
Article

Not peer-reviewed version

Analytical Descriptions of High-T

c

Cuprates by Introducing Rotating

Holes and a New Model to Handle

Many-Body Interactions

Shinichi Ishiguri 

*

Posted Date: 2 February 2023

doi: 10.20944/preprints202005.0105.v4

Keywords: high Tc cuprates; macroscopic Boson; many-body interactions; pseudo gap; critical temperature;

anomaly metal phase; conservation of angular momentum; attractive force; Cooper pair

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1164480


 

Article 
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Handle Many-Body Interactions 
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Abstract: This study describes all the properties of high-Tc cuprates by introducing rotating holes 

that are created by angular momentum conservations on a 2D CuO2 surface, and which have a 

different mass from that of a normal hole because of the magnetic field energy induced by the 

rotation. This new particle called a macroscopic Boson describes the doping dependences of pseudo-

gap temperature and the transition temperature at which an anomaly metal phase appears and 

describes the origin of the pseudo-gap. Furthermore, this study introduces a new model to handle 

many-body interactions, which results in a new statistic equation. This statistic equation describing 

many-body interactions accurately explains why high-Tc cuprates have significantly high critical 

temperatures. Moreover a partition function of macroscopic Bosons describes all the properties of 

anomaly metal phase, which sufficiently agree with experiments, using the result from our previous 

study that analytically describes the doping dependence of Tc. By introducing a macroscopic Boson 

and the new statistical model for many-body interactions, this study uncovered the mystery of high- 

Tc cuprates, which have been a challenge for many researchers. An important point is that, in this 

study, pure analytical calculations are consistently conducted, which agree with experimental data 

well (i.e., they do not use numerical calculations or fitting methods but use many actual physical 

constants). 

Keywords: high-Tc cuprates; macroscopic Boson; many-body interactions; pseudo-gap; critical 

temperature; anomaly metal phase; conservation of angular momentum; attractive force; Cooper 

pair 
 

1. Introduction 

First of all, note that, as the abstract mentioned, the present paper is written under the condition 

that our previously published article [1] was understood that describes the Tc formula analytically, 

although the present paper will provide the review sections.  

Although several significant advancements have been presented, from the initial discovery of a 

superconductor, the most impressive discoveries are CuO2-based superconductors (i.e., high-Tc 

cuprates) [2].  

This is because, prior to this result, superconductors generally require significantly high 

refrigeration because of their lower critical temperature (~20 K). However, because they have higher 

Tc than LN2, the high-Tc cuprates received considerable attention and interests from condensed matter 

physics researchers and researchers in technologies who demonstrated interest in the technical merits 

when applied to superconducting magnetic energy storage and energy transmission [3–5].  

Thus, initial results demonstrated that high-Tc cuprates involved researchers from many 

condensed matter physics and related technologies.  

However, condensed matter physics researchers investigated high-Tc cuprates for much deeper 

reasons, i.e., they are the first case at which the standard band model and the Bardeen–Cooper–
Schieffer (BCS) theory are not applied, which indicates that novel physical phenomena occurred. 

(Recent H-based superconductors [6] with extremely high pressures have high potential to be applied 
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to the BCS theory.) Moreover, many claimed that it is related to many-body interactions [7], which 

made many theoretical researchers’ approaches to the mechanism difficult. It is obvious that, similar 
to the BCS theory, the use of quantum field theory is not adequate because quantum field theory is 

extremely abstract and does not reflect the fact that a phenomenon in condensed matter physics 

involves many actual physical constants.  

Although many studies about the experiments have been reported [8–13], (in particular, STM 

and STS [15] experimental methods to date revealed many aspects in high-Tc cuprates,), no theory 

describes all of the experimental data. These theories are divided to two methods: either Fermi-liquid 

model or resonating valence bond (RVB) model [16–19]. 

However, these theories have undetermined parameters, which inevitably leads to numerical or 

fitting methods. We must mention that they are insufficient because many related and actual physical 

parameters (i.e. physical constants) are involved when the properties of high-Tc cuprates are 

considered. For example, several researchers claim that, because of the existence of magnetic-field 

interactions, the natural force to combine a Cooper pair must be spin interactions. However, as 

mentioned in this study and our previous study [1], magnetic-field interactions are not generally only 

the spin interactions. For example, the spin-fluctuation [19] model is a numerical one; in this sense, 

this model is similar to the Hubbard-like model [20]. These models have multiple parameters to 

determine or to fit; thus, they do not reflect actual physical picture the high-Tc cuprates originally 

have. 

Furthermore, if the interaction was defined as spin interactions, they could not explain why 

other multiple physical parameters such as phonons are related [21]. 

Although multiple theories exist discussing the nature of force to combine a Cooper pair and the 

origin of pseudo-gap using RVB model or Hubbard-like model, few theoretical articles analytically 

address and explain experiments data, in addition to the anomaly metal phase and the transition 

temperature T0 at which the anomaly metal phase appears. 

Briefly, the understanding of high-Tc cuprates requires  

1. Analytical calculations of many-body interactions. Most theories use a numerical or fitting 
method; however, these approaches cannot clarify the physical picture in high-Tc cuprates. 

2. To understand the nature of force to combine a Cooper pair over long distance. 
However, research-related challenges have prevented a complete investigation of the 

abovementioned issues. If the calculations can be analytically solved, condensed matter physics will 

make considerable progress in developing then methods for fabricating compounds with higher 

critical temperatures could be developed through condensed matter fields. Thus, uncovering the 

physical mechanics of high-Tc cuprates is urgently required, and has motivated the present study. 

We thus provide new answers to the above questions. 

Combining with our previous study [1], we will propose a concept of macroscopic Boson. This 

paper will describe the mechanism of high-Tc cuprates, using only this concept, with the 

consideration of many-body interactions. 

As the contents of this paper, first we introduce a concept of macroscopic Boson, in which its 

mass and spin are described. Then using the partition function, the pseudo-gap energy is explained. 

Moreover, the method to handle many-body interaction will be introduced. Next, as the review, we 

obtain the formula of Tc [1]. The calculations of obtaining formulas of T* and T0 are positioned, 

analyzing anomaly metal phases. Section 3 is Method in which more concrete calculation methods 

are indicated. Then Result and Discussion sections are followed. Finally, the paper concludes the 

entire contents in section 6. 

2. Theory 

2.1. Introduction of new particle and pseudo-gap relating to new particle 

2.1.1. Introduction of a macroscopic Boson 
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When considering a CuO2 surface as the most important point [22] and when the refrigeration is 

sufficient such that a hole’s wavelength becomes larger than that of width of the surface, it is assumed 
that 2D is completely formed. This indicates that, on the surface, an angular momentum must be 

conserved; thus, each hole takes a circle by self-rotating. At this time, because this rotating circle has 

magnetic field energy, we consider that a new particle has been created. Note that the creations of 

the particles implies a phase transition, which will be described later in this paper. This is related to 

the electron nematic phase [27]. Going forward, we refer to this new particle as a “macroscopic 
Boson”; the schematic is shown in Figure 1. 

For a literature support of the assumption of a macroscopic Boson, please refer to [23]. Moreover, 

this fact corresponds to the fact that, in a CuO2 surface, a local persistent current exists [27]. 

