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ABSTRACT

We previously proposed a public intervention framework concept that would allow people
to resume personal and economic activities. We showed that intervention measures are used in a
quantitative scale to reduce transmission probabilities and disease severity. In this article, we
systematically examine the origin, assumptions, performance and limitations of epidemiological
models from different views used in past review. We found that nearly all model assumptions fail
to hold or are remote from reality; RO does not exit or has no utility in guiding treatment options;
personalized intervention measures are vitally important to COVID-19 due to its transmission
characteristic; and current epidemiological models are unable to accurately assess the true
benefits of personalized intervention measures. We suggest that poor performance of the models
are attributed to flawed assumption that health/disease properties can be treated as transferable
properties. The flaw creates a fiction that disease properties such as infection probabilities and
death risks can be transferred from any vulnerable persons to anyone in the population and thus
severely limit societal ability to fight the pandemic. We finally show that the benefits of
personalized mitigation measures could be determined directly by using variable Ri values for
infected persons (or nodes) together assessment of death rate and disability rate; the attempt of
avoiding the disease by defeating all potential transmission probabilities is unrealistic; but
mitigating disease severity for specific persons is more feasible and reliable. A most reliable
strategy for reviving economy is using personalized protective measures and improving person
health before effective vaccine is available.
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INTRODUCTION

In the first article [1], we proposed a public intervention framework concept. In that
framework, intervention measures may include host, viral and environmental factors. Infection
properties are treated as continuous quantitative properties, and intervention measures are also
used in a quantitative manner to achieve better performance. On such a quantitative scale, all
biological properties including viral actions, immune responses, disease severity, etc. can be
evaluated. In this article, we will show why intervention measures formulated by using
population approach are insufficient and why all assumptions in epidemiological models fail. We
examine all known and implied assumptions, omitted model parameters and limitations in
classical epidemiological models to find where the true benefits of personalized preventive and
mitigation measures are. In order to assess personalized measures, we consider a transmission
network and use it to appraise the benefits of the measures on personal outcomes and population
outcome and then explore the best strategy for reviving economy.

ANALYSIS OF LIMITATIONS IN EPIDEMIOLOGICAL MODELS AND POPULATION-BASED
APPROACH

To determine the performance of the public health intervention framework, we need to
use a suitable model.

A. Origins and Historical Limitations of the Epidemiological Model

The basic reproduction number (R0) was first introduced in the field of demography [2],
where this number was used to count offspring. In this model, the offspring can be measured by
the two-value scale because the investigator did not concern how offspring might differ. RO was
originally called the basic case reproduction rate when George MacDonald introduced the
concept into the epidemiology literature in the 1950s [3, 4, 5, 6]. The RO concept was used as an
indicator of the contagiousness or transmission ability of infectious and parasitic agents. When
RO was adopted for use by epidemiologists, the objects being counted were infective cases [6].
Based on the mathematical model, an outbreak is expected to continue if RO is larger than 1 and
to end if RO is less than one [7]. The original model can be shown in the following diagram.
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Figure 1. Hypothetical models, RO=2 for Ebola and R0=4 for Sars (From Wikipedia.)

Although RO concerns biological property, this value is estimated with complex
mathematical models developed using various sets of assumptions. Approximate R0 values are
often calculated from 3 primary parameters: the duration of contagiousness after a person
becomes infected, the likelihood of infection per contact between a susceptible person and an
infectious person or vector, and the contact rate and other additional parameters for more
complex cycles of transmission [3]. Due to difficulties in counting the number of cases, RO is
nearly always estimated retrospectively from antibody-testing data or by using mathematical
models [8]. Even though different infection statuses can be assigned in a model, infection can vary
greatly in severity. The disparities in disease severity are especially large for COVID-19 [9, 10].

B. Failed Assumptions in Epidemiological Model for COVID-19

The epidemiological models are very poor [8, 11]. We examine stated and implied
assumptions below.

1. Assumption that RO exists

RO is an estimate of contagiousness that is a function of human behavior and biological
characteristics of pathogens. The key assumption is that all persons are identical. This
assumption can be found from the model development history. RO was introduced into the
epidemiology literature in the 1950s [2, 3, 4, 5], differences between individual persons were not
understood. The assumption that all human beings are identical has been refuted by
overwhelming evidence. The first human genome sequences were published in February 2001 by
the Human Genome Project [12], and the role of heritable phenotype changes became research
subjects even further later [13, 14]; emotion and stress are found to affect disease outcomes
through immune system [15-24]. The role of emotion and chronic stress in cancer was discovered
after 1980s [25-29]. The effects of acute and chronic psychological stress in heart attack risk were
found later [30, 31]. Stress made humans susceptible to infection, and short-term stress
negatively affects wound healing [32, 33], increases the pro-inflammatory response in caretakers
of Alzheimer’s patients [34], and affects infectious respiratory diseases [35-38]. In additional,
obesity can increase disease vulnerability through the immune system [39-42], and malnutrition
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affects infectious diseases [43-54]. The body of evidence shows that human beings cannot be
treated as identical. Personalized medicine concept was proposed in medicine in 2012 [55-56].

The reproduction model was developed several decades before the three-dimensional
differences in human beings were understood. All of those factors imply there is no RO in reality.
Determined RO values depend on human host conditions, infectious agents, epidemiological data
and mathematical models. The limited utility is shown in a large number of studies dated after
1950’s. More than 20 different RO values (range 5.4-18) were reported for measles for various
areas and periods [57], and a review in 2017 identified feasible measles RO values of 3.7-203.3
[58]. The wide ranges highlight the effects of local social-behavioral and environmental factors.
The effective reproduction number can also be specified at a particular time t which can be used
to trace changes in Rt [59, 60]. The RO is so erratic and highly variable that the model cannot be
used to optimize personalized measures for personal benefits.

2. All susceptible persons are equally likely to become infected

Great difference in personal health and susceptibility to COVID-19 infection are hidden in
erratic and widely variable RO values. This means that society generally cannot, with limited
exceptions, rely on this model to seek personalized measures for personal protection. The mass-
action assumption that all individuals are equally likely to become infected used in
compartmental models also fail [8]. In Maryland, almost 48% deaths are of the vulnerable
persons in nursing homes [61, 62].

3. New cases do not depend on time, or models lack real speed element

New cases do not depend on time or time is not considered although the word rate has a
speed-like element [63]. The model recognizes the rate element only partially and indirectly. If
the disease course and transmission time window are fixed, a large RO would tell rapid growth of
new cases. This implies faster growing speed. However, the model does not address speed of the
disease course for an infected person, and how faster the disease is transmitted to others. Even in
a complex compartmental model, time is used only as a parameter for the population, but not for
the disease course of a person [78]. Due to lack of real speed component, the model lacks utility
to seek health intervention measures that are directed to altering the kinetic of disease course.
Humans resist the virus largely by two immune responses: the innate immune response to initial
viral attacks [64] and the adoptive immune response [65-69]. RO may be indirectly related to the
speed competition between early viral activities and innate immune responses.

4. Most models generally do not consider disease severity

When a model is used to model transmission rates for COVID-19, data fitting is weighed by
infection cases. However, transmission rates are not the most important part of the disease. Some
patients have no symptoms, some have mild symptoms, some have severe symptoms, and some
die and a super majority of infections will resolve without severe symptoms [9, 10]. RO is heavily
influenced by those mild infection cases. The ratios between death risk and infection risk are low
for healthy persons but are much higher for vulnerable persons. Disease severity is related to
belated immune responses, and severe immune damages that is caused by belated and overly
intense immune responses [70]. RO could not take into account anything about viral reproduction
speed and adoptive immune response [71]. When the disease is defined only in two statuses, a
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large number of factors influencing disease severity cannot be used as model parameters. Even if
disease severity is defined by some components, the model is unable to take as model parameters
factors that influence disease severity.

