Preprint
Review

COVID-19: Multiple Diseases Simulating Extreme High-Altitude Exposure? Oxygen Transport Physiology and Scarce Need of Ventilators; Andean Condor’s-Eye-View

Altmetrics

Downloads

661

Views

914

Comments

0

Submitted:

04 May 2020

Posted:

05 May 2020

You are already at the latest version

Alerts
Abstract
The critical hypoxia in COVID-19 patients during this pandemic, has taken away many lives all around the globe. The mechanism has been poorly understood and initially, word got around that it was a SARS (Severe Acute Respiratory Syndrome) pneumonia. The atypical images in lung computerized axial tomography (CAT) scans were alarming. This immediately alerted everyone including poor countries to purchase lacking sophisticated ventilator equipment. However, in some countries, even 88% of the patients on ventilators lost their lives. New observations and pathological findings are gradually clarifying the disease. What seems evident is that it is not only one disease but several, with different responses in different countries and different altitudes. The critical hypoxia and «gasping» present in some patients are not totally understood. It was mentioned that it could be like a High-Altitude Pulmonary Edema (HAPE). Hereby, as high-altitude medicine and hypoxia physiology specialists, we compare the pathophysiology with that of high-altitude exposure in order to understand the mechanisms involved. Some differences in lung radiological images along with transmission and viral attack mechanisms are discussed. The oxygen transport triad used at high-altitude can be applied on this pathology in order to propose even the use of erythropoietin (EPO) early in the treatment. The immune system is the most important long-term survival tool, so we suggest a short-term strategy: the use of special Earth open-circuit astronaut-resembling suits with effective outside air filtering re-breathing mechanisms in order to return to work and daily activities, without contamination risk. Thereby, the curve can be flattened without quarantine and the economy could recover.
Keywords: 
Subject: Medicine and Pharmacology  -   Cardiac and Cardiovascular Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated