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ABSTRACT 

 

 We previously proposed a public intervention framework concept that would allow people 
to resume personal and economic activities. We showed that intervention measures are used in a 
quantitative scale to reduce transmission probabilities and disease severity. In this article, we 
systematically examine the origin, assumptions, performance and limitations of epidemiological 
models from different views used in past review. We found that nearly all model assumptions fail 
to hold or are remote from reality; R0 does not exit or has no utility in guiding treatment options; 
personalized intervention measures are vitally important to COVID-19 due to its transmission 
characteristic; and current epidemiological models are unable to accurately assess the true 
benefits of personalized intervention measures. We suggest that poor performance of the models 
are attributed to flawed assumption that health/disease properties can be treated as transferable 
properties. The flaw creates a fiction that disease properties such as infection probabilities and 
death risks can be transferred from any vulnerable persons to anyone in the population and thus 
severely limit societal ability to fight the pandemic. We finally show that the benefits of 
personalized mitigation measures could be determined directly by using variable Ri values for 
infected persons (or nodes) together assessment of death rate and disability rate; the attempt of 
avoiding the disease by defeating all potential transmission probabilities is unrealistic; but 
mitigating disease severity for specific persons is more feasible and reliable. A most reliable 
strategy for reviving economy is using personalized protective measures and improving person 
health before effective vaccine is available. 
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INTRODUCTION 

 

 In the first article [1], we proposed a public intervention framework concept. In that 
framework, intervention measures may include host, viral and environmental factors. Infection 
properties are treated as continuous quantitative properties, and intervention measures are also 
used in a quantitative manner to achieve better performance. On such a quantitative scale, all 
biological properties including viral actions, immune responses, disease severity, etc. can be 
evaluated. In this article, we will show why intervention measures formulated by using 
population approach are insufficient and why all assumptions in epidemiological models fail. We 
examine all known and implied assumptions, omitted model parameters and limitations in 
classical epidemiological models to find where the true benefits of personalized preventive and 
mitigation measures are. In order to assess personalized measures, we consider a transmission 
network and use it to appraise the benefits of the measures on personal outcomes and population 
outcome and then explore the best strategy for reviving economy. 

   

ANALYSIS OF LIMITATIONS IN EPIDEMIOLOGICAL MODELS AND POPULATION-BASED 
APPROACH 

 

 To determine the performance of the public health intervention framework, we need to 
use a suitable model. 

A. Origins and Historical Limitations of the Epidemiological Model 

The basic reproduction number (R0) was first introduced in the field of demography [2], 
where this number was used to count offspring. In this model, the offspring can be measured by 
the two-value scale because the investigator did not concern how offspring might differ. R0 was 
originally called the basic case reproduction rate when George MacDonald introduced the 
concept into the epidemiology literature in the 1950s [3, 4, 5, 6]. The R0 concept was used as an 
indicator of the contagiousness or transmission ability of infectious and parasitic agents. When 
R0 was adopted for use by epidemiologists, the objects being counted were infective cases [6]. 
Based on the mathematical model, an outbreak is expected to continue if R0 is larger than 1 and 
to end if R0 is less than one [7].  The original model can be shown in the following diagram. 
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Figure 1. Hypothetical models, R0=2 for Ebola and R0=4 for Sars (From Wikipedia.) 

Although R0 concerns biological property, this value is estimated with complex 
mathematical models developed using various sets of assumptions.  Approximate R0 values are 
often calculated from 3 primary parameters: the duration of contagiousness after a person 
becomes infected, the likelihood of infection per contact between a susceptible person and an 
infectious person or vector, and the contact rate and other additional parameters for more 
complex cycles of transmission [3]. Due to difficulties in counting the number of cases, R0 is 
nearly always estimated retrospectively from antibody-testing data or by using mathematical 
models [8]. Even though different infection statuses can be assigned in a model, infection can vary 
greatly in severity. The disparities in disease severity are especially large for COVID-19 [9, 10].   

B. Failed Assumptions in Epidemiological Model for COVID-19 

 The epidemiological models are very poor [8, 11]. We examine stated and implied 
assumptions below.  