 

Figure 1. Schematic of a macroscopic Boson. Normally, holes move in 3D when their kinetic energy 

is high. However, when refrigeration reduces the momentum along z-direction, the complete x-y 2D 

motion is formed. Thus, a conservation of the angular momentum creates a rotation movement by a 

hole itself. This transition will be described later. Because a current circle by the rotation generates 

magnetic field energy, which determines the mass of this circle, this circle is essentially different from 

a normal hole. We will refer to this new particle as “a macroscopic Boson.” The radius η of a 

macroscopic Boson is assumed to be of the order of a CuO2 cell (i.e., ~1 nm). 

2.1.2. Calculating the mass of a macroscopic Boson 

First, let us calculate the mass of a macroscopic Boson. Using a magnetic flux, magnetic field 

energy is represented as follows: 2U = 12 𝐼𝛷0,       (1) 

where I and Φ0 denote a current surrounding a macroscopic Boson and a magnetic flux of a 

macroscopic Boson having a unique value. In this equation, the magnetic flux is assumed to be 

quantized because each angular momentum is conserved as mentioned. 𝛷0 = ℎ𝑒,        (2) 

where h and e denote the Planck constant and the charge of a hole, respectively. Note that this study 

used both the constant h and ħ as Planck constants. Note that this quantization implies that each flux 

behaves as a particle, as discussed. 

In this current, the cyclotron angular frequency is introduced. I = 𝑒𝑇 = 2𝜋𝑒𝜔𝑐 = 2𝜋𝑒 𝑒𝐵0𝑚 = 2𝜋𝑒2 𝜇0𝐻0𝑚 ,    (3) 
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where ωc, B0, and u0 denote the cyclotron angular frequency, the constant and unique value of 

magnetic field in a macroscopic Boson, and the magnetic permeability in the vacuum, respectively. 

Thus, eq. (1) becomes U = 12 2𝜋𝑒2 𝜇0𝐻0𝑚 ℎ𝑒,       (4) 

where considering a flux of eq. (2)  𝐻0 = ℎ𝑒 1𝜇0𝜋𝜂2,         (5) 

where η is the approximated radius of a macroscopic Boson. 
Because the magnetic field B0 is expressed as eq. (5), the rest energy, i.e. the mass of a macroscopic 

Boson is formed as follows: 𝟐𝐔 = 𝛑𝒆𝟐 𝝁𝟎𝒎 𝒉𝒆 𝟏𝝁𝟎𝝅𝜼𝟐 𝒉𝒆 = 𝒉𝟐𝒎𝜼𝟐.     (6) 

2.1.3. Spin of a macroscopic Boson 

Let us now consider the spin of a macroscopic Boson to obtain partition function, which creates 

all the anomaly metal properties. As mentioned, when a macroscopic Boson is created, a complete 

2D motion can be considered. That is, among the x-y-z axes, we cannot consider z-components; 

therefore, using the Pauli matrix, this case considers only the x- and y-components. 𝑠𝑥 = ħ2 (0 11 0).        (7-1) 𝑠𝑦 = ħ2 (0 −𝑖𝑖 0 ),        (7-2) 

where i denotes the imaginary unit. 

In this study, a spin angular momentum is defined as the determinant from the Pauli matrix. 

Thus, each determinant is as follows: det𝑠𝑥 = − 12 ħ,         (8-1) det𝑠𝑦 = 12 ħ.           (8-2) 

Therefore, a net spin angular momentum of a macroscopic Boson is calculated as follows: 𝐬 ≡ 𝐝𝐞𝐭𝒔𝒙 + 𝒅𝒆𝒕𝒔𝒚 = 𝟎 ∙ ħ.       (9) 

The above result indicates that, although a single hole behaves as a Fermion, this macroscopic 

Boson on 2 D behaves similar to a Boson. Thus, the name of this particle is derived from this fact. 

Let us consider this by another view: 

It is necessary to consider a magnetic-flux property in terms of the electromagnetics. As 

described, a macroscopic Boson is simply a magnetic flux 𝛷𝑖in a 2D sheet. Moreover, electromagnetic 

energy is expressed by the following Hamiltonian [33]; H = (n + 12)ħ𝜔 

While time-dependent energy is described by the first term in this equation, a static magnetic 

field energy, i.e., the energy of a macroscopic Boson, is equal to the second term, i.e., the zero-point 

energy [33]. On the other hand, the liquid He (i.e., quantum liquid) has also the zero-point energy 

[33]. Because the liquid He is consisted of Bose particles, a macroscopic Boson can be considered to 

be a boson. 

As described, as long as considering 2D, the statistic property would alter. 
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2.1.4. Obtain the partition function 

Because a macroscopic Boson on 2D follows the Bose’s partition function, we simply must 
consider the following: 𝑓𝑟 = 1exp(𝐸𝑖−𝐸𝐹𝑘𝐵𝑇 )−1,        (10) 

where Ei, |𝐸𝐹|, 𝑘𝐵,and T denote energy, a chemical potential (i.e. 𝐸𝐹 < 0), the Boltzmann constant, 

and temperature, respectively. An important point is that the exponential function is approximated 

as a Maclaurin series, 𝒇𝒓 ≈ 𝟏𝑬𝒊−𝑬𝑭𝒌𝑩𝑻 +𝟏−𝟏 = 𝒌𝑩𝑻𝑬𝒊−𝑬𝑭.       (11) 

This abovementioned partition function is very important because all properties in the anomaly 

metal phase in CuO2-based superconductors are described using this partition function. We will see 

how this equation describes properties of the anomaly metal phase later.  

Moreover, this equation has another expression. Because we are now considering the chemical 

potential from Bosons and the general boson partition function, the following equation generally 

holds: 𝐸𝐹 = 𝐸 + 𝑘𝐵𝑇𝑙𝑛(𝑁𝐴𝑛𝑖 ),       (12) 

where the absolute value of the second term must be dominate over the value of the first term because 

the chemical potential is negative, and where 𝑁𝐴  denotes accepter concentration. Moreover, 
𝑁𝐴2𝑛𝑖 

indicates a doping parameter in this study. The number 2 is attached because of the presence of spin. 

Therefore, because ni indicates the concentration of lattices, 
𝑁𝐴𝑛𝑖  of ln is less than the value of the 

number 1 as long as we consider the image in which holes are doped in a Mott insulator. 

Using the equation above, the partition function, eq. (11), is translated as follows: 𝒇𝒓 = −[𝐥𝐧 (𝑵𝑨𝒏𝒊 )]−𝟏 .              (11-2) 

2.1.5. Calculate the pseudo-gap energy 

Let us calculate the pseudo-gap energy, which is directly related to the mass of a macroscopic 

Boson. First, we define the carrier concentration of macroscopic Bosons considering a 2D energy state 

density. 𝐷2 (𝐸) = 𝑚𝜋ħ2 ≡ 𝑝0,       (13) n = 1𝑑 ∫𝐷2(𝐸)𝑓𝑟𝑑𝐸,       (14) 

where 𝐷2(𝐸), n, and d denote energy state density in 2D, particle concentration, and width of the 2D 

sheet, respectively. An important point to note is that the parameter d [m] is consistently substituted 

by the number 1; however, the reason of the appearances in certain equations clarify the meaning of 

these equations. The integral for concentration (14) is simply as follows because the energy state 

density in 2D is constant as indicated in eq. (13) and because partition function fr is represented by 

eq. (11-2). In the process of this calculation of eq. (14), an energy E0 appears as follows: 𝐸0 = − 𝑑𝑝0 𝑛0 × ln(𝑁𝐴𝑛𝑖 ),      (15) 

This energy E0 is assumed to be essentially equal to the pseudo-gap energy. Combined with the 

mass of a macroscopic Boson, this pseudo-gap energy is represented as follows: 𝐸0 = −𝑈 × 𝑙𝑛 (𝑁𝐴𝑛𝑖 ) = − 12 ℎ2𝑚𝜂2 ln (𝑁𝐴𝑛𝑖 ).    (16-1) 
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The abovementioned pseudo-gap energy equation has a coefficient for doping function ln. This 

factor is identical to the zero-point energy: 12 ħ𝜔 = 12 ℎ2𝑚𝜂2.       (16-2) 

The above equation implies that this derived energy E0 merely indicates a potential. In general, 

however, an energy gap appears or disappears involving a photon’s emission or absorption, which 
has a momentum. This fact indicates that, for a potential to become a general energy gap, the potential 

is given the product of the fine-structure constant α, which includes characteristic impedance Z0 for 

electromagnetic waves. Typically, the fine-structure constant α is determined as follows: α = 𝑍0𝑒24𝜋ħ = 1137.0.       (17) 

In eq. (17), the impedance Z0 works as the specific impedance to electromagnetic waves. Thus, 

the net pseudo-gap energy |𝛥|0 is derived as follows, which will give the temperature of pseudo-

gap T* as discussed later. |𝜟|𝟎 = − 𝟏𝟐 𝒉𝟐𝒎𝜼𝟐 𝜶 × 𝐥𝐧( 𝑵𝑨𝒏𝒊 ).      (18) 

2.2. Superconductivity with consideration of many-body interactions 

It is necessary to describe why macroscopic Bosons undertake Bose–Einstein (BE) condensation 

by forming a pair from two macroscopic Bosons, although they have been already general Bosons 

such as Cooper pairs. In the previously published paper [1], we reported a new attractive force to 

combine particles from local current in a CuO2 cell [27]. This local current is equal to both rotational 

and self-current, which creates the mass of macroscopic Bosons; hence, the result of the previous 

paper agrees with the descriptions in the present paper. Therefore, in this section, based on the 

understanding that two macroscopic Bosons form a pair, we describe why BE condensation occurs 

considering many-body interactions between Bosons. 

2.2.1. Description of the model and the principle to many-body interaction  

There are many-body interactions among the carriers in various materials. In particular, this fact 

is essential to high-Tc cuprates because the general band theory cannot be applied. The many-body 

interactions of carriers indicate there are many local temperatures Ti in the materials, where i is index 

for a location. In other words, only in a temperature Ti, thermal equilibrium can be assumed. Figure 

2 shows our model for handling many-body interactions. In this figure, a radius ai forms a sphere 

shell, which has differential number dN and local temperature Ti. Moreover, in the center, a 

macroscopic Boson is presented. The immediately outer particles out of dN yield a pressure to this 

sphere shell, which is equal to the kinetic energies of particles in dN (i.e., it is represented by a 

temperature Ti). However, the central macroscopic Boson provides force of expansion, which 

indicates electrostatic energy, i.e., Coulomb interactions. Moreover, this case adds magnetic 

interactions between macroscopic Bosons as an expansion force. 
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Figure 2. Schematic of our established model to handle many-body interactions. Considering the 

nature of many-body interactions, note that temperatures are locally different. However, this model 

claims that in the differential number dN (a macroscopic Boson takes the center and dN takes a 

temperature 𝑻𝒊 ), a thermal equilibrium can be assumed. Therefore, a balance between force of 

expansion from Coulomb interactions, in addition to the magnetic field interactions from the Bosons 

and force of compression from immediate outer side, which is equal to the kinetic energies in dN (i.e., 

a temperature 𝑻𝒊), is formed. Calculating this balanced equation results in a new statistical equation. 

Considering that these forces of expansion should be balanced to a force of compression in a 

sphere shell, the following relation holds: 

(Coulomb interaction energy and magnetic field interaction energy) = 𝟑𝟐 𝒌𝑩𝑻𝒊 × 𝒅𝑵 

2.2.2. Calculate the principal equation of our model and the internal quantum state 

Calculate the abovementioned principle equation. First, dN is represented as follows: dN = gfd𝑘⃗ = 𝑔𝑓( 1𝑑𝑣),                      (19) 

where k, v, g, and f denote wave number, volume, state number, and partition function for the Boson, 

respectively. In the equation of dN, as mentioned, state number g and partition function f are given 

as follows: 𝑓 ≡ 𝑓𝑟 = −[ln ( 𝑁𝐴𝑛𝑖 )]−1.           (11-2) 

g = 1𝑑 ∫𝐷2(𝐸)𝑑𝐸 = 𝑝0𝐸0,      (14) 𝐷2(𝐸) = 𝑚𝜋ħ2 ≡ 𝑝0,           (13) 𝐸0 = |𝛥|0 = − 12 ℎ2𝑚𝜂2 𝛼 × ln(𝑁𝐴𝑛𝑖 ).     (18) 

Thus, fg is given as follows: fg = 𝑝0 12 ℎ2𝑚𝜂2 𝛼.        (20) 

To calculate the left-hand side of the abovementioned balanced equation in principle, the 

electrostatic energy UE is calculated as follows: 
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𝑈𝐸 = 12 𝜀0( 𝑒4𝜋𝜀0𝑎𝑖2)2𝑑𝑣,        (21) 

where 𝜀0 and 𝑎𝑖 denote the permittivity for the vacuum and the radius which dN is taking in the 

model.  

At this time, a volume element of the integral is expressed as follows: dv = 1d𝑘⃗ = 4𝜋3 𝑎𝑖3.        (22) 

Moreover, the magnetic interaction Vp from macroscopic Bosons is given as follows: 𝑉𝑝 = 𝑈𝐵𝑑𝑁.          (23) 

Consequently, the resultant equation is provided by 𝑎𝑖2 = 9𝜀0𝑒2 (3𝑘𝐵𝑇𝑖 − 2𝑈𝐵)𝑓𝑔.      (24) 

As shown in Figure 3, the central macroscopic Boson behaves under the model of the infinite 

well-potential. Thus, as every elementary quantum mechanics text [24] describes, the eigenvalue and 

wave function of it are presented as follows: 𝝍𝒊(𝒓) = √ 𝟐𝟐𝒂𝒊 𝐬𝐢𝐧 (𝒊𝝅𝒓𝟐𝒂𝒊),       (25) 𝑬𝒊 = 𝟏𝟐𝑴 (ħ𝒊𝝅𝟐𝒂𝒊)𝟐,         (26) 

where M, i, and r denote the mass of a macroscopic Boson, index, and microscopic variable of sphere-

coordinates, respectively. These equations indicate that a particle under the many-body interactions 

forms a stationary wave and that the wave function of the stationary wave and the eigenvalue (i.e., 

kinetic energy) are determined by a radius ai.. 

 

Figure 3. A basic model of infinite well-potential. This model is directly related to the immediate prior 

figure model. The diameter 2𝒂𝒊 varies depending on a temperature 𝑻𝒊. A macroscopic Boson in this 

well-potential forms a stationary wave, and its wave function and eigenvalue are presented in every 

basis texts. An important point is that all of these depend on index i. 

2.2.3. Describe BE condensation and the superconducting transition 

Using the abovementioned concept, we consider how BE condensation occurs. In addition to a 

sphere shell having temperature Ti,, another sphere shell having temperature Tj is considered. When 

we accept a combination of two macroscopic Bosons by a force F, these two Bosons must have the 

identical kinetic energy because, in general and as mentioned in our previous paper [1], a relative 

and attractive force appears only when their relative velocities become the same. In particular, this 
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fact is applied when an attractive Lorentz force is generated between moving and charged particles 

whose velocities are identical. Thus, when forming a pair from two macroscopic Bosons, the 

eigenvalues, eq. (26), indexed by i and j becomes equal. That is,  |𝐸𝑖 − 𝐸𝑗| = 0.         (27) 

This indicates that an index i and j becomes equal, resulting in that all the radius ai and 

eigenvalue Ei take the identical radius a0 and EB because of the arbitrary property of index i and j. 

Hence, if a pair forms, every energy of macroscopic Bosons undergoes the identical energy EB, which 

indicates all the rest Bosons take pairs and BE condensation. 

Moreover, as shown in Figure 4, considering index i to be equal j indicates that temperatures Ti 

and Tj must be equal. Even at this moment, positions r of wave functions, eq. (25), are common and 

thus the two sphere shells take the superposition, i.e. the relative distance ξG between the two sphere 

shells should be 0. Thus, the net coherence of two holes becomes on a cell order, 1 nm, as reported by 

many literatures. 

Employing the abovementioned equation (24), an equation of the relative distance between 

sphere shells ξG for temperature T is derived as follows: 𝟏𝟒 𝝃𝑮𝟐 = 𝟗𝜺𝟎𝒆𝟐 (𝟑𝒌𝑩〈𝑻〉 − 𝟐𝑼𝑩)𝒈𝒇,           (28) 

where UB is substituted with pseudo-gap |𝛥|0 in eq. (18). Note that, in this equation, considering BE 

condensation and single-particle picture, p0 of gf in eq. (20) is redefined as the value 1.  

 

Figure 4. Schematic of two macroscopic Bosons having many-body interactions. The relative distance 

of 𝝃𝑮  indicates one between two macroscopic Bosons. When an attractive force F between them 

appears and because the relative kinetic energy becomes 0, indexes i and j take the same. Thus, a 

superposition between them occurs, rendering 𝝃𝑮be 0. That is, two Bosons now combine to be a 

Cooper pair. Employing the statistic equations from our established model, we can predict this type 

of transition. 

As will be discussed in the Results section, temperatures at which 𝜉𝐺2 ≤ 0  indicates a 

superconductivity state (i.e., the net coherence of two holes is about 1 nm, which equals CuO2 cell 

order) and the transition temperature Tc at which 𝜉𝐺 = 0 indicates a critical temperature. 

2.3. Review to obtain the formula for Tc  

Herein, we would like to note the reason why there are Fermi energy and chemical potential EF 

[25]. Considering each pair and because these pairs have superposition, a single macroscopic wave 

with a converged phase is produced. However, at this stage, although we cannot consider each 

particle motion as a pair of two macroscopic Bosons, there is a non-zero temperature (i.e., T ≤ 𝑇𝑐). 

This indicates that the internal particles of a macroscopic Boson (i.e., holes) collide with each other. 

Thus, only in the case of T ≤ 𝑇𝑐, we consider the Fermi energy, i.e., 𝐸𝐹 ≥ 0. 
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2.3.1. Derivation of a general energy gap (review) 

Let us review our previous study [1], which describes a force F to combine two particles and a 

critical temperature Tc on doping. Note that because this is a review to understand the stream of 

outlined derivations of a critical temperature Tc, certain equations in the calculation and derivation 

processes are left out. In case that our readers are interested in the detail, the paper can be 

downloaded as an Open Access paper.  

First, we assume that a general energy gap |𝛥| is proportional to both Fermi energy and Critical 

temperature as follows [1]:        |𝛥|2 = 𝑘𝐵𝑇𝑐𝐸𝐹.           (29) 
In this equation, the Fermi energy in a p-type material [40] is employed as follows: 𝐸𝐹 = 𝐸𝑖 − 𝑘𝐵𝑇𝑙𝑛(𝑁𝐴𝑛𝑖 ).     (30) 

Note that we are considering the carrier is a hole. 

In this equation, a superconducting energy gap is introduced.                   2𝐸𝑖 = 𝑘𝐵𝑇𝑐          (31) 
Substituting these energies and employing the state equation with the universal gas constant R, 

the following equations are obtained. |𝛥|2 = 12 (𝑘𝐵𝑇𝑐)2 {1 − 2 𝑇𝑇𝑐 ln (𝑁𝐴𝑛𝑖 )}       (32) 

and |𝜟|𝟐 = 𝟏𝟐 (𝒌𝑩𝑻𝒄)𝟐 {𝟏 − 𝟐 𝟏𝑻𝒄 |𝜴𝑩|𝑹 𝟏𝝆𝒔 𝐥𝐧 (𝑵𝑨𝒏𝒊 )}      (33) 

where                          |𝛺𝐵| = 𝑝𝑉.           (34) 

where 𝛺𝐵 denotes a thermodynamic potential, and ρs is the concentration of Cooper 

pairs. 
In this manner, a general expression of energy gap for temperatures is derived.  

2.3.2. Generation of an attractive force that combines two carriers (review) 

To consider the superconducting energy gap, it is necessary to mention a force F, which results 

in a combination of a Cooper pair. As previously mentioned, two charged particles generally 

experience an attractive force with each other when they are moving with the same velocity, i.e., 

when the relative energy or momentum is 0. As shown in Figure 5a–5d, two parallel conductors along 

which the same direction and same amount of a current are presented. From the electromagnetism, 

these current leads experience an attractive force with each other, which is attributed to the Lorentz 

force. When we shorten these leads to a wavelength of a carrier, this attractive force still exists. This 

indicates that two charged particles with identical wave numbers are attracted to each other. This 

attractive force stems from the Lorentz force.  

2.3.3. Derivation of Tc (review) 

Considering the principle of generating an attractive force and assuming that the wave function 

of a hole is a plane wave and that the magnetic field generated by the moving holes is derived from 

a linear current, the Lorentz force F is given as follows: F = 𝑞2 ħ𝜇0𝑚2 4𝜋2𝑘2 𝛽|𝜓|2𝑘2 12𝑟 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 = 2𝑞2𝜋2𝜇0ħ𝑚2 𝛽|𝜓|2 1𝑟 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑,        (35) 

where ψ, r, θ, ϕ, q, β, k m, and μ0 denote wave function of a hole, relative distance of two holes, angle 

associated with the Lorentz force, angle related with two wave number of holes, the electric charge 
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of a hole, constant, common wave number, the mass of an electron, and magnetic permeability of the 

vacuum, respectively.   

Note that this equation employs the probability density flux as current density. 

The energy u (i.e., superconducting energy gap) from the line integral of the above force F is 

represented as follows: u = − 2𝑞2𝜋2𝜇0ħ𝑚2 𝛽|𝜓|2 ln(𝑟) × 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑢0    𝑢0 ≤ 0   ,       (36) 

where 𝑢0 denotes an integral constant. 
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Figure 5. (a) Currents in the same direction. (b) Shorter leads with currents in the same direction. (c) 

Holes with same direction and equal velocity. (d) Center-of-mass motion of Cooper pair. 

Furthermore, the derived superconducting energy gap u produces Tc with the combination of a 

general gap energy derived in eq. (33).  𝑇𝑐 = −4𝛼′2 |𝛺𝐵|𝑅𝜌𝑠 ln (𝑁𝐴𝑛𝑖 ) − 𝜃𝐷 ,      (37-1) 

where α = − 2𝑞2𝜋2𝜇0ħ𝑚2 ln (𝜉) × 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 ,      (37-2) 𝛼′ = 1𝑘𝐵𝜃𝐷 𝛼 = − 1𝑘𝐵𝜃𝐷 2𝑞2𝜋2𝜇0ħ𝑚2 ln (𝜉) × 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 .    (37-3) 

In this process, we added a Debye temperature θD and a net coherence ξ to the equation. Note 

that, as an integral constant in eq. (36), the BCS formula under a particular condition was employed. 

That is, in the formula Tc of the BCS theory, because the Boson combination energy in high-Tc cuprates 

is generally sufficiently large attributed to the short coherence (note that, the shorter the coherence 

is, the larger the magnetic field associated with the Lorentz force becomes), the large value of NV in 

the BCS formula of Tc makes the exponential function be almost the value 1. Thus, only the Debye 

temperature in the BCS formula is left. Concerning the thermodynamic potential, the following 

equation is applied under the condition of BE condensation. |𝛺𝐵| = 𝑝𝑉 = 25 𝐸𝐹0,        (38-1) 2𝐸𝐹0 = 𝐸𝐺0 ,        (38-2) 
where EF0 and EG0 denote the Fermi energy and band gap at zero temperature, respectively. Moreover, 

here the volume V is assumed to be the unit, i.e. the number 1. Thus, the critical temperature becomes 𝑇𝑐 = −4( 1𝑘𝐵𝜃𝐷)2 (2𝑞2𝜋2𝜇0ħ𝑚2 ln (𝜉) × 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑)2 𝐸𝐺05𝑅𝜌𝑠 ln (𝑁𝐴𝑛𝑖 ) − 𝜃𝐷 .   (39) 

Moreover, we derive a 2D critical temperature equation from the above. Thus, to conclude, the 

critical temperature equation is derived as follows: 〈𝑻𝒄〉𝟐 = −𝟒( 𝟏𝒌𝑩𝜽𝑫𝟐)𝟐 (𝟐𝒒𝟐𝝅𝟐𝝁𝟎ħ𝒎𝟐 𝐥𝐧 (𝝃) × 𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝝋)𝟐 𝑬𝑮𝟎𝒏𝒒𝟓𝑹𝝈𝒔 𝐥𝐧 ( 𝝈𝒏𝒊𝟐) − 𝜽𝑫𝟐            

(40) 
where σ, σs, θD2, and nq denote the surface density of carriers, the surface density of pairs, Debye 

temperature in 2D, and the number of layers. Note that all constants in the consequent equation have 

actual physical meaning and unit. This indicates that no numerical calculations or fitting methods are 

required. This fact is consistent everywhere in the present study. 

Note that, in eq. (36) for the superconducting energy gap, the probability density function is 

interpreted as follows: 
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|𝜓|2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 = |𝜓|2𝑠𝑖𝑛𝜃 sin (𝜑 + 𝜋2) = 12 |𝜓|2 {− cos (𝜃 + 𝜑 + 𝜋2) + cos (𝜃 − 𝜑 + 𝜋2)} (41) 

which shows that the gap is anisotropic [26] 

 

Figure 6. A result of typical critical temperature on doping. This is derived from the equation by 

combining pseudo-gap energy and superconducting energy gap. At doping 0.16, the critical 

temperature reaches the maximum, which agrees with the experiments. In calculations, no numerical 

calculations or fitting method are employed. The values of critical temperatures are relatively 

sensitive for Debye temperature and band gap in our derived equation. This indicates that, although 

high-Tc cuprates in common have CuO2 surfaces, differences of Debye temperatures and band gaps 

would result in various values of critical temperatures among high-Tc cuprates. 

Table 1. Physical parameters in the equation of critical temperature. 

Debye temperature 𝜽𝑫𝟐   113.5 K 

Coherence ξ   1 nm 

Band gap EG   1.53 × 10−18J 

The number of layer nq    3 

In Figure 6, a result of this review section is shown where used physical parameters are listed in 

Table 1. Note that for additional details, please see the Method section at which the full list of 

employed physical constants are presented. As shown, our derived critical temperature equation 

sufficiently agrees with a typical high-Tc copulate. Note that the reason why the band gap is relatively 

large is related to the property of the Mott insulator. For more details, please refer to [1].  

2.4. Calculations for obtaining formulas for T* and T0 

2.4.1. Derive the pseudo-gap temperature T *. 

Now, we consider the relation between a general energy gap and temperature, as shown in eq. 

(32)  T = − |𝛥|2𝑘𝐵2 1𝑇𝑐 1ln (𝑁𝐴𝑛𝑖 ),          (32) 

When the previously derived energy gap from a macroscopic Boson is substituted for an energy gap 

in the abovementioned equation, then variable temperature T must become a constant of pseudo-gap 

temperature T*. Therefore, the temperatures Tc and T* have a dependent relationship. Thus, as a 

formula of pseudo-gap temperature T*, the following equation holds: 
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𝑻∗ = − 𝟏𝒌𝑩𝟐 𝟏𝟒 (𝟑. 𝟒 × 𝟏𝟎−𝟐𝟏)𝟐[𝐥𝐧 ( 𝑵𝑨𝒏𝒊 )}𝟐 𝟏𝑻𝒄 𝟏𝐥𝐧 (𝑵𝑨𝒏𝒊 ) = − 𝟏𝒌𝑩𝟐 𝟏𝟒 (𝟑. 𝟒 × 𝟏𝟎−𝟐𝟏)𝟐[𝐥𝐧( 𝑵𝑨𝒏𝒊 )} 𝟏𝑻𝒄, (42) 

where to the equation of |𝛥|0 of eq. (18) in creating eq. (42), each physical parameter was substituted. 

That is, the physical parameters m, h, and α in eq. (18) were given actual values. Note that radius η 
is approximated as 1 nm. 

2.4.2. Derive the transition temperature T0 

In this study, we consider the anomaly metal phase properties in CuO2–based superconductors. 

These properties are primarily determined by the transition temperature T0, which is directly related 

to appearances of the Hall-effect coefficient RH. To obtain an equation for the temperature T0, we 

consider derivations of the Hall-effect coefficient RH. The Hall-effect coefficient RH depends on 

absolute of energy, –uBe,, where u and Be denote self-magnetic moment of a macroscopic Boson and 

applied magnetic field, respectively. The absolute of energy, uBe, involves Boltzmann statistics and 

thus it is related to concentration (i.e., the number) of macroscopic Bosons. 

