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Abstract: This study describes all the properties of high-T. cuprates by introducing rotating holes
that are created by angular momentum conservations on a 2D CuO: surface, and which have a
different mass from that of a normal hole because of the magnetic field energy induced by the
rotation. This new particle called a macroscopic Boson describes the doping dependences of pseudo-
gap temperature and the transition temperature at which an anomaly metal phase appears and
describes the origin of the pseudo-gap. Furthermore, this study introduces a new model to handle
many-body interactions, which results in a new statistic equation. This statistic equation describing
many-body interactions accurately explains why high-T. cuprates have significantly high critical
temperatures. Moreover a partition function of macroscopic Bosons describes all the properties of
anomaly metal phase, which sufficiently agree with experiments, using the result from our previous
study that analytically describes the doping dependence of T.. By introducing a macroscopic Boson
and the new statistical model for many-body interactions, this study uncovered the mystery of high-
T cuprates, which have been a challenge for many researchers. An important point is that, in this
study, pure analytical calculations are consistently conducted, which agree with experimental data
well (i.e., they do not use numerical calculations or fitting methods but use many actual physical
constants).

Keywords: high-Tc cuprates; macroscopic Boson; many-body interactions; pseudo-gap; critical
temperature; anomaly metal phase; conservation of angular momentum; attractive force; Cooper
pair

1. Introduction

First of all, note that, as the abstract mentioned, the present paper is written under the condition
that our previously published article [1] was understood that describes the Tc formula analytically,
although the present paper will provide the review sections.

Although several significant advancements have been presented, from the initial discovery of a
superconductor, the most impressive discoveries are CuO2-based superconductors (i.e., high-Tc
cuprates) [2].

This is because, prior to this result, superconductors generally require significantly high
refrigeration because of their lower critical temperature (~20 K). However, because they have higher
T. than LN>, the high-T.cuprates received considerable attention and interests from condensed matter
physics researchers and researchers in technologies who demonstrated interest in the technical merits
when applied to superconducting magnetic energy storage and energy transmission [3-5].

Thus, initial results demonstrated that high-Tc cuprates involved researchers from many
condensed matter physics and related technologies.

However, condensed matter physics researchers investigated high-T. cuprates for much deeper
reasons, i.e., they are the first case at which the standard band model and the Bardeen—Cooper—
Schieffer (BCS) theory are not applied, which indicates that novel physical phenomena occurred.
(Recent H-based superconductors [6] with extremely high pressures have high potential to be applied
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to the BCS theory.) Moreover, many claimed that it is related to many-body interactions [7], which
made many theoretical researchers” approaches to the mechanism difficult. It is obvious that, similar
to the BCS theory, the use of quantum field theory is not adequate because quantum field theory is
extremely abstract and does not reflect the fact that a phenomenon in condensed matter physics
involves many actual physical constants.

Although many studies about the experiments have been reported [8-13], (in particular, STM
and STS [15] experimental methods to date revealed many aspects in high-T. cuprates,), no theory
describes all of the experimental data. These theories are divided to two methods: either Fermi-liquid
model or resonating valence bond (RVB) model [16-19].

However, these theories have undetermined parameters, which inevitably leads to numerical or
fitting methods. We must mention that they are insufficient because many related and actual physical
parameters (i.e. physical constants) are involved when the properties of high-Tc cuprates are
considered. For example, several researchers claim that, because of the existence of magnetic-field
interactions, the natural force to combine a Cooper pair must be spin interactions. However, as
mentioned in this study and our previous study [1], magnetic-field interactions are not generally only
the spin interactions. For example, the spin-fluctuation [19] model is a numerical one; in this sense,
this model is similar to the Hubbard-like model [20]. These models have multiple parameters to
determine or to fit; thus, they do not reflect actual physical picture the high-T. cuprates originally
have.

Furthermore, if the interaction was defined as spin interactions, they could not explain why
other multiple physical parameters such as phonons are related [21].

Although multiple theories exist discussing the nature of force to combine a Cooper pair and the
origin of pseudo-gap using RVB model or Hubbard-like model, few theoretical articles analytically
address and explain experiments data, in addition to the anomaly metal phase and the transition
temperature To at which the anomaly metal phase appears.

Briefly, the understanding of high-T. cuprates requires

1. Analytical calculations of many-body interactions. Most theories use a numerical or fitting
method; however, these approaches cannot clarify the physical picture in high-T. cuprates.
2. To understand the nature of force to combine a Cooper pair over long distance.

However, research-related challenges have prevented a complete investigation of the
abovementioned issues. If the calculations can be analytically solved, condensed matter physics will
make considerable progress in developing then methods for fabricating compounds with higher
critical temperatures could be developed through condensed matter fields. Thus, uncovering the
physical mechanics of high-T. cuprates is urgently required, and has motivated the present study.
We thus provide new answers to the above questions.

Combining with our previous study [1], we will propose a concept of macroscopic Boson. This
paper will describe the mechanism of high-Tc cuprates, using only this concept, with the
consideration of many-body interactions.

As the contents of this paper, first we introduce a concept of macroscopic Boson, in which its
mass and spin are described. Then using the partition function, the pseudo-gap energy is explained.
Moreover, the method to handle many-body interaction will be introduced. Next, as the review, we
obtain the formula of Tc [1]. The calculations of obtaining formulas of T*and To are positioned,
analyzing anomaly metal phases. Section 3 is Method in which more concrete calculation methods
are indicated. Then Result and Discussion sections are followed. Finally, the paper concludes the
entire contents in section 6.

2. Theory
2.1. Introduction of new particle and pseudo-gap relating to new particle

2.1.1. Introduction of a macroscopic Boson


https://doi.org/10.20944/preprints202005.0105.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 February 2023 doi:10.20944/preprints202005.0105.v4

When considering a CuOzsurface as the most important point [22] and when the refrigeration is
sufficient such that a hole’s wavelength becomes larger than that of width of the surface, it is assumed
that 2D is completely formed. This indicates that, on the surface, an angular momentum must be
conserved; thus, each hole takes a circle by self-rotating. At this time, because this rotating circle has
magnetic field energy, we consider that a new particle has been created. Note that the creations of
the particles implies a phase transition, which will be described later in this paper. This is related to
the electron nematic phase [27]. Going forward, we refer to this new particle as a “macroscopic
Boson”; the schematic is shown in Figure 1.

For a literature support of the assumption of a macroscopic Boson, please refer to [23]. Moreover,
this fact corresponds to the fact that, in a CuOz surface, a local persistent current exists [27].

AY Ty
_
’_,* X
e+
e+ 2n
S (i

Figure 1. Schematic of a macroscopic Boson. Normally, holes move in 3D when their kinetic energy
is high. However, when refrigeration reduces the momentum along z-direction, the complete x-y 2D
motion is formed. Thus, a conservation of the angular momentum creates a rotation movement by a
hole itself. This transition will be described later. Because a current circle by the rotation generates
magnetic field energy, which determines the mass of this circle, this circle is essentially different from
a normal hole. We will refer to this new particle as “a macroscopic Boson.” The radius n of a
macroscopic Boson is assumed to be of the order of a CuOzcell (i.e., ~1 nm).

2.1.2. Calculating the mass of a macroscopic Boson

First, let us calculate the mass of a macroscopic Boson. Using a magnetic flux, magnetic field
energy is represented as follows:

2U = -1, (1)

where I and @0 denote a current surrounding a macroscopic Boson and a magnetic flux of a
macroscopic Boson having a unique value. In this equation, the magnetic flux is assumed to be
quantized because each angular momentum is conserved as mentioned.

(DO = (2)

where h and e denote the Planck constant and the charge of a hole, respectively. Note that this study
used both the constant h and h as Planck constants. Note that this quantization implies that each flux
behaves as a particle, as discussed.

In this current, the cyclotron angular frequency is introduced.

e eB H
I =< =2mew, = 2me =2 = 2e? B0 (3)
T m m
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where w¢, Bo, and uo denote the cyclotron angular frequency, the constant and unique value of
magnetic field in a macroscopic Boson, and the magnetic permeability in the vacuum, respectively.
Thus, eq. (1) becomes

U= %ZEeZ”"TH‘)%, (4)

where considering a flux of eq. (2)

Hy =2—— 5)

; tomn?’
where 1) is the approximated radius of a macroscopic Boson.
Because the magnetic field Bois expressed as eq. (5), the rest energy, i.e. the mass of a macroscopic
Boson is formed as follows:

mepomnZe mn?

(6)

2.1.3. Spin of a macroscopic Boson

Let us now consider the spin of a macroscopic Boson to obtain partition function, which creates
all the anomaly metal properties. As mentioned, when a macroscopic Boson is created, a complete
2D motion can be considered. That is, among the x-y-z axes, we cannot consider z-components;
therefore, using the Pauli matrix, this case considers only the x- and y-components.

s=3(7 o) 7-1)

=i

s=20 h, 7-2)

where i denotes the imaginary unit.
In this study, a spin angular momentum is defined as the determinant from the Pauli matrix.
Thus, each determinant is as follows:

dets, = —=h, (8-1)

dets, = %h. (8-2)

Therefore, a net spin angular momentum of a macroscopic Boson is calculated as follows:
s = dets, + dets, = 0-h. 9)

The above result indicates that, although a single hole behaves as a Fermion, this macroscopic
Boson on 2 D behaves similar to a Boson. Thus, the name of this particle is derived from this fact.

Let us consider this by another view:

It is necessary to consider a magnetic-flux property in terms of the electromagnetics. As
described, a macroscopic Boson is simply a magnetic flux @®;in a 2D sheet. Moreover, electromagnetic
energy is expressed by the following Hamiltonian [33];

1
H=(n +§)hw

While time-dependent energy is described by the first term in this equation, a static magnetic
field energy, i.e., the energy of a macroscopic Boson, is equal to the second term, i.e., the zero-point
energy [33]. On the other hand, the liquid He (i.e., quantum liquid) has also the zero-point energy
[33]. Because the liquid He is consisted of Bose particles, a macroscopic Boson can be considered to
be a boson.

As described, as long as considering 2D, the statistic property would alter.
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2.1.4. Obtain the partition function

Because a macroscopic Boson on 2D follows the Bose’s partition function, we simply must

consider the following;:
1

ﬂ exp(Ei_EF)—l,

kp
where E;, |Er|, kg,and T denote energy, a chemical potential (i.e. Er < 0), the Boltzmann constant,
and temperature, respectively. An important point is that the exponential function is approximated
as a Maclaurin series,

(10)

1 kgt
fr ~ Ei—EI:+1_1 - Ei_EF' (11)
kgT

This abovementioned partition function is very important because all properties in the anomaly
metal phase in CuO2-based superconductors are described using this partition function. We will see
how this equation describes properties of the anomaly metal phase later.

Moreover, this equation has another expression. Because we are now considering the chemical
potential from Bosons and the general boson partition function, the following equation generally
holds:

Ep = E + kgTIn(z2), (12)

where the absolute value of the second term must be dominate over the value of the first term because
the chemical potential is negative, and where N, denotes accepter concentration. Moreover, ;V—Tfi
indicates a doping parameter in this study. The number 2 is attached because of the presence of spin.
Therefore, because ni indicates the concentration of lattices, Z—‘? of In is less than the value of the
number 1 as long as we consider the image in which holes are doped in a Mott insulator.

Using the equation above, the partition function, eq. (11), is translated as follows:

fr=—0n(32)" . (11-2)

n;

2.1.5. Calculate the pseudo-gap energy

Let us calculate the pseudo-gap energy, which is directly related to the mass of a macroscopic
Boson. First, we define the carrier concentration of macroscopic Bosons considering a 2D energy state

density.
D, (E) = 2% = py, (13)
n == [ Dy(E)fdE, (14)

where D,(E), n, and d denote energy state density in 2D, particle concentration, and width of the 2D
sheet, respectively. An important point to note is that the parameter d [m] is consistently substituted
by the number 1; however, the reason of the appearances in certain equations clarify the meaning of
these equations. The integral for concentration (14) is simply as follows because the energy state
density in 2D is constant as indicated in eq. (13) and because partition function f: is represented by
eq. (11-2). In the process of this calculation of eq. (14), an energy Eoappears as follows:

d N
Ey = —~no X In(>9), (15)

This energy Eois assumed to be essentially equal to the pseudo-gap energy. Combined with the
mass of a macroscopic Boson, this pseudo-gap energy is represented as follows:

Ey=-UxIn (%) =1, ). (16-1)

i 2 mn? i
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The abovementioned pseudo-gap energy equation has a coefficient for doping function /n. This
factor is identical to the zero-point energy:

lhe =222 (16-2)
2 2mn
The above equation implies that this derived energy Eomerely indicates a potential. In general,
however, an energy gap appears or disappears involving a photon’s emission or absorption, which
has a momentum. This fact indicates that, for a potential to become a general energy gap, the potential
is given the product of the fine-structure constant a, which includes characteristic impedance Zo for

electromagnetic waves. Typically, the fine-structure constant a is determined as follows:

_Zoe? _ 1 (17)

" amh 137.0°

In eq. (17), the impedance Zoworks as the specific impedance to electromagnetic waves. Thus,
the net pseudo-gap energy |4, is derived as follows, which will give the temperature of pseudo-
gap T" as discussed later.

h? N
|A|0=——m—nza><ln(n—:' . (18)

2.2. Superconductivity with consideration of many-body interactions

It is necessary to describe why macroscopic Bosons undertake Bose-Einstein (BE) condensation
by forming a pair from two macroscopic Bosons, although they have been already general Bosons
such as Cooper pairs. In the previously published paper [1], we reported a new attractive force to
combine particles from local current in a CuOz cell [27]. This local current is equal to both rotational
and self-current, which creates the mass of macroscopic Bosons; hence, the result of the previous
paper agrees with the descriptions in the present paper. Therefore, in this section, based on the
understanding that two macroscopic Bosons form a pair, we describe why BE condensation occurs
considering many-body interactions between Bosons.

2.2.1. Description of the model and the principle to many-body interaction

There are many-body interactions among the carriers in various materials. In particular, this fact
is essential to high-Tc cuprates because the general band theory cannot be applied. The many-body
interactions of carriers indicate there are many local temperatures Ti in the materials, where i is index
for a location. In other words, only in a temperature T, thermal equilibrium can be assumed. Figure
2 shows our model for handling many-body interactions. In this figure, a radius ai forms a sphere
shell, which has differential number dN and local temperature Ti. Moreover, in the center, a
macroscopic Boson is presented. The immediately outer particles out of dN yield a pressure to this
sphere shell, which is equal to the kinetic energies of particles in dN (i.e., it is represented by a
temperature Ti). However, the central macroscopic Boson provides force of expansion, which
indicates electrostatic energy, i.e., Coulomb interactions. Moreover, this case adds magnetic
interactions between macroscopic Bosons as an expansion force.
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dN

Figure 2. Schematic of our established model to handle many-body interactions. Considering the
nature of many-body interactions, note that temperatures are locally different. However, this model
claims that in the differential number dN (a macroscopic Boson takes the center and dN takes a
temperature T; ), a thermal equilibrium can be assumed. Therefore, a balance between force of
expansion from Coulomb interactions, in addition to the magnetic field interactions from the Bosons
and force of compression from immediate outer side, which is equal to the kinetic energies in dN (i.e.,
a temperature T;), is formed. Calculating this balanced equation results in a new statistical equation.

Considering that these forces of expansion should be balanced to a force of compression in a
sphere shell, the following relation holds:

(Coulomb interaction energy and magnetic field interaction energy) = ; kpT; X dN

2.2.2. Calculate the principal equation of our model and the internal quantum state

Calculate the abovementioned principle equation. First, dN is represented as follows:
dN = gfdk = gf(=>), (19)

wherek, v, g, and f denote wave number, volume, state number, and partition function for the Boson,
respectively. In the equation of dN, as mentioned, state number g and partition function f are given
as follows:

f=f=-MnCH™ (11-2)

g == Dy(E)AE = poFy, (14)
D (E) = == = p,, (13)
1 h? N
Eo = |Alo = — 57z a X In(A). (18)

Thus, fg is given as follows:
fg = po gz 20)

2 mn?

To calculate the left-hand side of the abovementioned balanced equation in principle, the
electrostatic energy Uk is calculated as follows:


https://doi.org/10.20944/preprints202005.0105.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 February 2023 doi:10.20944/preprints202005.0105.v4

2 dv, (21)

1
Up =-¢
E 2 O(4neoai

where g, and a; denote the permittivity for the vacuum and the radius which dN is taking in the

model.
At this time, a volume element of the integral is expressed as follows:
=L s
dV—dE— S i (22)

Moreover, the magnetic interaction Vp from macroscopic Bosons is given as follows:
V, = UgdN. (23)
Consequently, the resultant equation is provided by
9¢e
af = e_zo (BkpT; — 2Up)f 9. (24)

As shown in Figure 3, the central macroscopic Boson behaves under the model of the infinite
well-potential. Thus, as every elementary quantum mechanics text [24] describes, the eigenvalue and
wave function of it are presented as follows:

Vi) = [sin G, 25)

1  hi
Ei =5 G2 (26)

where M, i, and r denote the mass of a macroscopic Boson, index, and microscopic variable of sphere-
coordinates, respectively. These equations indicate that a particle under the many-body interactions
forms a stationary wave and that the wave function of the stationary wave and the eigenvalue (i.e.,
kinetic energy) are determined by a radius a..

V=00 V=
< —»

2a;

Figure 3. A basic model of infinite well-potential. This model is directly related to the immediate prior
figure model. The diameter 2a; varies depending on a temperature T;. A macroscopic Boson in this
well-potential formsa stationary wave, and its wave function and eigenvalue are presented in every
basis texts. An important point is that all of these depend on index i.

2.2.3. Describe BE condensation and the superconducting transition

Using the abovementioned concept, we consider how BE condensation occurs. In addition to a
sphere shell having temperature T;, another sphere shell having temperature Tj is considered. When
we accept a combination of two macroscopic Bosons by a force F, these two Bosons must have the
identical kinetic energy because, in general and as mentioned in our previous paper [1], a relative
and attractive force appears only when their relative velocities become the same. In particular, this
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fact is applied when an attractive Lorentz force is generated between moving and charged particles
whose velocities are identical. Thus, when forming a pair from two macroscopic Bosons, the
eigenvalues, eq. (26), indexed by i and j becomes equal. That is,

|E: — Ej| = 0. (27)

This indicates that an index i and j becomes equal, resulting in that all the radius ai and
eigenvalue Eitake the identical radius aoand Es because of the arbitrary property of index i and j.
Hence, if a pair forms, every energy of macroscopic Bosons undergoes the identical energy Es, which
indicates all the rest Bosons take pairs and BE condensation.

Moreover, as shown in Figure 4, considering index i to be equal j indicates that temperatures Ti
and Tj must be equal. Even at this moment, positions r of wave functions, eq. (25), are common and
thus the two sphere shells take the superposition, i.e. the relative distance £c between the two sphere
shells should be 0. Thus, the net coherence of two holes becomes on a cell order, 1 nm, as reported by
many literatures.

Employing the abovementioned equation (24), an equation of the relative distance between
sphere shells £cfor temperature T is derived as follows:

282 =20 (3ky(T) — 2Up)gf, (28)

where Usis substituted with pseudo-gap |4], in eq. (18). Note that, in this equation, considering BE
condensation and single-particle picture, poof gf in eq. (20) is redefined as the value 1.

Figure 4. Schematic of two macroscopic Bosons having many-body interactions. The relative distance
of §; indicates one between two macroscopic Bosons. When an attractive force F between them
appears and because the relative kinetic energy becomes 0, indexes i and j take the same. Thus, a
superposition between them occurs, rendering &gbe 0. That is, two Bosons now combine to be a
Cooper pair. Employing the statistic equations from our established model, we can predict this type
of transition.

As will be discussed in the Results section, temperatures at which &2 <0 indicates a
superconductivity state (i.e., the net coherence of two holes is about 1 nm, which equals CuO: cell
order) and the transition temperature Tc at which ¢; = 0 indicates a critical temperature.

2.3. Review to obtain the formula for Te

Herein, we would like to note the reason why there are Fermi energy and chemical potential Er
[25]. Considering each pair and because these pairs have superposition, a single macroscopic wave
with a converged phase is produced. However, at this stage, although we cannot consider each
particle motion as a pair of two macroscopic Bosons, there is a non-zero temperature (i.e.,, T < T,).
This indicates that the internal particles of a macroscopic Boson (i.e., holes) collide with each other.
Thus, only in the case of T < T, we consider the Fermi energy, i.e., Er = 0.
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2.3.1. Derivation of a general energy gap (review)

Let us review our previous study [1], which describes a force F to combine two particles and a
critical temperature T. on doping. Note that because this is a review to understand the stream of
outlined derivations of a critical temperature T, certain equations in the calculation and derivation
processes are left out. In case that our readers are interested in the detail, the paper can be
downloaded as an Open Access paper.

First, we assume that a general energy gap |4| is proportional to both Fermi energy and Critical
temperature as follows [1]:

417 = kpT Ep. (29)
In this equation, the Fermi energy in a p-type material [40] is employed as follows:
Ep = E; — kTIn(>2). (30)

Note that we are considering the carrier is a hole.
In this equation, a superconducting energy gap is introduced.
2E; = kgT. 31)
Substituting these energies and employing the state equation with the universal gas constant R,
the following equations are obtained.

1412 =3 (ksT)? {1 = 210 (5} (32)
and
412 = 5 (ksT)? {1 - 252 In (38} (33)
where
|05] = pV. (34)

where (Jp denotes a thermodynamic potential, and gsis the concentration of Cooper

pairs.
In this manner, a general expression of energy gap for temperatures is derived.

2.3.2. Generation of an attractive force that combines two carriers (review)

To consider the superconducting energy gap, it is necessary to mention a force F, which results
in a combination of a Cooper pair. As previously mentioned, two charged particles generally
experience an attractive force with each other when they are moving with the same velocity, i.e.,
when the relative energy or momentum is 0. As shown in Figure 5a-5d, two parallel conductors along
which the same direction and same amount of a current are presented. From the electromagnetism,
these current leads experience an attractive force with each other, which is attributed to the Lorentz
force. When we shorten these leads to a wavelength of a carrier, this attractive force still exists. This
indicates that two charged particles with identical wave numbers are attracted to each other. This
attractive force stems from the Lorentz force.

2.3.3. Derivation of Te (review)

Considering the principle of generating an attractive force and assuming that the wave function
of a hole is a plane wave and that the magnetic field generated by the moving holes is derived from
a linear current, the Lorentz force F is given as follows:

2 h[lo 471'

7 Bl kz—smecosq) _2an “Ohﬁlz,l)lz ~sinfcose, (35)

F=gq

where {, 1, 0, §, q, 3, k m, and o denote wave function of a hole, relative distance of two holes, angle
associated with the Lorentz force, angle related with two wave number of holes, the electric charge
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of a hole, constant, common wave number, the mass of an electron, and magnetic permeability of the
vacuum, respectively.

Note that this equation employs the probability density flux as current density.

The energy u (i.e., superconducting energy gap) from the line integral of the above force F is
represented as follows:

20212 unh .
u= —%ﬁlwlz In(r) x sinfcosp +uy uy <0 (36)

where u, denotes an integral constant.
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(@

Figure 5. (a) Currents in the same direction. (b) Shorter leads with currents in the same direction. (c)
Holes with same direction and equal velocity. (d) Center-of-mass motion of Cooper pair.

Furthermore, the derived superconducting energy gap u produces T with the combination of a
general gap energy derived in eq. (33).

— _ag'2 128l (Na) _ :
T, = —4a? 22 ln(ni) 0, , (37-1)
where
a= 2q:rrl—”"hln (&) x sinfcosep , (37-2)
r 1 _ 1 2q?m?uoh .
A = = T In (§) X sinfcos¢ . (37-3)

In this process, we added a Debye temperature 0o and a net coherence £ to the equation. Note
that, as an integral constant in eq. (36), the BCS formula under a particular condition was employed.
That is, in the formula T. of the BCS theory, because the Boson combination energy in high-T.cuprates
is generally sufficiently large attributed to the short coherence (note that, the shorter the coherence
is, the larger the magnetic field associated with the Lorentz force becomes), the large value of NV in
the BCS formula of T makes the exponential function be almost the value 1. Thus, only the Debye
temperature in the BCS formula is left. Concerning the thermodynamic potential, the following
equation is applied under the condition of BE condensation.

|21 = PV = 2Erq, (38-1)

2Epo = Ego , (38-2)
where Eroand Ecodenote the Fermi energy and band gap at zero temperature, respectively. Moreover,
here the volume V is assumed to be the unit, i.e. the number 1. Thus, the critical temperature becomes

T, = —4( L ) (Zq T “ohln (& x smt9cos<p)2 Fao l ( )— Op . (39)

k 39 ng
Moreover, we derive a 2D critical temperature equation from the above. Thus, to conclude, the
critical temperature equation is derived as follows:

o

(Teh = =4 (i ) CLT My (§) x sinfcosp)? i (L) -
(40)

where o, 05, Op2, and nq denote the surface density of carriers, the surface density of pairs, Debye
temperature in 2D, and the number of layers. Note that all constants in the consequent equation have
actual physical meaning and unit. This indicates that no numerical calculations or fitting methods are
required. This fact is consistent everywhere in the present study.

Note that, in eq. (36) for the superconducting energy gap, the probability density function is
interpreted as follows:
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[|?sinfcose = ||?sind sin ((p + g) = %ll/)|2 {— cos (9 + o+ %) +cos(@—¢@+ g)} (41)

which shows that the gap is anisotropic [26]
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[w/3]] 9], emjeredwa) [eOTILL))
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Figure 6. A result of typical critical temperature on doping. This is derived from the equation by
combining pseudo-gap energy and superconducting energy gap. At doping 0.16, the critical
temperature reaches the maximum, which agrees with the experiments. In calculations, no numerical
calculations or fitting method are employed. The values of critical temperatures are relatively
sensitive for Debye temperature and band gap in our derived equation. This indicates that, although
high-T. cuprates in common have CuO: surfaces, differences of Debye temperatures and band gaps
would result in various values of critical temperatures among high-T. cuprates.

Table 1. Physical parameters in the equation of critical temperature.

Debye temperature 0p, 113.5 K
Coherence & 1 nm
Band gap Ec 1.53 x 10719]
The number of layer nq 3

In Figure 6, a result of this review section is shown where used physical parameters are listed in
Table 1. Note that for additional details, please see the Method section at which the full list of
employed physical constants are presented. As shown, our derived critical temperature equation
sufficiently agrees with a typical high-T< copulate. Note that the reason why the band gap is relatively
large is related to the property of the Mott insulator. For more details, please refer to [1].

2.4. Calculations for obtaining formulas for T* and To

2.4.1. Derive the pseudo-gap temperature T".

Now, we consider the relation between a general energy gap and temperature, as shown in eq.
(32)
4121 1

T=-2"2

k% Tcln (ﬂ)’
ni

(32)

When the previously derived energy gap from a macroscopic Boson is substituted for an energy gap
in the abovementioned equation, then variable temperature T must become a constant of pseudo-gap
temperature T". Therefore, the temperatures Tc and T* have a dependent relationship. Thus, as a
formula of pseudo-gap temperature T, the following equation holds:
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11
T Na
cln(ni)

. 11 212 N\ 2 11 —21\2 N4 1
T = _EZ(:H x 10721)"[In Gw) = —g1(3.4 x 10721) [In(ZH} - (42)
where to the equation of [4], of eq. (18) in creating eq. (42), each physical parameter was substituted.
That is, the physical parameters m, h, and a in eq. (18) were given actual values. Note that radius n
is approximated as 1 nm.

2.4.2. Derive the transition temperature To

In this study, we consider the anomaly metal phase properties in CuOz:-based superconductors.
These properties are primarily determined by the transition temperature To, which is directly related
to appearances of the Hall-effect coefficient RH. To obtain an equation for the temperature To, we
consider derivations of the Hall-effect coefficient RH. The Hall-effect coefficient RH depends on
absolute of energy, —uBe, where u and B. denote self-magnetic moment of a macroscopic Boson and
applied magnetic field, respectively. The absolute of energy, uB., involves Boltzmann statistics and
thus it is related to concentration (i.e., the number) of macroscopic Bosons.

In the previously appeared concentration eq. (14), the calculation for energy integral, in turn, is
actually conducted because we attempted to obtain temperature T dependence for RH

1 b dE 1 T,
n= kBTEPo fa FEp kBTEPo X ln(r_z)’ (43)
where
a = kBTC b = kBTO . (43'2)

Note that the second form of fr in eq. (11-2) is not employed here. Eq. (43) is very important
because the concentration n is proportional to the temperature T, which describes a property of the
anomaly state. That is, the resistivity anomaly. Now we begin to calculate RH. As mentioned,
considering an energy —uB., the Boltzmann statics is represented as follows:

Be
n = ngexp (=5, (44)

where no is concentration without an applied magnetic field. In this equation, the exponential
function is approximated by the Maclaurin series.

Be
n=~ny(l— ZBT)' (45)

In the above equation, the previously calculated concentration n, eq. (43), is applied.

Po Toy = _ HBe
kgT ke In( Tc) =ny(1 kBT)' (46)
Solving this equation for no and using the general definition of RH, we reach an important
equation.
HBe_,
kpT
Ry =—2———. 47
" ekpr22xin(tY) (47)
Cc

Composition of this equation presents a new temperature To, which indicates the appearance of
RH.

T, = “2e, (48)

2.4.3. Implement the formulation of To

To implement the formula To, it is necessary to obtain u and Be in eq. (48). First, a magnetic
moment u is generally defined as follows:

w=1I5, (49)


https://doi.org/10.20944/preprints202005.0105.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 February 2023 doi:10.20944/preprints202005.0105.v4

15

where I and S (= n? ) denote the self-current and the area in which a magnetic flux is presented.
Seeing the schematic of Figure 1 of a macroscopic Boson (which assumes the motion of a hole to be a
circle) and because a magnetic flux of it should be quantized as h/e, the magnetic flux of a macroscopic
Boson is as follows:

h
@, = Bymn? = ~ (50)
That is,
h 1
By = P (50-2)

where radius 1 is approximated on a cell of the CuO:2 surface. That is,
n=1nm (51)
Moreover, assuming that a magnetic field among a macroscopic Boson is equal to the central

magnetic field generated by a moving hole, a persistent current I in a magnetic moment is calculated
as follows:

1 =—224B,. (52)
Ho
Consequently, a magnetic moment u is derived as follows:
2 _h
~—n-. 53
I'l' o n e ( )

While an applied magnetic field Be in the definition of To is variable, the magnetic field Bois a constant
derived by the physical constants. This fact allows us to introduce a variable quantum number N
between Be and Bo

1
By~ = Be. (54)

Moreover, this variable integer N is undergone by the partition function fr.
N = Nof:, (55)
where eq. (11-2) is applied as fr.

Note that the magnetic field Bo was calculated from eq. (50-2). The employment of partition
function fr indicates that an application of Be makes every direction of certain magnetic moments of
macroscopic Bosons have the same orientation. In other words, prior to the application of magnetic
field Be, the directions of self-magnetic moments of each macroscopic Boson are random (i.e., up- or
down-direction), although the conservations of angular momentum produces macroscopic Bosons.
However, the application of magnetic field Be presents all the directions of certain magnetic moments
of macroscopic Bosons with the same orientation. Because the interaction between macroscopic
Bosons with the same directed magnetic moment is repulsive, these Bosons now obtain the existences
as single and independent particles. However, without an external applied magnetic field, why do
our high-T. cuprates become superconductive by forming many independent macroscopic Bosons?
This can be understood by considering an analogy that every magnetic moment in a ferromagnetic
material spontaneously acquires the same orientation under Curie temperatures. Thus, high-T-
cuprates have a property that is similar to a ferromagnetic material. We claim that this fact is related
to the electronic nematic phase [27].

In this case, because macroscopic Bosons are formed in 2D CuQOz, weak interactions between the
magnetic moments of macroscopic Bosons can justify the abovementioned calculation. The actual
calculations of Curie temperatures with complete consideration of many-body interactions are
presented in the Appendix of this study.

Assembling these facts, the conclusive equation of the transition temperature To is derived,
which depends on carrier doping.

1,2

h
To~—1 ;ﬂg)(

h
enn?

)Nioln("’—f; . (56)

n
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As described later, this equation of Toand the formula of critical temperature Tc[1] will be crucial
factors when calculating properties of the anomaly metal phase.

2.5. Analyze anomaly metal phase

2.5.1. More comprehensive calculation of RH

Next, we derive dependences on temperature of RH. Up to the previous section, the general
equation of RH was derived, which resulted in a definition of transition temperature To. In this
equation, we introduce the following approximation to the general equation of RH.

UBe
e L. (57)

According to this approximation, the general equation of RH becomes as follows:

48 (58)

H~ Tow
e(kBT)Z%"xln(T—g)

Thus, the approximated equation of RH is determined by the applied magnetic fields Be. That is,
this RH equation depends on both quantum number N and the universal magnetic field Bo.

#50 L (59)

T —.
e(kBT)Z%’xln(T—‘c’) N

~
=~

Note that the universal magnetic field Bo is one in a macroscopic Boson. Thus, in view of
magnetic field energy, an application of magnetic field, which dominates over the universal magnetic
field Bo results in the destructions of macroscopic Bosons and makes the anomaly metal phase
disappear. Moreover, the employment of quantum number N indicates that the RH equation is
determined by doping. That is, variable integer N is expressed by the partition function fr, which
indicates doping.

1_ 1
N Nofy

-1 Na
= — - X In(%5). (60)
Considering this, the approximated RH equation becomes

B 1 N
Ry~ — " — x In(=2). 61
H e(kpT)?2xIn (72) No ( n; (61)

&

As reported in many studies [28], this derived equation of RH is proportional to (%)2.

In the Results section, we will depict this RH equation in terms of both doping parameters and
temperatures T.

2.5.2. Calculate the electron specific heat coefficient in the anomaly metal phase

In turn, let us consider electron specific heat coefficient in the anomaly metal phase. Because
electron specific heat coefficient is essentially equal to the average energy Uy, it is simply necessary
to calculate the average energy using the partition function fr. Thus, average energy using partition
function fr (eq. (11)) for energy integrals is determined as follows:

JEfydE
Ug = . 62
Note that the lower limitation a and the upper limitation b of these integrals are given as follows:
d = kBTC b= kBTO‘ (63)

Assuming the chemical energy for macroscopic Bosons (i.e., not Fermi energy for single holes)
is sufficiently small, the calculation results in

0—EF

kT
U _ kBTo—kBTC+EF><ln(kBTC_EF) N kB(TO_TC) 64
E — kgTo—E ~ To . ( )
11’1( B0 F) ln(_
kpTc—Ef Tc
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In general, electron specific heat coefficient is derived by differential in terms of temperature to
the average energy. In this study, however, AT is employed rather than the differential for
temperature. Moreover, this AT is assumed to be (To-T¢) in this study. Therefore, using the average
energy Ue and AT, electron specific heat coefficient is expressed as a calculation process.

Ug kg 1

= . (65)

Yo =@ T hrnd®

Furthermore, to obtain electron specific heat coefficient with the unit [J/mol K?], the Avogadro
constant N¢' is considered because previously calculated average energy Ue indicates one for a
macroscopic Boson. Consequently, the electron specific heat coefficient is derived as follows:

A
y = ke 7 (66)

= —
To-TcInzY)
c

2.5. Summary of the logical flow

(1) First, assuming a macroscopic Boson, which is based on angular momentum conservation on a
CuO:z surface, its energy was calculated; the implementation of the integral of the concentration
resulted in a pseudo-gap energy. During this process, the two types of partition equations fr were
derived.

(2) To handle many-body interactions, a sphere shell with a local temperature Ti and differential
particle number dN is introduced. From the forces that are balanced for both inside and outside
the shell, a basic statistic equation, inner wave function and eigenvalue in a shell were derived.

(3) The generation principle of attractive force: “The Lorentz force is applied between two charged
particles when their relative velocity is 0.” Considering this principle, the abovementioned
statistic equation, inner wave function and inner eigenvalue realize the combination of a Cooper
pair, and then BE condensation occurs.

(4) Therefore, the superconducting energy gap and Tc were calculated. During this process, a general
energy gap is derived.

(5) Combining the general energy gap and the mass of a macroscopic Boson, the pseudo-gap
temperature, T", formula was obtained.

(6) The transition temperature To at which anomaly metal phase appears was defined by the
appearance of the Hall coefficient RH. Thus, to calculate RH, combining the Boltzmann statistics,
particle concentration was implemented using the partition equation fr. Then, the general
definition of RH and the concentration produced the equation of RH. Considering the form of
this equation, the transition temperature Towas derived.

(7) Because the resulted Tohas the magnetic moment of a macroscopic Boson u and magnetic field
B., these two factors were formulated. Thus, the To formula was implemented.

(8) The abovementioned derived RH equation was approximated, and electron specific heat
coefficient vy was calculated. Of note, during this process, the average energy using partition

equations fr was obtained.

3. Methods

Herein, we describe the detailed method for the Results section.

3.1. Calculation tool

We employed the MS Excel software.

3.2. Physical constants for calculations
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Table 2 shows the primary physical constant in this study. Of note, although Debye temperatures
for 3D and 2D are different, we employed 2D one

Table 2. Physical constants in the obtained equations.

Debye temperature 6, 113.5K
Coherence & 1 nm
Band gap Ec 1.53 x 10718]
The number of layer nq 3
Boltzmann constant ks 1.38 x 10723]/K
Magnetic permeability in vacuum o 41 x 1077H/m
Electron mass m 9.1 x 10~3'kg
Electric charge of an electron e or q 1.6 x 1071°C
Radius of a macroscopic Boson 1) 1x10°m
Planck constant 1 h 6.62 X 10734 s
Planck constant 2 h 1.05 x 10734] - 5
Fine structure constant o 1/137
Avogadro constant NJ 6.0 X 1023 mol™?
Permittivity in vacuum &o 8.8 x 107'2F /m
Universal gas constant R 831 J-mol™t-K?

3.3. Resulted equations

3.3.1. Critical temperature

2
Ty = —4 () B0 (§) x 5inBcosp)? 2 In () - 6,, . (40)

kpOp> m? njz

The critical temperature is shown above again. Concerning anisotropic properties, sine and
cosine are given the maximum values of 1. Table 2 lists the physical constant used except for
concentrations.

3.3.2. How to determine ni and s

In eq. (40), <2 isidentical for M, because the length along the c-axis, d, is consistently given the
N2 nj

value of 1 by considering the 2D surface. Moreover, it is necessary to determine the values of 1/cos,
. . . . Na .

i.e., 1/0s when given the doping variable n; 35 follows:

(How to determine ni)

In this study, the concentration ni indicates lattice concentration. Because the unit cell of the
CuO:z surface is of the 1-nm order, the following assumption is introduced

- —— == x 101, [1/m] (67)

Zni = EW

Note that d has the unit of [m] and the consistent value of 1 because we are considering two
dimensions.
Because the critical temperature equation (40) uses the universal gas constant,

R=8.31 []-mol 1 -K™1], (68)
the concentration ni must be transformed into one with the unit [mol/L].
Thus, consider the following:
1) Avogadro constant Nj
2) 1[L]= 1073 [m?]
Therefore the concentration ni is typically
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1 -
n; = 58.3 X 1071%[mol/L]. (69)
(How to determine 1/ps)
First, in the MS Excel sheet, the variable-doping ratio % is in the range of 0.005-0.5. Note that
the number 2 appears due to spins. Then, % is calculated based on the abovementioned variable

doping ratio.
1/0s should be determined by the constant concentration, eq. (69)
1

1
—=x—,(70-1
Ps ni ( )
where x denotes dimensionless variable. To give eq. (70-1) the meaning, variable x is provided as

x =24 (70-2)

ni

3.3.3. Pseudo-gap temperature and transition temperature at which an anomaly metal phase occurs

We list the results of each transition temperatures, which will be shown in the Results section.

. 11 _ N 1
T = —Ez(34 X 10 Zl)z[ln(n—‘:)} T—c. (42)
SO I YL g V]
To ~ — = (0 ) In() (56)

Of note, Ny =~ 1.0 X 10°.

3.3.4. Physical results of the anomalous metal phase

(Hall effect coefficient)
B 1 N
ﬂp 0 . n( A .
e(kgT)?E0xIn (72) No n;
c

~

Ry ~

(61)

Of note, N, = 1.1 X 102. Because Bo is constant, the variation of integer No indicates variation in
the applied magnetic field Be.
Moreover, in the abovementioned resulting equation, the following constants were employed.

2 _h
h 1
0= (50-2)
= Do, (13)
(Electron specific heat coefficient)
A
_ Nfkg 1 (66)

 To-Tc ln(;—g).
3.3.5. Results of the many-body interaction model

282 =220 (3ky(T) — 2U;)gf, (28)

where
2

h
gf = po; (20)

mn?

Of note, in eq. (20), considering the BE condensation and single-particle picture, p, = 1
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1 h?
Ug =Ey = |A|0 = _Emnz

N

a X In(=2). (18)
nj

The doping variable is fixed as a constant only in the abovementioned equation.

N4 =0.16 (optimal).

2n;
Note that, precisely, when ¢; = 0, it should be considered that the doping is the cross point of
Tc-dome and T".
4. Results

First, Figure 7 shows the entire depictions of T., T%, and To on doping because of analytical
calculations. Generally, the agreements with the experiments are good. Moreover, in Figure 8, the
result of theoretical calculations of the Hall coefficient RH. As shown, the lower doping, the higher
RH, and the RH behave as non-linear on temperatures.
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Figure 7. The complete depiction from theoretical calculations of T, T*, and To vs. doping. Note that

the horizontal axis is ;vTA For the previous figure of Tc graph, T* and To are added. Note that T* is

depicted on the understanding that it is smaller than To. Moreover, T* has the gradual and easy
minimum point on touching Tc dome. Thus, it does not exist in the Tc dome. As mentioned, no
numerical calculations and fitting methods are employed. To begins with about 500 K and vanishes
almost at the same doping at which T. disappears. As mentioned in the text, this transition
temperature is important when considering the anomaly metal phase.
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Figure 8. Hall-effect coefficient RH on both temperature and doping. As reported in many
experimental papers, lowering the doping dose arises the RH. The calculated values generally agree
with experiments and that temperate dependence is non-linear.

Because of the statistic equation for the many-body interactions, Figure 10 shows
superconductivity state up to a critical temperature ~140 K. In this figure, the state that relative
distance {; between two spherical shells (i.e. two macroscopic Bosons) considering the many-body
interactions is under 0 indicates the superconductivity state. From the further temperatures higher
than the critical temperature, the relative distance ¢{; becomes much larger as a change of non-
continuity. Obviously, a transition occurs at ~140 K. This result accurately agrees with the
experiments such as [28]. Furthermore, Figure 9 shows a result of theoretical calculation for the
electron specific heat coefficient. According to the experiments [29,30], the calculation values are
valid; moreover, it takes a maximum at a higher doping.
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Figure 9. A theoretical result of electron specific heat coefficient on doping. At the relatively high

doping, the curve takes the maximum, which agrees with the experiments. In other words, to both
lower doping or higher doping from this the maximum, electron specific heat coefficient decreases.
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Figure 10. Relative distance between two macroscopic Bosons versus temperature. Because, up to
about 140 K, relative distances &g is not defined according to our statistic equation to handle the
many-body interactions, up to about 140 K, the net coherence of two holes is defined as about 1 nm,
i.e., superconductivity state is maintained. However, at higher temperatures, relative distances &g
suddenly becomes 10~7m order. Obviously, a transition occurs at around 140 K. As an important
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notation, the magnetic field interaction Us is substituted by the pseudo-gap energy at the optimum
doping of 0.16. Thus, as many researchers claim, the many-body interactions in terms of macroscopic
Bosons (not holes) is one of the reasons why high-Tc cuprates exhibit extremely high critical
temperatures.

Importantly, in Figure 10, the magnetic field interaction Us in our statistic equation is substituted
by the pseudo-gap energy at optimum doping. Thus, as many studies claim, the many-body
interactions in terms of macroscopic Bosons are some of the reasons why high-T. cuprates exhibit a
considerably higher critical temperate. Moreover, for the determination of T., the pseudo-gap energy
that is derived from the mass of a macroscopic Boson is crucial.

5. Discussion

5.1. Macroscopic Boson and high-T. cuprates

We propose a particle describing high-T. cuprates is not a normal hole but a macroscopic Boson,
which is formed by the conservation of angular momentum in 2D and by rotational motion of a hole
itself. The concept of a macroscopic Boson, as mentioned, provided a unique partition function; this
partition function can explain every property in the anomaly metal phase. Moreover, the presence of
this Boson gives substantial reason why high-T. cuprates have significantly high critical temperature
when considered with many-body interactions.