1.  Assumption that R0 exists 

  R0 is an estimate of contagiousness that is a function of human behavior and biological 
characteristics of pathogens. The key assumption is that all persons are identical. This 
assumption can be found from the model development history. R0 was introduced into the 
epidemiology literature in the 1950s [2, 3, 4, 5], differences between individual persons were not 
understood. The assumption that all human beings are identical has been refuted by 
overwhelming evidence. The first human genome sequences were published in February 2001 by 
the Human Genome Project [12], and the role of heritable phenotype changes became research 
subjects even further later [13, 14]; emotion and stress are found to affect disease outcomes 
through immune system [15-24]. The role of emotion and chronic stress in cancer was discovered 
after 1980s [25-29]. The effects of acute and chronic psychological stress in heart attack risk were 
found later [30, 31]. Stress made humans susceptible to infection, and short-term stress 
negatively affects wound healing [32, 33], increases the pro-inflammatory response in caretakers 
of Alzheimer’s patients [34], and affects infectious respiratory diseases [35-38]. In additional, 
obesity can increase disease vulnerability through the immune system [39-42], and malnutrition 
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affects infectious diseases [43-54]. The body of evidence shows that human beings cannot be 
treated as identical. Personalized medicine concept was proposed in medicine in 2012 [55-56].  

The reproduction model was developed several decades before the three-dimensional 
differences in human beings were understood. All of those factors imply there is no R0 in reality. 
Determined R0 values depend on human host conditions, infectious agents, epidemiological data 
and mathematical models. The limited utility is shown in a large number of studies dated after 
1950’s. More than 20 different R0 values (range 5.4–18) were reported for measles for various 
areas and periods [57], and a review in 2017 identified feasible measles R0 values of 3.7–203.3 
[58]. The wide ranges highlight the effects of local social-behavioral and environmental factors. 
The effective reproduction number can also be specified at a particular time t which can be used 
to trace changes in Rt [59, 60]. The R0 is so erratic and highly variable that the model cannot be 
used to optimize personalized measures for personal benefits.  

2.  All susceptible persons are equally likely to become infected 

Great difference in personal health and susceptibility to COVID-19 infection are hidden in 
erratic and widely variable R0 values. This means that society generally cannot, with limited 
exceptions, rely on this model to seek personalized measures for personal protection. The mass-
action assumption that all individuals are equally likely to become infected used in 
compartmental models also fail [8]. In Maryland, almost 48% deaths are of the vulnerable 
persons in nursing homes [61, 62].  

3. New cases do not depend on time, or models lack real speed element 

New cases do not depend on time or time is not considered although the word rate has a 
speed-like element [63]. The model recognizes the rate element only partially and indirectly. If 
the disease course and transmission time window are fixed, a large R0 would tell rapid growth of 
new cases. This implies faster growing speed. However, the model does not address speed of the 
disease course for an infected person, and how faster the disease is transmitted to others. Even in 
a complex compartmental model, time is used only as a parameter for the population, but not for 
the disease course of a person [78]. Due to lack of real speed component, the model lacks utility 
to seek health intervention measures that are directed to altering the kinetic of disease course. 
Humans resist the virus largely by two immune responses: the innate immune response to initial 
viral attacks [64] and the adoptive immune response [65-69]. R0 may be indirectly related to the 
speed competition between early viral activities and innate immune responses.   

4. Most models generally do not consider disease severity 

 When a model is used to model transmission rates for COVID-19, data fitting is weighed by 
infection cases. However, transmission rates are not the most important part of the disease. Some 
patients have no symptoms, some have mild symptoms, some have severe symptoms, and some 
die and a super majority of infections will resolve without severe symptoms [9, 10]. R0 is heavily 
influenced by those mild infection cases. The ratios between death risk and infection risk are low 
for healthy persons but are much higher for vulnerable persons. Disease severity is related to 
belated immune responses, and severe immune damages that is caused by belated and overly 
intense immune responses [70]. R0 could not take into account anything about viral reproduction 
speed and adoptive immune response [71]. When the disease is defined only in two statuses, a 
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large number of factors influencing disease severity cannot be used as model parameters. Even if 
disease severity is defined by some components, the model is unable to take as model parameters 
factors that influence disease severity. 

5. Oversimplified transmission contacts  

In epidemiological models, contacts are not-defined or insufficiently defined [71]. The 
probability of transmission per contact cannot be determined accurately because contacts can 
vary by types, duration, intense levels, etc. Since contacts cannot be defined, there is no way to 
determine what contacts affect personal outcome and population outcome.  

6. Ignoring differences in transmission routes 

Transmissions by skin contacts, blood, inhalation and other transmission routes are 
expected to have completely different disease consequences [72]. This is not considered in the 
models. In a realistic model, different parameters consistent with different transmission routes 
should be associated with specific persons. This would result in different R0 values. Exposure 
routes and viral amounts may affect disease initiations, development and death risk.   

7. An implied assumption that health/disease properties are transferable 

 Due to influences of population approach, the epidemiological model is based on an 
implied assumption that all health properties can be summed and averaged [8, 71]. This 
assumption implies that disease from person A is same as disease of person B and curing X% a 
population is treated as same regardless of who are actually cured. R0 is actually a 
mathematically determined value. Examining mathematical operations, we see that transmission 
contacts on some persons can be offset by avoiding contacts on others; one infection on a person 
can be offset by avoiding infection on another person; and vulnerability to infection attributable 
to obesity is same as that attributable to a toxic heavy metal.  

 The transfer of infection from one person to another cause different consequences to 
involved persons. Since the model allows for swapping disease statuses and outcomes between 
different persons, such a model must lack sensitivity for assessing validity of the personalized 
measures for specific persons. Thus, data mathematically derived from a population cannot be 
used for personalized use [73]. This problem should be seen from the car repairing model: most 
mechanical properties such as coolant flow, engine power, engine speed, load capacity…. can be 
added up for cars across different makes and models, but cannot be applied to any particular car 
in car repairs. The obvious reason is that multiple systems including the cooling system, the 
exhaustion system, the combustion system, etc. must work precisely in balance. The coolant flow 
cannot be altered according to the population-derived average. This requirement is very similar 
to a human body where organ functions must be in precise balance. 

 The non-transferable nature of health properties can be shown in a hypothetical example. 
To improve vitamin D supply, its levels in blood for a sample of a population can be determined 
together with the mean and a standard deviation. This mean may be used to determine the total 
amount of Vitamin D required for correcting vitamin deficiency for the population. Since vitamin 
levels actually vary among persons, the amounts of supplement intakes cannot be determined on 
the basis of the population mean but on actual vitamin level in each person. If the same amount of 
vitamin supplement is indiscriminately used to all persons, the amount is insufficient to those 
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with low vitamin levels but may intoxicate those with high vitamin levels. The health property 
value derived mathematically from a population cannot be used as the basis for correcting subtle 
imbalance. This flaw has not been recognized before [8, 71, 74].  

Mathematical operations of health/disease properties is not improper if they are used to 
eliminate measurement errors, provide ballpark estimates, predict disease courses, or provide 
policies supports. They may be used to predict how strong public intervention measures affect 
disease course [74-77].  The failure of this assumption is distinctively associated with treatment 
of diseases that arise from subtle imbalance. This requirement is another version of  long-held 
notion that diseases must be treated by using matched treatments but not randomized 
treatments. Any properties derived from population data cannot be used to optimize 
personalized measures for correcting subtle imbalances. For this reason, there is no need to 
consider proposed alternative R0s [8]. We believe that no model can ever contain enough model 
details that are comparable to what is necessary for treating all persons by matched treatments.  

C. Limitations of the Population-Based Approach 

Epidemiological research methodology reflects the formation of population research 
model. R0 reflects the assumption that all persons are identical. Around 1950’s, three-
dimensional differences between different persons were unknown.  

The R0 was actually pooled from a large number of different Ri values. Even for an infected 
person and all exposed persons, the actual Ri value would depend on an overwhelming number of 
environmental and social-cultural factors [8, 71, 74]. Although R0 is sensitive in evaluating strong 
intervention measures, the model cannot be used to optimize intervention measures that must be 
tailored to specific persons. The model actually dismisses from model parameters all health 
properties such as age, heart disease, lung disease, obesity, immune problems, diabetes, 
emotional condition, other risk factors, etc [7, 8, 78]. The model does not pay attention to 
differences in transmission routes such as skin contacts, blood, vector, and inhalation [78]. By 
such oversimplification, the model essentially turns each person into a widget with an 
assumption that disease happens like an intrinsic event that can be measured by same 
probability. The models naturally preclude the need to use personalized intervention measures 
and severely limit societal ability to mitigate the pandemic.  

Many limitations can be seen in a compartmental model [78], which uses about 20 
parameters with 8 initial parameters. The model’s structure is a matter of chooses, and most 
model input values are estimates. The model does not take parameters on health properties. We 
expect to see different R values for different infected persons and a progressively reduced Ri with 
time, but the model attempts to produce a value by complex mathematical operations.   

We show that the best population performance cannot be achieved by selecting 
intervention measures according to the population approach. The principle illustrated in the 
vitamin D example is equally applicable in formulating personalized measures. Due to great 
disparities between individual persons, any intervention directed to personal health would 
appear to have little or no effects on the population [73]. Increasing social distance in personal 
interactions has little or no benefit because its beneficial effects on a small number of persons can 
be diluted by the lack of beneficial effects on the majority of people. Other intervention measures 
to correct a health problem of some persons might be neutralized by negative effects on others 
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[73]. Thus, the real benefits of personalized measures cannot be recognized by the population-
based method. 

 Due to the inherent limitations of the population approach, the epidemiological models 
are useful for studying strong intervention effects such as locking down city, personal isolation or 
quarantine [8, 71, 78], and mask-wearing (out in closed public places such as groceries stores, 
trains, planes, ships, offices, etc), vaccination [74, 75, 76], and antiviral drugs.  

Intervention measures that can be tuned by current epidemiological models may not be 
able to stop transmission in many situations as shown below. 

 

 

 

 

 

 

 

 

 

 

Figure 2. the COVID-19 virus can transmit from person to person in advance of detecting, 
tracing and personal isolation. The COVID-19 disease can transmit by asymptomatic persons or 
infected persons before symptoms appear, and thus detecting infected persona and personal 
isolation cannot be used as exclusive means to stop transmissions. Diagnostic methods may have 
30% errors [79]; CDC estimated 25% of infected persons may have no symptoms but the field 
test results show as much as 50% error rates [80, 81], and incubation times differ from one day to 
potentially more than 14 days [82]. Like other influenza, acquired immunity may be of limited 
protection [70]; re-infection may be prevented in a short term in an animal study [83] and this 
finding cannot explain a relapsed disease which was confirmed [84].  

If test results are wrong by 30%, isolation and removal will not achieve intended benefits.  
Since one in every three tested persons was not diagnosed; and each of the false negative persons 
has varying times to transmit the virus to other persons before the person develops enough 
symptoms for removal. Depending on each person’s activities and people around him, he may 
transmit the virus to one, several, tens and even potentially hundreds of uninfected persons in the 
first generation. Before the first generation of infected persons develop symptoms and identified, 
some of them have already transmitted the virus to a second generation of persons. Due to 
inaccuracies in incubation times, test timings, contacts, etc., it is impossible to break the chain of 
transmissions by tracing and isolating infected persons.  

D. Poor Performance of Mathematical Models 
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The estimated values of R0 generated by mathematical models are dependent on 
numerous decisions made by the modeler and many model parameters [8, 74, 78, 85, 86, 87]. 
Furthermore, many of the parameters included in the models used to estimate R0 are merely 
guesses [8, 78, 88, 89]. This problem becomes more obvious for complex models that use more 
model parameters [74, 89]. Thus different models with different assumptions produce different 
R0 values even when they are computed by using same epidemiological data [8, 74, 86, 90, 91]. 
For those reasons, mathematical models have limited utility for predicting future cases in a long 
time period. Even a fairly complex model constructed for COVID-19 does not include model 
parameters for personalized measures [78]. This model divides the population as susceptible, 
exposed, infectious but not yet symptomatic, infectious with symptoms, hospitalized and 
recovered groups as compartments, and further classify population into quarantined susceptible, 
isolated exposed, and isolated infected compartments. Despite the complexity, the model assumes 
that all people are same and do not take personalized measures as model parameters. They are 
sensitive to strong measures such as locking down cities, personal isolation, and population 
vaccination [74, 75, 76].  

E. Discover True Benefits of Personalized Measures 

Due to R0 concept failure, population methodological flaw, and mathematical errors, 
personalized protective and mitigation benefits cannot be assessed. Therefore, we must explore 
personalized measures outside the epidemiological model limits.  

1. See benefits of personalized measures in the transmission network 
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Figure 3 shows a transmission network from patient zero, to the first generation of 
infected persons and a second generation of infected persons. The size of circles represents 
vulnerability and disease severity of infected persons.  

We could look at how infection grows by examining transmission chains. In a new 
breakout, if an initial infection is not stopped, the infection causes R1 new infections. For each 
newly infected person, the virus then infects R2 persons; this would result in R1*R2 cases in the 
second generation and R1*R2*R3 cases in the third generation. However, due to variations, the 
persons in R1 are different; and R2 has different values depending on the infected persons. Thus, 
we use Ri to denote R2.1, R2.2, R2.3, R2.4, R2.5, R2.6. When Ri is used for a specific infected 
person, its value would depend on all exposed persons. The overall performance of the 
intervention measure is mainly reflected in the final number of infected persons, number of 
deaths, and number of disabled persons. 

A person might be exposed to multiple contact chances, and may escape one, two, and 
even several, but will not escape from all potential contact chances. This person will most 
probably be infected sometime later. After susceptible people are reduced, the number of new 
cases will be limited by available susceptible persons. With time passing, the effective 
reproduction number would go down because people do everything to reduce contact and reduce 
transmission probability. Thus, Ri is highly variable.  

The strategy is to reduce every Ri value in the transmission network and reduce death risk 
and disability risk for every infected person. The benefits of personalized measures can be 
evaluated without using the solution of the model. The chain from the patient zero, R1 and R2 is a 
series of transmissions. There might be other series of transmission chains. This figure provides a 
hint that preventing the infection zero could stop a series of infections and preventing the 
infection at R2,3 could have the effect of stopping 20 infections, but do not stop the some of the 
persons from being infected by a different series of infections. Some persons might be infected by 
multiple chains if no preventive measures are used, but other similar measures may hinder or 
block multiple infection chains in the network. 

Personalized measures have both personal benefits and population benefits. A large 
number of personalized measures can be taken by all people to reduce contact number, the 
transmission probability for each contact, and disease severity of each infection. Those measures 
reduce Ri for each infection node. Since the population performance of the mitigation measures is 
a refection of all individual cases, reductions in all Ri values for all persons must lead to a 
reduction in R0. Even if the measures do not reduce the total infection number and case growth 
rate for the population, they can still reduce death rate and disability rate. If the six deaths are 
avoided in Figure 3, the intervention measures are successful, regardless of total infection cases. 

2. Explore personalized preventive and mitigation benefits beyond the model limits 

Public health intervention measures are directed to reducing personal contacts, amounts 
of virus in exposure, and chances of infection in each contact. Mitigation measures may be 
tailored to persons to achieve best results because all individual contacts, personal resistance to 
the virus, human responses to the disease, etc, greatly differ. Personalized approach essentially 
avoid the flaws in population-based approach. As we have found that population-derived 
approach cannot achieve best performance by using same measures to all persons. A best 
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population outcome can be achieved only by tuning personalized measures for individual 
persons. All personal outcomes contribute to the outcome of the population. If a person has 
better health, the person will not become infected, is infected at a lower probability, or gets the 
disease in a lower severity. The person contributes to the population by reducing each Ri in the 
transmission network. If every person in the population does the same, their efforts will result in 
smaller Ri values in the transmission network. The outcome of the population is much better as 
compared a hypothetical reference without using the personalized measures.   

3. Get more benefits of personalized measures by doing-more 

In the classical epidemiological model, many model parameters and most case data are 
accepted in a two-value scale. In reality, all viral properties, health properties and intervention 
measures have bell-shaped probability density profiles. When any such a property is converted 
into a two-value scale, a small tail always falls outside the two-value flipping point. Failure is the 
nature rather than an exception. 

The only strategy for defeating this common error is creating higher safety margins: (1) a 
larger distance may be used for social distancing between an immune-suppressed person and an 
infected person because the immune-suppressed person has diminished antiviral ability; (2) 
high-quality masks are worn by people who are exposed to the virus for extended time each day; 
(3) for people with extensive personal interactions, face-shield may be used to reduce the amount 
of the virus that could reach the face and respiratory track; (4) comprehensive measures may be 
taken to reduce risk of outbreak in nursing homes because old people in nursing homes are more 
vulnerable to the virus; (5) for facilities that are of strategical importance, intervention measures 
cannot rely on viral test statuses and tracing contact histories. More rigid intervention measures 
should be taken to prevent viral transmission.  

 Stronger measures, better protective equipment, and multiple protective devices or 
measures are used to offset errors attributable to test method sensitivity, incubation time, 
asymptomatic infections, etc. Stopping a seed or early infection is particularly important because 
it has the effect of stopping all infections in many generations. However it dose not stop some of 
the persons from infected by different series of infections. Even stopping an early infection is not 
a sure shot because people contact each other in many ways in various times. Therefore, only 
doing-more strategy will translate into a better population outcome. 

4. Improve personal health as the fundamental measure 

 It is hard for a person to avoid every contact in his life. Avoiding once, twice and even ten 
times by luck is not the same as avoiding all. A most reliable mitigation measure is improving 
personal health as a fundamental solution.  

Population outcome of the pandemic is the sum of all infected persons. The society can 
evaluate the outcome by counting total infections and deaths. This is why population based 
medicine is important. However, best performance of public intervention measures cannot be 
achieved by using population-based measures. How an infected person transmits the virus to 
people depends on age, personal health, risk factors, immune system condition, etc. After a 
person is exposed to the virus, whether the virus can thrive in the person depends on antiviral 
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responses and viral loads [64, 65]. An initial infection may be controlled by innate responses. 
Thus, people can improve their ability to resist viral infection and reduce disease severity.  

To reduce effective Ri values, the best approach is using multiple measures to reduce viral 
amounts in exposures and improve personal resistance to the virus. For each node in the 
network, the health condition of the infected person and all exposed persons must affect the Ri 
value. The health conditions of all people determine the finally realized Ri values. If all people 
improve their ability to resist the virus, the number of infected persons will be reduced. When the 
measures are sufficiently effective, Ri will be reduced to 1 or less for very infected person and the 
pandemic will end.  

5. Achieve personalized mitigation benefits by reducing disease severity 

For COVID-19, disease severity is one thing that can be identified and reduced.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Disease severity affects both R0 value and death rate. Current models do not have 
suitable model parameters for disease severity. If measures are directed to reducing disease 
severity, different measures are applied to different persons.  

Personalized measures can be easily directed to reducing disease severity. Reducing death 
rates can have great beneficial impacts on the population. By using proper measures, the disease 
severity of an infected person can be reduced; and the infected person may have reduced viral 
discharge and shortened infectious period. A person with mild symptoms would generate fewer 
infections or lower Ri than the same person would if he had severe symptoms. Even some of the 
infected persons may also have reduced disease severity. The mitigation measure used by one 
single person could affect many people in the node of the transmission network.   
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Since disease severity can be reliably predicted by looking at their personal medical 
histories, the measures can be tailored to such persons. If death rate is reduced to sufficiently low, 
the pandemic would become a mild flu. 

