Preprint
Technical Note

Evaporation of Emitted Droplets Are An Important Factor Affecting the Lifetime of the Airborne Coronavirus

Altmetrics

Downloads

698

Views

867

Comments

0

This version is not peer-reviewed

Submitted:

29 April 2020

Posted:

30 April 2020

You are already at the latest version

Alerts
Abstract
There is a lot of discussion underway with conflicting opinions examining the airborne nature of the SARS-CoV2 virus. Surprisingly, important phenomena prevalent with respect to aerosols (suspended droplets) have not been considered. In this Technical Note, we propose a methodology for the coupling of aerosol phenomena (such as evaporation, particle transport accounting for drag) to accurately establish the lifetimes of the droplets. A characteristic time analysis illustrates the time scales for evaporation and settling: for example, the characteristic time for evaporation of a 10 µm droplet is 0.036 s at a relative humidity of 25%; compared to a settling time of about 500 s. For any particle smaller than ~ 100 µm, the evaporation of the emitted or exhaled droplet has to be considered. Coupling evaporation of the droplet as it settles, we estimate the horizontal distance traversed. Trajectories of a 10 µm and 100 µm particle emitted with a typical initial velocity of release associated with coughing and sneezing indicates the greater spread in the horizontal direction when evaporation is accounted for. The life time of the 10 µm particle increases from 8.3 min to 12 hours (will be intercepted prior and the actual airborne time will then be shorter); and for a 100 µm particle from 4.9 s to 39.4 s.
Keywords: 
Subject: Environmental and Earth Sciences  -   Atmospheric Science and Meteorology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated