We know that the classical Mittag-Leffler function play an important role as solution of fractional order differential and integral equations. We introduce the j-generalized p - k Mittag-Leffler function. We evaluate the second order differential recurrence relation and four different integral representations and introduce a homogeneous linear differential equation whose one of the solution is the j-generalized p-k Mittag-Leffler function. Also we evaluate the certain relations that exist between j-generalized p - k Mittag-Leffler function and Riemann-Liouville fractional integrals and derivatives. We evaluate Mellin-Barnes integral representation of j-generalized p-k Mittag-Le er Function. The relationship of j-generalized p-k Mittag-Leffler Function with Fox H-Function and Wright hypergeometric function is also establish. we obtained its Euler transform, Laplace Transform and Mellin transform. Finally we derive some particular cases.
Keywords:
Subject: Computer Science and Mathematics - Analysis
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.