;) is a size representative of ¢, then we also
3 getthat

gl < e ()] + B (07 < Allellzr + me (xa1)™72), (3.8)
4 for some constant c independent of . Now using f*jir = X2t gives

[ 0) = b (D) = [hars X" (F")wp = Vo (DD < lenl + {1, X3, ),
where ¢, == — 7., | X3/’ |bj|. Note that the first term on the right side of the last inequality tends to 0
because of (3.6). On the other hand, by (3-8)) and Lemma 3.6} the second term is limited by

—-n 1/2 2 a4
Axy" (lonl 1 +m0/ X;Ll/ (X2z—1)( 1+ )/2)

5 which tends to 0 when n — oo. This produces the desired equality. This completes the proof.
6 |

Theorem 3.8. Let V, f, X2, X21—1 be as above with & (f) > 1. So there is a constant A > 0 such that
Ln(, ) = (g (W o f)) = (g, D) (g )| < Alld]loc An (),

where

A(0) = [lellor +mg Ocam1)™ 2] x™ (xor-1)™/?,

7 foreach € L™(uy), ¢ € W*lff and (g, m1) a size representative of p,

8 Note that if ¢ is a function 7-p.s.h. limited for some (1, 1)-continuous form 7 of L>°-norm < 1, then there
9 is a constant mg independent of ¢ such that (mg,1) is a size representative of ¢. Therefore, the above
10 theorem gives a uniform correlation decay for each .

11 Proof. Let the annotations be as above. I,,(¢,p 4+ ¢) = I,(¢, ) for each constant ¢ because of the
12 invariance of s1r. We can assume that (11f,¢) = 0. By Lemma [3.7, we get b/_(¢) = 0. Consequently,

13 Xop (f")e(0) = ¢ + Xg)"n- Using f*puy = Xty gives
In(d}, 90) = X2_ln|<ﬂfv1/)(fn)*(§0)>| - ‘<:u‘fa T;Z)(Cn + X;ln(pn)” < |Cn| + XQ_an/u‘fa |90n|>| (3.9

Note that, as before, we have
len] < AAL(p)

for some constant A independent of ¢. On the other hand, f, preserves W*1 ;?f, thus ¢, € W*1 ;?f and so is

|on|. By Lemma 3.6, (x5,mo, m1 + n) is a size representative of |, | if (mg, m1) is a size representative
of . Arguing as in the proof of Lemma 3.7 gives that

X" s lonl)| < Adn(p)
14 for some constant A independent of . Hence the desired inequality follows. This completes the proof.

15 |

End of Proof of Theorem 1.10. The central limit theorem for 7 is a direct consequence of its correlation
decay as shown in [21]. Therefore, it remains to prove the property of the correlation decay. By Theorem
for each C' function ¢ on V, we have

1%, 0) < Al¢llollelerxa™* (xai-1)™>.

16 This combined with the interpolation inequality for functional in Banach spaces C', C° provides the desired
17 correlation decay for iy, cf [21].

18 Remember that 1 is K-mixing if for each ¢ € L?(uy), we have

sup  I,(v, ) — 0. (3.10)
YEL2(puy)

19 Note that the operator y5;' f.can be extended to be a continuous linear operator on L (115 ) because | f.p|? <
20 x2f+(|¢]?). As above, to prove (3.10), we can assume that (. r, ) = 0. Using we have

I, 0) < lIxar" (F")ell L2 - 3.11)

Consider now ¢ to be a limited function on VV*1 ff. The set of these functions is dense on L? (1 ). We have

X2 (F™")xllLzupy < Nlplloollxzy™ (F™ )l Ly
21 that tends to 0 by proof of theorem 3.8. This combined with (3.T1)) gives (3.10). The proof is completed. M
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1 Remark 1. By inequality (3.6), we see that for each complex measure v with density L? and v(X) = 1,
2 Xq (f™)*v converges weakly to 1.

s 4 Conjectures

4 Here is the First Conjecture.

Conjecture 4.1. Let V, f, uy as in Theorem 1.9. Let 91,. .., be the Lyapunov exponents of iy and
=3 wi its inverse sum. So the Hausdorff dimension of ji satisfies

dima (117) = Whi(f).
5 Here is the Second Conjecture.
Conjecture 4.2. LetV, f, 117 be as in Theorem 1.9. So there are TlJr and T, such that iy is defined by :
pr=T" AT,
where T} is a positive invariant closed current of bidegree (,1), i.e.
1
— (fm)*wl N TlJr
Xai
and 7, designates a positive invariant closed current of (k — [,k —[), i.e.

1
X3 (k1)

(f™)wht — T,

6 Here is the Third Conjecture.
7 Conjecture 4.3. Let V, f, s be as in Theorem 1.9 and Tl+ as in Conjecture Let 41, ...,%y be the

8 Lyapunov exponents of p1y with 1); = max;<;<x ;. So the Hausdorff dimension of the Support of TIJr
9 satisfies

I
dimy, (SuppT}t) > 20k — 1) + %.
1
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