5.2. Anomaly metal phase and transition temperature To

Thus far, to understand the mechanism of a high-T. cuprate, it was important to study the source
of pseudo-gap energy. Although this is true, another important factor that should be understood is
the source of the transition temperature To, which defines the anomaly metal phase appearance. As
mentioned, all equations that describe the anomaly metal phase have the parameter To and T-.
Therefore, the excessive focus on the origin of pseudo-gap energy made most researchers less careful
of the source of the transition temperature To, and this attitude confused researchers when
considering the mechanism.

5.3. Highlights of the process for the materials to undergo superconductivity

Let us review the process, which describes the mechanism from forming a macroscopic Bosons
to undergoing BE condensation. First, high-T. cuprate reaches the transition temperature Towith a
lower or no refrigeration. At this stage, because the wavelength of a hole along c-axis becomes longer
than the width of a 2D CuO: surface, the net 3D disappears and the conservation of angular
momentum forms a macroscopic Boson, which indicates the rotation of a hole producing a magnetic
field energy. Thus, this magnetic field energy gives a mass of macroscopic Boson.

By further refrigeration, our established statistic equation results in the following:

1. Many-body interactions, including the magnetic field energy of macroscopic Bosons and
Coulomb interactions, result in very short relative distance of two holes (i.e., the net coherence of ~1
nm) as a result of all the sphere shells being superposed. Note that, at this stage, the paring of two
macroscopic Bosons indicates the pairing of two holes.

2. Simultaneously, two holes gain a strong combination of the Lorentz force because the relative
kinetic energy among two holes becomes 0; note that all Cooper pairs take the identical energy and
thus BE condensation is produced, which is the source of the Meissner effect.

Although the derivation of a macroscopic wave function inevitably results in the London
equation using the GL equation [31]; herein, let us review the reason why the Meissner effect is
derived by another approach, thus stressing the converged and constant phase 6,.

Under an applied magnetic field B (i.e., vector potential A), we can derive the Aharonov—Bohm
(AB) effect [32] from the initial macroscopic wave function.

P = Iplexp[(Bo + 3 [ Ads) j}, (71)
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where g, j, and 6, denote the hole charge, imaginary unit and converged phase of the macroscopic
wave function, respectively.
From eq. (71), it is derived that

(60 +=2 [ Ads) = 2nm, (72)
where 7 is the integer. Assuming n =0, we have
—_2
8, =—21[ Ads (73)

and considering center-of-mass motion,
90 = 2k0x ’ (74)
Substituting eq. (74) in eq. (73) and differentiating both sides of eq. (73), we obtain

2ky = —21A. (75)
The probability density flow is then defined as follows:
, hk
Js = all* 2 (76-1)
[lp|2dv = 1. (76-2)
Substituting eq. (75) in eq. (76-1), we derive the following London equation:
. 1
Js = —a*IYI* —A. (77)

This is the identical result from approaches by the GL equation [36].

5.4. The reason why high-T. cuprates have significantly high critical temperature

As mentioned, an attractive force is the Lorentz force when two charged particles have no
relative kinetic energy. However, as shown in Figure 11, this concept can be satisfied in s-wave pair
and d-wave pair. Considering this schematic, the pair symmetry of high-T. cuprates is not very
important. Rather, it is crucial to focus on an irregular many-body interactions in high-T. cuprates
with an explanation of the significantly high critical temperature.

v [m/s]
+— | [
A
v e {1 .
[m/s] [m/s]
=AY | |
v [m/s]
Paring of s-wave Paring of d-wave
picture picture

Figure 11. Schematic of paring symmetries. The principle to generate an attractive force between two
charged particles is that relative momentum must be equal. That is, when this principle is satisfied
and if outer macroscopic heat energy does not disturb, the two charged particles between a long
distance are combined by the generated attractive force, which stems from the Lorentz force. The
above figure illustrates this principle, i.e., s-wave and d-wave symmetries. This is why there is another
irrelevant particle among force-experiencing two particles. This irrelevant charged particle with
different momentum does not experience this attractive force. However, the Coulomb interactions
does not have this characteristic.
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As per the model employed to handle many-body interactions in terms of charged particles, it
is normally impossible for two particles to take their relative distance shorter than ~107 m. In this
case, however, our employed equation in many-body interactions has magnetic field interaction Ug
in eq. (28) because of the presence of macroscopic Bosons (i.e. pseudo-gap energy) ad Coulomb
interactions. Therefore, this fact renders relative distance between two macroscopic Bosons to be
almost 0 up to a high temperature, which makes the net coherence of two holes become the order on
the cell of a CuO: surface (i.e. ~1 nm). This fact indicates that the combination energy becomes very
strong.

This is demonstrated as shown in Figure 10, which results in a critical temperature of ~140 K.
Considering Up in eq. (28) in our model equation to handle many-body interactions is pseudo-gap
energy, eq. (18), which is essentially equal to the mass of a macroscopic Boson, the parameter 1 [m]
(i.e., radius of a Boson and order on a CuO: cell) determines the critical temperature. This parameter
determines both a Debye temperature and a band gap. Thus, this fact does not contradict the critical
current equation (40) in this review section or our previous study [1]. Furthermore, as per our derived
statistic equation, the larger Usis, the higher a critical temperature T., and actual high-T. indicates
that Us is sufficiently large, which is caused by the fact that the parameter n [m] is sufficiently small,
in addition to optimum doping.

In eq. (28), given the value of 0 for ¢;, immediately the doping variable becomes fixed and the
maximum critical temperature T max is derived;

2
kBTc,max = 3 UB,O/ (78)

where Up, indicates the pseudo-gap of eq. (18) for maximum doping.

The calculation of quantities by eq. (78) is shown in Figure 12. In this figure, the horizontal axis
implies the n of the radius of a macroscopic Boson. This parameter indicates the unit cell order of the
CuO2 surface. An important point is that, considering the parameter 1) is proportional to the lattice
constant and although every high-Tc cuprate has macroscopic Bosons, differences in lattice constants
render their critical temperature to be variable. Thus, if the type of material among the high-T-.
cuprates differs, then the critical temperature is different.

To conclude, the existence of a macroscopic Boson indicates that:

1) It causes the anomaly metal phase in high-T. cuprates.
2) Irregular many-body interactions are caused by it, which results in a high critical temperature
higher than LN>.

Note that, if we consider electron-doping in a Mott insulator, carrier concentration dominates
over the lattice concentration ni considering local electrons at each lattice in the Mott insulator; thus,
the sign of the function In in eq. (18) of pseudo-gap energy (i.e., Us in eq. (28)) is altered. Hence, the
sign of Us in eq. (28) becomes the opposite, which makes electron-doping unable to have a high
critical temperature because, on the contrary, Us would prevent the enhancement of critical
temperatures Te.
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Figure 12. The maximum Tcmax for optimum doping vs. the radius of a macroscopic Boson 1. Of note,
the parameter 1 depends on a lattice constant. As shown, Tcmax is very sensitive for parameters 1. This
indicates that, among high- T. cuprates, varying substances renders their maximum critical
temperatures to be variable. Moreover, it is important to recognize that Tcmax is essentially equal to
the pseudo-gap at maximum doping.

5.5. Image of Cooper paring of two holes when T < T¢

Figure 13 is an image that a hole on 2D of CuO:z cell takes a circle, which in turn becomes a
macroscopic Boson. When two macroscopic Bosons are close to each other and when the relative
velocity between the two holes is zero, these two holes take the identical and rotational velocity and
take the identical angular frequency as shown in Figure 14. Therefore, when the attractive force
principle is satisfied, in which the fact that relative velocity is zero is the source of an attractive force
between them, the two holes take rotations, keeping the constant relative distance. This fact is
represented in Figure 15. That is, these holes take parallel motions. This corresponds to the d-wave
pairing.

Figure 13. Schematic of a macroscopic Boson.
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Figure 14. Schematic of paring of two macroscopic Bosons (i.e., the two holes).