F. Recognize Personalized Protective and Mitigation Benefits from Existing Epidemiological 
Models 

The traditional models cannot reliably and accurately show benefits of personalized 
measures. Their true benefits may be reflected in population death rate and disability rate, but no 
body can tell. We will show where the benefits are hidden. 

1. The benefits of personalized measures can be revealed by making plus and minus changes to 
model parameters 

Due to large errors and inaccuracies in model structure, parameters, and model decisions, 
epidemiological models generally cannot be directly used to assess the benefits of personalized 
measures. This does not means the models cannot be used to assess relative benefits of 
personalized measures. It is possible to determine disease outcome by reducing transmission 
rate by a certain percent, as it was done in a study, where epidemiological models show 10% 
reduction in transmission rate can reduce hundreds of thousands of deaths [92]. Such a method 
may also be used to predict money saved [93]. When a model is used to determine incremental 
benefits, most errors affecting the baseline is expected to drop out. However, one difficulty is that 
most personalized measures cannot be directly used as model inputs. Additional work must be 
done to establish how other measures quantitatively reduce reducing transmission probabilities. 
Moreover, the measures must be tailored to persons on basis of their health conditions such as 
obesity, inactivity, immune-compromise, chronic diseases, etc. Few studies have been attempted 
to evaluate personalized benefits. 

2. Benefits of personalized measures are hidden in a reduced R0 value, which cannot be 
determined accurately 

 The benefits of personalized measures may be reflected in the R0 value. Even though the 
measures cannot be accepted as model inputs, they affect model outcome through epidemiologic 
data. If a significant number of people in the population have improved their resistance to the 
virus and improved their survival probability from infections, there will be fewer infection cases 
and fewer deaths. The R0 would become smaller. Personalized measures affect R0 through the 
following factors: (1) Epidemiologic triad (agent, host, and environmental factors) [94] affect R0. 
This implies that those factors influence R0. This means that pre-exposure physiological changes, 
post exposure remedial measures, and multiple factors treatments are important; (2) The value 
of R0 is a function of human social behavior and organization, as well as the innate biological 
characteristics of particular pathogens [71]; (3) Policy environment, various aspects of 
environment, and other factors that influence transmission dynamics and, thus, are relevant for 
the estimation of R0 values [94]; and (4) Any factor having the potential to influence contact rate, 
including population density, social organization, seasonality, frequencies of human–human or 
human–vector interactions in a time or space [8, 71, 74].  

All those factors affect R0 through influencing individual Ri. To recognize true benefits of 
personalized measures, the modeler must purposefully use the measures while knowing other 
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influencing factors so that the modeler can attribute the lower R0 to the measures. In reality, 
there is no way to predict how the measures actually reduce R0 because there is no way to make 
the comparison. The benefits are reflected on R0, but there is no way to tell how much of the R0 
value have been reduced by personalized measures. That is why no credit would be given to 
personalized measures. 

3. Benefits of personalized measures may be falsely rejected as errors 

One biggest problem is that models are unable to take different values for different 
persons. When a mitigation measure is weak, compared with other influencing factors, it may 
exhibit as having no effect; and when one single mitigation measure is used among many 
influencing factors, the true benefits of the measure cannot be determined [73]. If only 5 of one 
hundred persons use the mitigation measure, even though the five have benefited from it, the 
benefit is not revealed in the population outcome. To show this problem in an example, if 
additional distance is used by all people, the extra distance has no benefit on healthy and young 
persons. Prior-exposure measure, heightened protection, and post-exposure remedies may show 
little benefits on those who are healthy and their benefits. True benefits can be found only on 
vulnerable persons. This is why population trials will eliminate all weak factors by mistake. The 
worst problem is that when a personalized protective and mitigation measure has both positive 
benefit and negative benefit, the positive benefit will be nullified by the negative benefit due to 
mathematical averaging. Wearing masks by an infected person is predicted to increase viral 
redistribution or re-infection within the lungs, but wearing masks by uninfected person in an in-
house public area can provide the best protection [96]. The negative benefits of mask-wearing by 
infected persons are hidden in the population data.  

G. Discussion 

Public health intervention measures cannot break the chain of infection reliably. The root 
causes of failure include a large number of asymptomatic persons, poor viral detection 
sensitivities, varying incubation times, etc. R0 can be very large (R0=6.5). If asymptomatic person 
restarts an outbreak, the person can infect many persons before his infection status is found. Due 
to long incubation times, and the invisible transmission manner, the attempt of stopping chain of 
infection by conducting tests and removal is deemed to fail. Because of psychological impacts of 
death threats, small outbreaks cause population panic and thus disrupt economy.  

Our analysis supports the conclusion by Li et al. “... in almost every aspect that matters, R0 
is flawed” after they compared performance for a number of mathematical models [8].  The only 
reason for continuing using it is “is all that we have” [8]. The authors noted as reason of R0 
failure, “the mismatch between individual-based parameter and a population-level compartment 
model.” Our finding is that all flaws are on the population approach and the models ignore reality 
that people vary greatly in their abilities to resist the virus. The model has bound our hands to 
fight a pandemic that is actually close to influenza for the majority of people.  

 R0 is especially poor for COVID-19 because the model focuses on disease transmissions, 
which are the less important part of the disease. Thus, intervention measures tuned by the model 
are not necessarily the best for mitigating death rate and disability rate. Also, R0 from most 
models is not a measure of the disease severity or the rapidity of a pathogen’s spread through a 
population and thus could not address the most important aspects of the disease.  
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Epidemiological models cannot differentiate differences between different persons. Any 
R0 value could support a large number of combinations of different persons with different 
outcomes. Naturally, personalized measures are nearly always falsely rejected as having no 
benefits. Their true benefits may be falsely rejected as a result of averaging positive and negative 
benefits. With limited exceptions, R0 should not be used to evaluate personalized measures. 

Some epidemiological models may be used to study relative benefits by determining the 
reduction in one or more model parameters. The models may reveal some benefits of 
personalized measures through model parameters such as transmission rates. Personalized 
measures can also be hidden in R0 though modeled epidemiological data, but cannot be correctly 
attributed to the measures.   

All epidemiological models use an assumption that all health properties are transferable 
between individual persons. This presumption holds in applications unrelated to medicine, but 
always fails if the model are used as guidance for formulating treatment methods for individual 
persons. The failure is anticipated whenever model outputs are used on multiple component 
systems where all components must be maintained in precise balance. This flawed assumption is 
directly responsible for transferring death risks from a small number of distinctive vulnerable 
people to the whole population and cause the society to ignore the most important disease 
feature that disease severity varies from no-sign to death. This fact implies there is a great room 
for intervention. When the death rate is sufficiently low, occasional outbreaks will not disrupt 
economy.  

It has been suggested that wearing masks when out in public, in combination with 
complementary public health measures could stop community spread [95]. Due to a high R0 and 
invisible transmissions, an active person expects to be in multiple infection chances. It would be 
hard to escape from all infection chances. The best strategy for surviving from the pandemic is 
using personalized protective measures and personalized mitigation measures to increase 
personal resistance to the viral and reduce disease severity of infected persons. We have found 
that multiple treatments can be used to break the limits of flawed population trials [73]. However, 
a model could easily have more than 100 parameters [74], and none of them are directed to 
details for treating diseases. 

Developing an epidemiological model with a sensitivity to detect the true benefits of 
personalized measures would be very difficult. As indicated by our car-repairing model and 
vitamin D example, such a model can be used only in one way of predicting the benefits of prior 
formulated personalized measures. However, the non-transferable nature of disease/health 
properties implies that personalized measures must be formulated for specific persons and the 
measures must be used to only matched persons. A modeler cannot formulate personalized 
measures by imagining somethings and running the model. Best personalized measures can be 
developed only for specific persons.  
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LIMITATION OF THIS STUDY 

 

The validity of this study is limited to COVID-19. The utilities of R0 and mathematical 
models depends on pathogens.  
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