5. Oversimplified transmission contacts

In epidemiological models, contacts are not-defined or insufficiently defined [71]. The
probability of transmission per contact cannot be determined accurately because contacts can
vary by types, duration, intense levels, etc. Since contacts cannot be defined, there is no way to
determine what contacts affect personal outcome and population outcome.

6. Ignoring differences in transmission routes

Transmissions by skin contacts, blood, inhalation and other transmission routes are
expected to have completely different disease consequences [72]. This is not considered in the
models. In a realistic model, different parameters consistent with different transmission routes
should be associated with specific persons. This would result in different RO values. Exposure
routes and viral amounts may affect disease initiations, development and death risk.

7. An implied assumption that health/disease properties are transferable

Due to influences of population approach, the epidemiological model is based on an
implied assumption that all health properties can be summed and averaged [8, 71]. This
assumption implies that disease from person A is same as disease of person B and curing X% a
population is treated as same regardless of who are actually cured. RO is actually a
mathematically determined value. Examining mathematical operations, we see that transmission
contacts on some persons can be offset by avoiding contacts on others; one infection on a person
can be offset by avoiding infection on another person; and vulnerability to infection attributable
to obesity is same as that attributable to a toxic heavy metal.

The transfer of infection from one person to another cause different consequences to
involved persons. Since the model allows for swapping disease statuses and outcomes between
different persons, such a model must lack sensitivity for assessing validity of the personalized
measures for specific persons. Thus, data mathematically derived from a population cannot be
used for personalized use [73]. This problem should be seen from the car repairing model: most
mechanical properties such as coolant flow, engine power, engine speed, load capacity.... can be
added up for cars across different makes and models, but cannot be applied to any particular car
in car repairs. The obvious reason is that multiple systems including the cooling system, the
exhaustion system, the combustion system, etc. must work precisely in balance. The coolant flow
cannot be altered according to the population-derived average. This requirement is very similar
to a human body where organ functions must be in precise balance.

The non-transferable nature of health properties can be shown in a hypothetical example.
To improve vitamin D supply, its levels in blood for a sample of a population can be determined
together with the mean and a standard deviation. This mean may be used to determine the total
amount of Vitamin D required for correcting vitamin deficiency for the population. Since vitamin
levels actually vary among persons, the amounts of supplement intakes cannot be determined on
the basis of the population mean but on actual vitamin level in each person. If the same amount of
vitamin supplement is indiscriminately used to all persons, the amount is insufficient to those
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with low vitamin levels but may intoxicate those with high vitamin levels. The health property
value derived mathematically from a population cannot be used as the basis for correcting subtle
imbalance. This flaw has not been recognized before [8, 71, 74].

Mathematical operations of health/disease properties is not improper if they are used to
eliminate measurement errors, provide ballpark estimates, predict disease courses, or provide
policies supports. They may be used to predict how strong public intervention measures affect
disease course [74-77]. The failure of this assumption is distinctively associated with treatment
of diseases that arise from subtle imbalance. This requirement is another version of long-held
notion that diseases must be treated by using matched treatments but not randomized
treatments. Any properties derived from population data cannot be used to optimize
personalized measures for correcting subtle imbalances. For this reason, there is no need to
consider proposed alternative ROs [8]. We believe that no model can ever contain enough model
details that are comparable to what is necessary for treating all persons by matched treatments.

C. Limitations of the Population-Based Approach

Epidemiological research methodology reflects the formation of population research
model. RO reflects the assumption that all persons are identical. Around 1950’s, three-
dimensional differences between different persons were unknown.

The RO was actually pooled from a large number of different Ri values. Even for an infected
person and all exposed persons, the actual Ri value would depend on an overwhelming number of
environmental and social-cultural factors [8, 71, 74]. Although RO is sensitive in evaluating strong
intervention measures, the model cannot be used to optimize intervention measures that must be
tailored to specific persons. The model actually dismisses from model parameters all health
properties such as age, heart disease, lung disease, obesity, immune problems, diabetes,
emotional condition, other risk factors, etc [7, 8, 78]. The model does not pay attention to
differences in transmission routes such as skin contacts, blood, vector, and inhalation [78]. By
such oversimplification, the model essentially turns each person into a widget with an
assumption that disease happens like an intrinsic event that can be measured by same
probability. The models naturally preclude the need to use personalized intervention measures
and severely limit societal ability to mitigate the pandemic.

Many limitations can be seen in a compartmental model [78], which uses about 20
parameters with 8 initial parameters. The model’s structure is a matter of chooses, and most
model input values are estimates. The model does not take parameters on health properties. We
expect to see different R values for different infected persons and a progressively reduced Ri with
time, but the model attempts to produce a value by complex mathematical operations.

We show that the best population performance cannot be achieved by selecting
intervention measures according to the population approach. The principle illustrated in the
vitamin D example is equally applicable in formulating personalized measures. Due to great
disparities between individual persons, any intervention directed to personal health would
appear to have little or no effects on the population [73]. Increasing social distance in personal
interactions has little or no benefit because its beneficial effects on a small number of persons can
be diluted by the lack of beneficial effects on the majority of people. Other intervention measures
to correct a health problem of some persons might be neutralized by negative effects on others
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[73]. Thus, the real benefits of personalized measures cannot be recognized by the population-
based method.

Due to the inherent limitations of the population approach, the epidemiological models
are useful for studying strong intervention effects such as locking down city, personal isolation or
quarantine [8, 71, 78], and mask-wearing (out in closed public places such as groceries stores,
trains, planes, ships, offices, etc), vaccination [74, 75, 76], and antiviral drugs.

Intervention measures that can be tuned by current epidemiological models may not be
able to stop transmission in many situations as shown below.

First Second

Exposed Generation Generation
To the virus

asymptomatic |—>R1=~5o\

Isolation

'shedding R180 WY
\/:."-. i :=-

Cured Isolation
Relapse\_/{;R1=~10 /

Before infected persons at R1 are traced and isolated, some of
them might have transmitted the virus to R2 patients (when no
effective interventions are used).

Figure 2. the COVID-19 virus can transmit from person to person in advance of detecting,
tracing and personal isolation. The COVID-19 disease can transmit by asymptomatic persons or
infected persons before symptoms appear, and thus detecting infected persona and personal
isolation cannot be used as exclusive means to stop transmissions. Diagnostic methods may have
30% errors [79]; CDC estimated 25% of infected persons may have no symptoms but the field
test results show as much as 50% error rates [80, 81], and incubation times differ from one day to
potentially more than 14 days [82]. Like other influenza, acquired immunity may be of limited
protection [70]; re-infection may be prevented in a short term in an animal study [83] and this
finding cannot explain a relapsed disease which was confirmed [84].

If test results are wrong by 30%, isolation and removal will not achieve intended benefits.
Since one in every three tested persons was not diagnosed; and each of the false negative persons
has varying times to transmit the virus to other persons before the person develops enough
symptoms for removal. Depending on each person’s activities and people around him, he may
transmit the virus to one, several, tens and even potentially hundreds of uninfected persons in the
first generation. Before the first generation of infected persons develop symptoms and identified,
some of them have already transmitted the virus to a second generation of persons. Due to
inaccuracies in incubation times, test timings, contacts, etc,, it is impossible to break the chain of
transmissions by tracing and isolating infected persons.

D. Poor Performance of Mathematical Models
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The estimated values of RO generated by mathematical models are dependent on
numerous decisions made by the modeler and many model parameters [8, 74, 78, 85, 86, 87].
Furthermore, many of the parameters included in the models used to estimate RO are merely
guesses [8, 78, 88, 89]. This problem becomes more obvious for complex models that use more
model parameters [74, 89]. Thus different models with different assumptions produce different
RO values even when they are computed by using same epidemiological data [8, 74, 86, 90, 91].
For those reasons, mathematical models have limited utility for predicting future cases in a long
time period. Even a fairly complex model constructed for COVID-19 does not include model
parameters for personalized measures [78]. This model divides the population as susceptible,
exposed, infectious but not yet symptomatic, infectious with symptoms, hospitalized and
recovered groups as compartments, and further classify population into quarantined susceptible,
isolated exposed, and isolated infected compartments. Despite the complexity, the model assumes
that all people are same and do not take personalized measures as model parameters. They are
sensitive to strong measures such as locking down cities, personal isolation, and population
vaccination [74, 75, 76].

E. Discover True Benefits of Personalized Measures

Due to RO concept failure, population methodological flaw, and mathematical errors,
personalized protective and mitigation benefits cannot be assessed. Therefore, we must explore
personalized measures outside the epidemiological model limits.

1. See benefits of personalized measures in the transmission network

Exposed

To the viuso

A more realistic empirical model: circle size indicates personal
vulnerability to infection. Personal activity and disease severity
affect the number of infected persons. Death risk depends on
personal health (environment factors are not indicated in the
figure)
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Figure 3 shows a transmission network from patient zero, to the first generation of
infected persons and a second generation of infected persons. The size of circles represents
vulnerability and disease severity of infected persons.

We could look at how infection grows by examining transmission chains. In a new
breakout, if an initial infection is not stopped, the infection causes R1 new infections. For each
newly infected person, the virus then infects R2 persons; this would result in R1*R2 cases in the
second generation and R1*R2*R3 cases in the third generation. However, due to variations, the
persons in R1 are different; and R2 has different values depending on the infected persons. Thus,
we use Ri to denote R2.1, R2.2, R2.3, R2.4, R2.5, R2.6. When Ri is used for a specific infected
person, its value would depend on all exposed persons. The overall performance of the
intervention measure is mainly reflected in the final number of infected persons, number of
deaths, and number of disabled persons.

A person might be exposed to multiple contact chances, and may escape one, two, and
even several, but will not escape from all potential contact chances. This person will most
probably be infected sometime later. After susceptible people are reduced, the number of new
cases will be limited by available susceptible persons. With time passing, the effective
reproduction number would go down because people do everything to reduce contact and reduce
transmission probability. Thus, Ri is highly variable.

The strategy is to reduce every Ri value in the transmission network and reduce death risk
and disability risk for every infected person. The benefits of personalized measures can be
evaluated without using the solution of the model. The chain from the patient zero, R1 and R2 is a
series of transmissions. There might be other series of transmission chains. This figure provides a
hint that preventing the infection zero could stop a series of infections and preventing the
infection at R2,3 could have the effect of stopping 20 infections, but do not stop the some of the
persons from being infected by a different series of infections. Some persons might be infected by
multiple chains if no preventive measures are used, but other similar measures may hinder or
block multiple infection chains in the network.

Personalized measures have both personal benefits and population benefits. A large
number of personalized measures can be taken by all people to reduce contact number, the
transmission probability for each contact, and disease severity of each infection. Those measures
reduce Ri for each infection node. Since the population performance of the mitigation measures is
arefection of all individual cases, reductions in all Ri values for all persons must lead to a
reduction in RO. Even if the measures do not reduce the total infection number and case growth
rate for the population, they can still reduce death rate and disability rate. If the six deaths are
avoided in Figure 3, the intervention measures are successful, regardless of total infection cases.

2. Explore personalized preventive and mitigation benefits beyond the model limits

Public health intervention measures are directed to reducing personal contacts, amounts
of virus in exposure, and chances of infection in each contact. Mitigation measures may be
tailored to persons to achieve best results because all individual contacts, personal resistance to
the virus, human responses to the disease, etc, greatly differ. Personalized approach essentially
avoid the flaws in population-based approach. As we have found that population-derived
approach cannot achieve best performance by using same measures to all persons. A best
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population outcome can be achieved only by tuning personalized measures for individual
persons. All personal outcomes contribute to the outcome of the population. If a person has
better health, the person will not become infected, is infected at a lower probability, or gets the
disease in a lower severity. The person contributes to the population by reducing each Ri in the
transmission network. If every person in the population does the same, their efforts will result in
smaller Ri values in the transmission network. The outcome of the population is much better as
compared a hypothetical reference without using the personalized measures.

3. Get more benefits of personalized measures by doing-more

In the classical epidemiological model, many model parameters and most case data are
accepted in a two-value scale. In reality, all viral properties, health properties and intervention
measures have bell-shaped probability density profiles. When any such a property is converted
into a two-value scale, a small tail always falls outside the two-value flipping point. Failure is the
nature rather than an exception.

The only strategy for defeating this common error is creating higher safety margins: (1) a
larger distance may be used for social distancing between an immune-suppressed person and an
infected person because the immune-suppressed person has diminished antiviral ability; (2)
high-quality masks are worn by people who are exposed to the virus for extended time each day;
(3) for people with extensive personal interactions, face-shield may be used to reduce the amount
of the virus that could reach the face and respiratory track; (4) comprehensive measures may be
taken to reduce risk of outbreak in nursing homes because old people in nursing homes are more
vulnerable to the virus; (5) for facilities that are of strategical importance, intervention measures
cannot rely on viral test statuses and tracing contact histories. More rigid intervention measures
should be taken to prevent viral transmission.

Stronger measures, better protective equipment, and multiple protective devices or
measures are used to offset errors attributable to test method sensitivity, incubation time,
asymptomatic infections, etc. Stopping a seed or early infection is particularly important because
it has the effect of stopping all infections in many generations. However it dose not stop some of
the persons from infected by different series of infections. Even stopping an early infection is not
a sure shot because people contact each other in many ways in various times. Therefore, only
doing-more strategy will translate into a better population outcome.

4. Improve personal health as the fundamental measure

It is hard for a person to avoid every contact in his life. Avoiding once, twice and even ten
times by luck is not the same as avoiding all. A most reliable mitigation measure is improving
personal health as a fundamental solution.

Population outcome of the pandemic is the sum of all infected persons. The society can
evaluate the outcome by counting total infections and deaths. This is why population based
medicine is important. However, best performance of public intervention measures cannot be
achieved by using population-based measures. How an infected person transmits the virus to
people depends on age, personal health, risk factors, immune system condition, etc. After a
person is exposed to the virus, whether the virus can thrive in the person depends on antiviral
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responses and viral loads [64, 65]. An initial infection may be controlled by innate responses.
Thus, people can improve their ability to resist viral infection and reduce disease severity.

To reduce effective Ri values, the best approach is using multiple measures to reduce viral
amounts in exposures and improve personal resistance to the virus. For each node in the
network, the health condition of the infected person and all exposed persons must affect the Ri
value. The health conditions of all people determine the finally realized Ri values. If all people
improve their ability to resist the virus, the number of infected persons will be reduced. When the
measures are sufficiently effective, Ri will be reduced to 1 or less for very infected person and the
pandemic will end.

5. Achieve personalized mitigation benefits by reducing disease severity

For COVID-19, disease severity is one thing that can be identified and reduced.

Long and First Generation
severe disease (I nﬂ-l.f-l-if.f.\"emlon)

Environmental
factors

N
el

——y R1is large

Severe disease:

People high death rate

Vulnerability

Short and
mild disease

_; Rlis 3
3 small §

Disease severity affects transmission rates and death risks of the
infected person

Figure 4. Disease severity affects both RO value and death rate. Current models do not have
suitable model parameters for disease severity. If measures are directed to reducing disease
severity, different measures are applied to different persons.

Personalized measures can be easily directed to reducing disease severity. Reducing death
rates can have great beneficial impacts on the population. By using proper measures, the disease
severity of an infected person can be reduced; and the infected person may have reduced viral
discharge and shortened infectious period. A person with mild symptoms would generate fewer
infections or lower Ri than the same person would if he had severe symptoms. Even some of the
infected persons may also have reduced disease severity. The mitigation measure used by one
single person could affect many people in the node of the transmission network.
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Since disease severity can be reliably predicted by looking at their personal medical
histories, the measures can be tailored to such persons. If death rate is reduced to sufficiently low,
the pandemic would become a mild flu.

F. Recognize Personalized Protective and Mitigation Benefits from Existing Epidemiological
Models

The traditional models cannot reliably and accurately show benefits of personalized
measures. Their true benefits may be reflected in population death rate and disability rate, but no
body can tell. We will show where the benefits are hidden.

1. The benefits of personalized measures can be revealed by making plus and minus changes to
model parameters

Due to large errors and inaccuracies in model structure, parameters, and model decisions,
epidemiological models generally cannot be directly used to assess the benefits of personalized
measures. This does not means the models cannot be used to assess relative benefits of
personalized measures. It is possible to determine disease outcome by reducing transmission
rate by a certain percent, as it was done in a study, where epidemiological models show 10%
reduction in transmission rate can reduce hundreds of thousands of deaths [92]. Such a method
may also be used to predict money saved [93]. When a model is used to determine incremental
benefits, most errors affecting the baseline is expected to drop out. However, one difficulty is that
most personalized measures cannot be directly used as model inputs. Additional work must be
done to establish how other measures quantitatively reduce reducing transmission probabilities.
Moreover, the measures must be tailored to persons on basis of their health conditions such as
obesity, inactivity, immune-compromise, chronic diseases, etc. Few studies have been attempted
to evaluate personalized benefits.

2. Benefits of personalized measures are hidden in a reduced RO value, which cannot be
determined accurately

The benefits of personalized measures may be reflected in the RO value. Even though the
measures cannot be accepted as model inputs, they affect model outcome through epidemiologic
data. If a significant number of people in the population have improved their resistance to the
virus and improved their survival probability from infections, there will be fewer infection cases
and fewer deaths. The RO would become smaller. Personalized measures affect RO through the
following factors: (1) Epidemiologic triad (agent, host, and environmental factors) [94] affect RO.
This implies that those factors influence R0O. This means that pre-exposure physiological changes,
post exposure remedial measures, and multiple factors treatments are important; (2) The value
of RO is a function of human social behavior and organization, as well as the innate biological
characteristics of particular pathogens [71]; (3) Policy environment, various aspects of
environment, and other factors that influence transmission dynamics and, thus, are relevant for
the estimation of R0 values [94]; and (4) Any factor having the potential to influence contact rate,
including population density, social organization, seasonality, frequencies of human-human or
human-vector interactions in a time or space [8, 71, 74].

All those factors affect RO through influencing individual Ri. To recognize true benefits of
personalized measures, the modeler must purposefully use the measures while knowing other
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influencing factors so that the modeler can attribute the lower RO to the measures. In reality,
there is no way to predict how the measures actually reduce RO because there is no way to make
the comparison. The benefits are reflected on RO, but there is no way to tell how much of the RO
value have been reduced by personalized measures. That is why no credit would be given to
personalized measures.

3. Benefits of personalized measures may be falsely rejected as errors

One biggest problem is that models are unable to take different values for different
persons. When a mitigation measure is weak, compared with other influencing factors, it may
exhibit as having no effect; and when one single mitigation measure is used among many
influencing factors, the true benefits of the measure cannot be determined [73]. If only 5 of one
hundred persons use the mitigation measure, even though the five have benefited from it, the
benefit is not revealed in the population outcome. To show this problem in an example, if
additional distance is used by all people, the extra distance has no benefit on healthy and young
persons. Prior-exposure measure, heightened protection, and post-exposure remedies may show
little benefits on those who are healthy and their benefits. True benefits can be found only on
vulnerable persons. This is why population trials will eliminate all weak factors by mistake. The
worst problem is that when a personalized protective and mitigation measure has both positive
benefit and negative benefit, the positive benefit will be nullified by the negative benefit due to
mathematical averaging. Wearing masks by an infected person is predicted to increase viral
redistribution or re-infection within the lungs, but wearing masks by uninfected person in an in-
house public area can provide the best protection [96]. The negative benefits of mask-wearing by
infected persons are hidden in the population data.

G. Discussion

Public health intervention measures cannot break the chain of infection reliably. The root
causes of failure include a large number of asymptomatic persons, poor viral detection
sensitivities, varying incubation times, etc. RO can be very large (R0=6.5). If asymptomatic person
restarts an outbreak, the person can infect many persons before his infection status is found. Due
to long incubation times, and the invisible transmission manner, the attempt of stopping chain of
infection by conducting tests and removal is deemed to fail. Because of psychological impacts of
death threats, small outbreaks cause population panic and thus disrupt economy.

Our analysis supports the conclusion by Li et al. “.. in almost every aspect that matters, RO
is flawed” after they compared performance for a number of mathematical models [8]. The only
reason for continuing using it is “is all that we have” [8]. The authors noted as reason of RO
failure, “the mismatch between individual-based parameter and a population-level compartment
model.” Our finding is that all flaws are on the population approach and the models ignore reality
that people vary greatly in their abilities to resist the virus. The model has bound our hands to
fight a pandemic that is actually close to influenza for the majority of people.

RO is especially poor for COVID-19 because the model focuses on disease transmissions,
which are the less important part of the disease. Thus, intervention measures tuned by the model
are not necessarily the best for mitigating death rate and disability rate. Also, RO from most
models is not a measure of the disease severity or the rapidity of a pathogen’s spread through a
population and thus could not address the most important aspects of the disease.
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Epidemiological models cannot differentiate differences between different persons. Any
RO value could support a large number of combinations of different persons with different
outcomes. Naturally, personalized measures are nearly always falsely rejected as having no
benefits. Their true benefits may be falsely rejected as a result of averaging positive and negative
benefits. With limited exceptions, RO should not be used to evaluate personalized measures.

Some epidemiological models may be used to study relative benefits by determining the
reduction in one or more model parameters. The models may reveal some benefits of
personalized measures through model parameters such as transmission rates. Personalized
measures can also be hidden in RO though modeled epidemiological data, but cannot be correctly
attributed to the measures.

All epidemiological models use an assumption that all health properties are transferable
between individual persons. This presumption holds in applications unrelated to medicine, but
always fails if the model are used as guidance for formulating treatment methods for individual
persons. The failure is anticipated whenever model outputs are used on multiple component
systems where all components must be maintained in precise balance. This flawed assumption is
directly responsible for transferring death risks from a small number of distinctive vulnerable
people to the whole population and cause the society to ignore the most important disease
feature that disease severity varies from no-sign to death. This fact implies there is a great room
for intervention. When the death rate is sufficiently low, occasional outbreaks will not disrupt
economy.

It has been suggested that wearing masks when out in public, in combination with
complementary public health measures could stop community spread [95]. Due to a high RO and
invisible transmissions, an active person expects to be in multiple infection chances. It would be
hard to escape from all infection chances. The best strategy for surviving from the pandemic is
using personalized protective measures and personalized mitigation measures to increase
personal resistance to the viral and reduce disease severity of infected persons. We have found
that multiple treatments can be used to break the limits of flawed population trials [73]. However,
a model could easily have more than 100 parameters [74], and none of them are directed to
details for treating diseases.

Developing an epidemiological model with a sensitivity to detect the true benefits of
personalized measures would be very difficult. As indicated by our car-repairing model and
vitamin D example, such a model can be used only in one way of predicting the benefits of prior
formulated personalized measures. However, the non-transferable nature of disease/health
properties implies that personalized measures must be formulated for specific persons and the
measures must be used to only matched persons. A modeler cannot formulate personalized
measures by imagining somethings and running the model. Best personalized measures can be
developed only for specific persons.
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LIMITATION OF THIS STUDY

The validity of this study is limited to COVID-19. The utilities of RO and mathematical
models depends on pathogens.
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