Figure 15. Translation of the aforementioned Figure 14.

5.6. Consideration of significances in this paper

We believe that this study is significant because:
1) It clarified why high-T. cuprates have actual high critical temperature higher than LN.
2) It demonstrated that all puzzles, including the properties of anomaly metal phase reported in

previous articles, have been attributed to the presence of a macroscopic Boson.

To date, multiple theoretical investigations were reported to explain the mechanism of high-T.
cuprates but most of them used numerical computing or fitting methods; however, a general
understanding of how the mechanism worked was largely unclear. Therefore, we proposed a
detailed explanation of the mechanism that has been proposed for a comprehensive understanding
of high-T. cuprates.

Anticipated results and spillover effects:

1) The analytical and physical understanding of high-T. cuprates described in this study will
promote the search for and synthesis of new materials exhibiting higher critical temperature near
room temperature than standard materials at any given pressure.

2) Allfields of condensed matter physics rely on statistical methods. Therefore, pure analytical (not
numerical) approaches can be applied to many-body interactions. Our model that handles many-
body interactions will provide new results to unsolved problems in condensed matter physics.
For example, the analysis of many-body interactions of magnetic quanta would solve the primary
problems of physics and superconducting technologies such as analytical formulation of critical

current density.
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6. Conclusion

This study described theoretically high-T. cuprate properties such as the transition temperatures
on doping, Hall effect or electron specific heat coefficient on doping. Moreover, it established a novel
model to handle general many-body interactions, which explained why the high-T. cuprates exhibit
a significantly high critical temperature.

In general, the derived resultant equations predicted values accurately agree with data from
experimental studies with no numerical calculations and fitting methods.

As discussed in the Discussion, consider the summary of significances in the present study.

1) It has uncovered the source of mysteries in high-T. cuprates, i.e., the presence of a macroscopic
Boson.

2) It has succeeded in describing the anomaly metal phase with a pure theory, which has no fitting
or numerical calculations and which agrees with experiments.

3) It has established a new model to handle general many-body interactions; using this model, this

study has clarified why high-T. cuprates have considerably high critical temperatures.

The resistivity on lower doping in the anomaly metal phase is not discussed in this study.
However, an equation for conductivity, which takes linearly temperature dependence (i.e., non-
linearly resistivity), was obtained in the theoretical section of this study because the carrier
concentration in eq. (43), which lineally depends on temperatures, indicates the conductivity.
However, the non-lineally resistivity in the anomaly metal phase, which appears only on low doping
and mobility from the experiments is unclear because it is directly related to superconductivity (i.e.,
resistivity = 0). Therefore, because it does involve macroscopic Bosons, magnetic flux quanta and I-V
characteristic, the subject is complex. Thus, we expect additional investigations on the subject
involving magnetic flux quanta and critical current density in future.

Acknowledgments: We thank Enago (www.enago.jp) for the English language Review.
Appendix
Analytical calculations of Curie temperatures considering many-body interactions

S1. Introduction

The purpose of this appendix is to confirm the proposed new model to handle many-body
interactions described in the main text by applying another physical phenomenon. For example, we
now introduce transitions of ferromagnetic material, i.e., Curie temperature.

Before conducting an actual calculation, we will briefly discuss certain background information
to understand the significance of this appendix and to confirm our established model. Concerning
transition phenomena, many studies have been reported [34-39]. In particular, the Ising model is the
most famous and basic. According to our literature review, however, few studies exist, which
accurately predicted that the transition temperatures agreed with the experimental data. Moreover,
many statistic physics texts claim that the Ising model in 2D provides an equation of transition
temperature but there is no known model in 3D. If we follow the existing theory, a calculation of
transition temperature indicates the evaluation of exchange interaction. However, this interaction is
quite abstract and thus it difficult to evaluate in every ferromagnetic material. A general formula to
determine a transition temperature has not been obtained because the partition function considering
many-body interactions cannot be mathematically calculated.

In this Appendix, using our established model for many-body interactions, we predict the actual
values of transition temperatures, which sufficiently agree with experimental values. These
calculations do not involve any numerical calculation or fitting method. Here, we provide a new
model for statistical physics considering many-body interactions.

S2. Predictions of Curie temperature using our employed model to handle many-body interactions
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As shown in Figure S1, a magnetic moment j is located in the center of a sphere shell dN at
which the temperature is Ti. Similar to that of the main text, the following balanced relation holds:

(magnetic field interaction from magnetic moments) = ;kB T;dN (S-1)

In this equation, the left-hand side is given as follows:
—ii - B

As every basic text describes, a magnetic field B is represented as follows:

= i 3@y
5= -0 62

where r is radius of the sphere shell dN.

Figure S1. A schematic of our model to apply a ferromagnetic material. Basically, the concept to
handle many-body interactions is the same as the case presented in the main text. That is, force of
expansion from the central magnetic moment g is balanced to force of compression from the
immediately outer locations, which are equal to kinetic energies in the differential number dN. Note
that this case does not include the magnetic field interaction using macroscopic Bosons. Calculating
the balanced equation results in a statistic equation that involves many-body interactions.

In this equation, the first term indicates ferromagnetism, while the second term indicates
antiferromagnetism. Because the present case is to handle a ferromagnetic material, we employ the
first term. Moreover, the directions of two magnetic moments i are assumed to be parallel, i.e., the
scalar product between two [ is positive. Accordingly, the above equation becomes

i+ [~ L] =2k, TiaN. (S-3)
Moreover, as mentioned, dN is expressed as follows considering the volume element of the
integral:
Sip 1
1417 2 = 2kyTydN = 2kyT; x gfdk, (S-4-1)
dk = - S-4-2
dv 4?”1*3 ( )

Thus, an important equation is derived as follows:

Holiil? = 2ksTygf = > kpTyg — 5z — (S-5)
exp( 57 )1

kpT;

In this Bose statistic equation, Ei denotes the zero-point energy of phonon, i.e., the Debye
temperature and Er is a chemical potential, which is equal to the Gibbs free energy, but especially
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in this case implies only an internal energy. Therefore, this chemical potential is derived from electron
specific heat coefficient v as follows:
212 = 2k
ﬂOl”l 2 BY eXp[—%%(%kBGD+VT2)]—1
In this case, a transition temperature of Tc is assumed to be obtained by considering the
extremum from this equation. Hence, to calculate differentials, Ti is considered to be a variable
continuous temperature T because there are now no dependent parameters on the index i except Ti.
Therefore, the following equation is calculated.

d P
ol =0 . ()

Consequently, the following equation is obtained:

T

(5-6)

72-2kp6
% =1, (5-8-1)
—7 — _ks_ [3Bop _ [3KBop 8-
T=T, = 2y+\/ = ~\/2y. (S-8-2)

Table S1 lists the physical constants of a ferromagnetic metal Fe.

Table S1. Fe physical constants.

Debye temperature 6 470 K
Electron specific heat coefficient y 8.4 x 10727 J/K2
Employing these physical constants, the transition temperature T« for the metal Fe is calculated

as follows:
T, ~ 1.08 x 103 K. (5-9)

Because measurements of the transition report 1043 K, the agreement is sufficient.

Then, we consider the transition temperature of the ferromagnetic Ni. The material Ni has much
less thermal conductivity, unlike the metal Fe. This indicates that a chemical energy, i.e., the internal
thermal energy is allowed to be ignored. Thus, from eq. (5-8-1), the T. equation is simply expressed
as follows:

“kpbp ~ kT, (5-10)

Because the Debye temperature of Ni is reported as 450 K, T« is calculated as follows:
T, = 675 K. (5-11)
Compared with a measured transition value 627 K, the agreement can be considered to be
sufficient.
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