In the previously appeared concentration eq. (14), the calculation for energy integral, in turn, is 

actually conducted because we attempted to obtain temperature T dependence for RH n = 𝑘𝐵𝑇 1𝑑 𝑝0 ∫ 𝑑𝐸𝐸−𝐸𝐹 = 𝑘𝐵𝑇 1𝑑𝑏𝑎 𝑝0 × ln( 𝑇0𝑇𝑐),       (43) 

where a = 𝑘𝐵𝑇𝑐          𝑏 = 𝑘𝐵𝑇0      .          (43-2) 

Note that the second form of fr in eq. (11-2) is not employed here. Eq. (43) is very important 

because the concentration n is proportional to the temperature T , which describes a property of the 

anomaly state. That is, the resistivity anomaly. Now we begin to calculate RH. As mentioned, 

considering an energy –uBe, the Boltzmann statics is represented as follows: n = 𝑛0exp (− 𝜇𝐵𝑒𝑘𝐵𝑇),              (44) 

where n0 is concentration without an applied magnetic field. In this equation, the exponential 

function is approximated by the Maclaurin series. n ≈ 𝑛0(1 − 𝜇𝐵𝑒𝑘𝐵𝑇).              (45) 

In the above equation, the previously calculated concentration n, eq. (43), is applied. 𝑘𝐵𝑇 𝑝0𝑑 × ln( 𝑇0𝑇𝑐) = 𝑛0(1 − 𝜇𝐵𝑒𝑘𝐵𝑇).         (46) 

Solving this equation for n0 and using the general definition of RH, we reach an important 

equation. 𝑅𝐻 = 𝜇𝐵𝑒𝑘𝐵𝑇−1𝑒𝑘𝐵𝑇𝑝0𝑑 ×ln(𝑇0𝑇𝑐).            (47) 

Composition of this equation presents a new temperature T0, which indicates the appearance of 

RH. 𝑻𝟎 ≡ 𝝁𝑩𝒆𝒌𝑩 .                  (48) 

2.4.3. Implement the formulation of T0  

To implement the formula T0, it is necessary to obtain u and Be in eq. (48). First, a magnetic 

moment u is generally defined as follows: μ = IS,                  (49) 
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where I and S (≈ 𝜂2 ) denote the self-current and the area in which a magnetic flux is presented. 

Seeing the schematic of Figure 1 of a macroscopic Boson (which assumes the motion of a hole to be a 

circle) and because a magnetic flux of it should be quantized as h/e, the magnetic flux of a macroscopic 

Boson is as follows: 𝛷0 = 𝐵0𝜋𝜂2 ≡ ℎ𝑒.             (50) 

That is, 𝐵0 = ℎ𝑒 1𝜋𝜂2,                 (50-2) 

where radius η is approximated on a cell of the CuO2 surface. That is, η ≈ 1 nm                    (51) 
Moreover, assuming that a magnetic field among a macroscopic Boson is equal to the central 

magnetic field generated by a moving hole, a persistent current I in a magnetic moment is calculated 

as follows: I = 1𝜇0 2𝜂𝐵0.                 (52) 

Consequently, a magnetic moment u is derived as follows: 𝛍 ≈ 𝟐𝝁𝟎 𝜼 𝒉𝒆.                  (53) 

While an applied magnetic field Be in the definition of T0 is variable, the magnetic field B0 is a constant 

derived by the physical constants. This fact allows us to introduce a variable quantum number N 

between Be and B0  𝐵0 1𝑁 = 𝐵𝑒.                   (54) 

Moreover, this variable integer N is undergone by the partition function fr.  N = 𝑁0𝑓𝑟,                  (55) 
where eq. (11-2) is applied as fr. 

Note that the magnetic field B0 was calculated from eq. (50-2). The employment of partition 

function fr indicates that an application of Be makes every direction of certain magnetic moments of 

macroscopic Bosons have the same orientation. In other words, prior to the application of magnetic 

field Be, the directions of self-magnetic moments of each macroscopic Boson are random (i.e., up- or 

down-direction), although the conservations of angular momentum produces macroscopic Bosons. 

However, the application of magnetic field Be presents all the directions of certain magnetic moments 

of macroscopic Bosons with the same orientation. Because the interaction between macroscopic 

Bosons with the same directed magnetic moment is repulsive, these Bosons now obtain the existences 

as single and independent particles. However, without an external applied magnetic field, why do 

our high-Tc cuprates become superconductive by forming many independent macroscopic Bosons? 

This can be understood by considering an analogy that every magnetic moment in a ferromagnetic 

material spontaneously acquires the same orientation under Curie temperatures. Thus, high-Tc 

cuprates have a property that is similar to a ferromagnetic material. We claim that this fact is related 

to the electronic nematic phase [27]. 

In this case, because macroscopic Bosons are formed in 2D CuO2, weak interactions between the 

magnetic moments of macroscopic Bosons can justify the abovementioned calculation. The actual 

calculations of Curie temperatures with complete consideration of many-body interactions are 

presented in the Appendix of this study. 

Assembling these facts, the conclusive equation of the transition temperature T0 is derived, 

which depends on carrier doping. 𝑻𝟎 ≈ − 𝟏𝒌𝑩 ( 𝟐𝝁𝟎 𝜼 𝒉𝒆)( 𝒉𝒆𝝅𝜼𝟐) 𝟏𝑵𝟎 𝐥𝐧( 𝑵𝑨𝒏𝒊 ).         (56) 
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As described later, this equation of T0 and the formula of critical temperature Tc [1] will be crucial 

factors when calculating properties of the anomaly metal phase.  

2.5. Analyze anomaly metal phase 

2.5.1. More comprehensive calculation of RH 

Next, we derive dependences on temperature of RH. Up to the previous section, the general 

equation of RH was derived, which resulted in a definition of transition temperature T0. In this 

equation, we introduce the following approximation to the general equation of RH. 𝜇𝐵𝑒𝑘𝐵𝑇 ≫ 1.              (57) 

According to this approximation, the general equation of RH becomes as follows: 𝑅𝐻 ≈ 𝜇𝐵𝑒𝑒(𝑘𝐵𝑇)2𝑝0𝑑 ×ln(𝑇0𝑇𝑐).           (58) 

Thus, the approximated equation of RH is determined by the applied magnetic fields Be. That is, 

this RH equation depends on both quantum number N and the universal magnetic field B0. 𝑅𝐻 ≈ 𝜇𝐵0𝑒(𝑘𝐵𝑇)2𝑝0𝑑 ×ln(𝑇0𝑇𝑐) 1𝑁.           (59) 

Note that the universal magnetic field B0 is one in a macroscopic Boson. Thus, in view of 

magnetic field energy, an application of magnetic field, which dominates over the universal magnetic 

field B0 results in the destructions of macroscopic Bosons and makes the anomaly metal phase 

disappear. Moreover, the employment of quantum number N indicates that the RH equation is 

determined by doping. That is, variable integer N is expressed by the partition function fr, which 

indicates doping. 1𝑁 = 1𝑁0𝑓𝑟 = − 1𝑁0 × ln( 𝑁𝐴𝑛𝑖 ).           (60) 

Considering this, the approximated RH equation becomes 𝑹𝑯 ≈ − 𝝁𝑩𝟎𝒆(𝒌𝑩𝑻)𝟐𝒑𝟎𝒅 ×𝐥𝐧 (𝑻𝟎𝑻𝒄) 𝟏𝑵𝟎 × 𝐥𝐧( 𝑵𝑨𝒏𝒊 ).          (61) 

As reported in many studies [28], this derived equation of RH is proportional to (1𝑇)2. 

In the Results section, we will depict this RH equation in terms of both doping parameters and 

temperatures T.  

2.5.2. Calculate the electron specific heat coefficient in the anomaly metal phase 

In turn, let us consider electron specific heat coefficient in the anomaly metal phase. Because 

electron specific heat coefficient is essentially equal to the average energy UE, it is simply necessary 

to calculate the average energy using the partition function fr. Thus, average energy using partition 

function fr (eq. (11)) for energy integrals is determined as follows: 𝑈𝐸 = ∫𝐸𝑓𝑟𝑑𝐸∫𝑓𝑟𝑑𝐸 .              (62) 

Note that the lower limitation a and the upper limitation b of these integrals are given as follows: a = 𝑘𝐵𝑇𝑐      𝑏 = 𝑘𝐵𝑇0.            (63) 
Assuming the chemical energy for macroscopic Bosons (i.e., not Fermi energy for single holes) 

is sufficiently small, the calculation results in 𝑈𝐸 = 𝑘𝐵𝑇0−𝑘𝐵𝑇𝑐+𝐸𝐹×ln(𝑘𝐵𝑇0−𝐸𝐹𝑘𝐵𝑇𝑐−𝐸𝐹)ln(𝑘𝐵𝑇0−𝐸𝐹𝑘𝐵𝑇𝑐−𝐸𝐹) ≈ 𝑘𝐵(𝑇0−𝑇𝐶)ln(𝑇0𝑇𝑐) .        (64) 
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In general, electron specific heat coefficient is derived by differential in terms of temperature to 

the average energy. In this study, however, ΔT is employed rather than the differential for 

temperature. Moreover, this ΔT is assumed to be (T0-Tc) in this study. Therefore, using the average 

energy UE and ΔT, electron specific heat coefficient is expressed as a calculation process. 𝛾0 = 𝑈𝐸(𝛥𝑇)2 = 𝑘𝐵𝑇0−𝑇𝑐 1ln(𝑇0𝑇𝑐).                  (65) 

Furthermore, to obtain electron specific heat coefficient with the unit [J/mol K2], the Avogadro 

constant 𝑁0𝐴  is considered because previously calculated average energy UE indicates one for a 

macroscopic Boson. Consequently, the electron specific heat coefficient is derived as follows: 𝛄 = 𝑵𝟎𝑨𝒌𝑩𝑻𝟎−𝑻𝒄 𝟏𝐥𝐧(𝑻𝟎𝑻𝒄).                  (66) 

2.5. Summary of the logical flow 

(1) First, assuming a macroscopic Boson, which is based on angular momentum conservation on a 
CuO2 surface, its energy was calculated; the implementation of the integral of the concentration 
resulted in a pseudo-gap energy. During this process, the two types of partition equations fr were 
derived. 

(2) To handle many-body interactions, a sphere shell with a local temperature Ti and differential 
particle number dN is introduced. From the forces that are balanced for both inside and outside 
the shell, a basic statistic equation, inner wave function and eigenvalue in a shell were derived. 

(3) The generation principle of attractive force: “The Lorentz force is applied between two charged 
particles when their relative velocity is 0.” Considering this principle, the abovementioned 
statistic equation, inner wave function and inner eigenvalue realize the combination of a Cooper 
pair, and then BE condensation occurs. 

(4) Therefore, the superconducting energy gap and Tc were calculated. During this process, a general 
energy gap is derived. 

(5) Combining the general energy gap and the mass of a macroscopic Boson, the pseudo-gap 
temperature, T*, formula was obtained. 

(6) The transition temperature T0 at which anomaly metal phase appears was defined by the 
appearance of the Hall coefficient RH. Thus, to calculate RH, combining the Boltzmann statistics, 
particle concentration was implemented using the partition equation fr. Then, the general 
definition of RH and the concentration produced the equation of RH. Considering the form of 
this equation, the transition temperature T0 was derived. 

(7) Because the resulted T0 has the magnetic moment of a macroscopic Boson u and magnetic field 
Be, these two factors were formulated. Thus, the T0 formula was implemented. 

(8) The abovementioned derived RH equation was approximated, and electron specific heat 
coefficient γ was calculated. Of note, during this process, the average energy using partition 
equations fr was obtained. 

3. Methods  

Herein, we describe the detailed method for the Results section. 

3.1. Calculation tool  

We employed the MS Excel software. 

3.2. Physical constants for calculations 
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Table 2 shows the primary physical constant in this study. Of note, although Debye temperatures 

for 3D and 2D are different, we employed 2D one 

 

Table 2. Physical constants in the obtained equations. 

Debye temperature 𝜃𝐷2   113.5 K 

Coherence ξ    1 nm 

Band gap EG      1.53 × 10−18J 

The number of layer nq       3 

Boltzmann constant kB      1.38 × 10−23J/K 

Magnetic permeability in vacuum μ0     4π × 10−7H/m 

Electron mass m      9.1 × 10−31kg 

Electric charge of an electron e or q     1.6 × 10−19𝐶 

Radius of a macroscopic Boson η     1 × 10−9m 

Planck constant 1 h        6.62 × 10−34𝐽 ∙ 𝑠 

Planck constant 2 ħ        1.05 × 10−34𝐽 ∙ 𝑠 

Fine structure constant α       1/137 

Avogadro constant 𝑁𝐴0      6.0 × 1023 𝑚𝑜𝑙−1 

Permittivity in vacuum ε0            8.8 × 10−12𝐹/𝑚 

Universal gas constant R      8.31 J ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1 

3.3. Resulted equations 

3.3.1. Critical temperature 

〈𝑻𝒄〉𝟐 = −𝟒( 𝟏𝒌𝑩𝜽𝑫𝟐)𝟐 (𝟐𝒒𝟐𝝅𝟐𝝁𝟎ħ𝒎𝟐 𝐥𝐧 (𝝃) × 𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝝋)𝟐 𝑬𝑮𝟎𝒏𝒒𝟓𝑹𝝈𝒔 𝐥𝐧 ( 𝝈𝒏𝒊𝟐) − 𝜽𝑫𝟐 .          (40) 

The critical temperature is shown above again. Concerning anisotropic properties, sine and 

cosine are given the maximum values of 1. Table 2 lists the physical constant used except for 

concentrations. 

3.3.2. How to determine ni and ρs 

In eq. (40), 
𝜎𝑛𝑖2 is identical for 

𝑁𝐴𝑛𝑖 , because the length along the c-axis, d, is consistently given the 

value of 1 by considering the 2D surface. Moreover, it is necessary to determine the values of 1/σs, 

i.e., 1/ρs when given the doping variable 
NA2ni as follows: 

(How to determine ni) 

In this study, the concentration ni indicates lattice concentration. Because the unit cell of the 

CuO2 surface is of the 1-nm order, the following assumption is introduced 2𝑛𝑖 = 1𝑑 1(10−9)2 = 1𝑑 × 1018,  [1/m3]       (67) 

Note that d has the unit of [m] and the consistent value of 1 because we are considering two 

dimensions. 

Because the critical temperature equation (40) uses the universal gas constant, R = 8.31  [J ∙ 𝑚𝑜𝑙−1 ∙ 𝐾−1],        (68) 
the concentration ni must be transformed into one with the unit [mol/L]. 

Thus, consider the following: 

1) Avogadro constant 𝑁𝐴0  

2) 1[L] = 10−3 [𝑚3] 
Therefore the concentration ni is typically 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2023                   doi:10.20944/preprints202005.0105.v4

https://doi.org/10.20944/preprints202005.0105.v4


 19 

 

𝑛𝑖 = 1𝑑 8.3 × 10−10[mol/L].        (69) 

(How to determine 1/ρs) 

First, in the MS Excel sheet, the variable-doping ratio 
𝑁𝐴2𝑛𝑖 is in the range of 0.005–0.5. Note that 

the number 2 appears due to spins. Then, 
𝑁𝐴𝑛𝑖  is calculated based on the abovementioned variable 

doping ratio.  

1/ρs should be determined by the constant concentration, eq. (69) 1𝜌𝑠 = 𝑥 1𝑛𝑖 , (70-1) 

where x denotes dimensionless variable. To give eq. (70-1) the meaning, variable x is provided as x = 𝑁𝐴𝑛𝑖 .  (70-2) 

3.3.3. Pseudo-gap temperature and transition temperature at which an anomaly metal phase occurs 

We list the results of each transition temperatures, which will be shown in the Results section. 𝑻∗ = − 𝟏𝒌𝑩𝟐 𝟏𝟒 (𝟑. 𝟒 × 𝟏𝟎−𝟐𝟏)𝟐[𝐥𝐧( 𝑵𝑨𝒏𝒊 )} 𝟏𝑻𝒄.            (42) 𝑻𝟎 ≈ − 𝟏𝒌𝑩 ( 𝟐𝝁𝟎 𝜼 𝒉𝒆)( 𝒉𝒆𝝅𝜼𝟐) 𝟏𝑵𝟎 𝐥𝐧( 𝑵𝑨𝒏𝒊 ).            (56) 

Of note, 𝑁0 ≈ 1.0 × 106. 

3.3.4. Physical results of the anomalous metal phase  

(Hall effect coefficient) 𝑹𝑯 ≈ − 𝝁𝑩𝟎𝒆(𝒌𝑩𝑻)𝟐𝒑𝟎𝒅 ×𝐥𝐧 (𝑻𝟎𝑻𝒄) 𝟏𝑵𝟎 × 𝐥𝐧( 𝑵𝑨𝒏𝒊 ).           (61) 

Of note, 𝑁0 = 1.1 × 102. Because B0 is constant, the variation of integer N0 indicates variation in 

the applied magnetic field Be. 

Moreover, in the abovementioned resulting equation, the following constants were employed.  μ ≈ 2𝜇0 𝜂 ℎ𝑒,                  (53) 𝐵0 = ℎ𝑒 1𝜋𝜂2,                  (50-2) 

𝑚𝜋ħ2 ≡ 𝑝0,                  (13) 

(Electron specific heat coefficient) 𝛄 = 𝑵𝟎𝑨𝒌𝑩𝑻𝟎−𝑻𝒄 𝟏𝐥𝐧(𝑻𝟎𝑻𝒄).              (66) 

3.3.5. Results of the many-body interaction model 𝟏𝟒 𝝃𝑮𝟐 = 𝟗𝜺𝟎𝒆𝟐 (𝟑𝒌𝑩〈𝑻〉 − 𝟐𝑼𝑩)𝒈𝒇,          (28) 

where gf ≡ 𝑝0 12 ℎ2𝑚𝜂2 𝛼.            (20) 

Of note, in eq. (20), considering the BE condensation and single-particle picture, 𝑝0 ≡ 1 
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𝑈𝐵 = 𝐸0 = |𝛥|0 = − 12 ℎ2𝑚𝜂2 𝛼 × ln(𝑁𝐴𝑛𝑖 ).          (18) 

The doping variable is fixed as a constant only in the abovementioned equation. 𝑁𝐴2𝑛𝑖 ≡ 0.16 (𝑜𝑝𝑡𝑖𝑚𝑎𝑙). 

Note that, precisely, when 𝜉𝐺 = 0, it should be considered that the doping is the cross point of 

Tc-dome and T*. 

4. Results 

First, Figure 7 shows the entire depictions of Tc, T*, and To on doping because of analytical 

calculations. Generally, the agreements with the experiments are good. Moreover, in Figure 8, the 

result of theoretical calculations of the Hall coefficient RH. As shown, the lower doping, the higher 

RH, and the RH behave as non-linear on temperatures.  

 

Figure 7. The complete depiction from theoretical calculations of Tc, T*, and T0 vs. doping. Note that 

the horizontal axis is 
𝑵𝑨𝟐𝒏𝒊. For the previous figure of Tc graph, T* and T0 are added. Note that T* is 

depicted on the understanding that it is smaller than T0. Moreover, T* has the gradual and easy 

minimum point on touching Tc dome. Thus, it does not exist in the Tc dome. As mentioned, no 

numerical calculations and fitting methods are employed. T0 begins with about 500 K and vanishes 

almost at the same doping at which Tc disappears. As mentioned in the text, this transition 

temperature is important when considering the anomaly metal phase. 
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Figure 8. Hall-effect coefficient RH on both temperature and doping. As reported in many 

experimental papers, lowering the doping dose arises the RH. The calculated values generally agree 

with experiments and that temperate dependence is non-linear. 

Because of the statistic equation for the many-body interactions, Figure 10 shows 

superconductivity state up to a critical temperature ~140 K. In this figure, the state that relative 

distance 𝜉𝐺 between two spherical shells (i.e. two macroscopic Bosons) considering the many-body 

interactions is under 0 indicates the superconductivity state. From the further temperatures higher 

than the critical temperature, the relative distance 𝜉𝐺  becomes much larger as a change of non-

continuity. Obviously, a transition occurs at ~140 K. This result accurately agrees with the 

experiments such as [28]. Furthermore, Figure 9 shows a result of theoretical calculation for the 

electron specific heat coefficient. According to the experiments [29,30], the calculation values are 

valid; moreover, it takes a maximum at a higher doping. 

 

Figure 9. A theoretical result of electron specific heat coefficient on doping. At the relatively high 

doping, the curve takes the maximum, which agrees with the experiments. In other words, to both 

lower doping or higher doping from this the maximum, electron specific heat coefficient decreases. 

 

Figure 10. Relative distance between two macroscopic Bosons versus temperature. Because, up to 

about 140 K, relative distances 𝝃𝑮 𝐢s not defined according to our statistic equation to handle the 

many-body interactions, up to about 140 K, the net coherence of two holes is defined as about 1 nm, 

i.e., superconductivity state is maintained. However, at higher temperatures, relative distances 𝝃𝑮 

suddenly becomes 𝟏𝟎−𝟕𝒎 order. Obviously, a transition occurs at around 140 K. As an important 
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notation, the magnetic field interaction UB is substituted by the pseudo-gap energy at the optimum 

doping of 0.16. Thus, as many researchers claim, the many-body interactions in terms of macroscopic 

Bosons (not holes) is one of the reasons why high-Tc cuprates exhibit extremely high critical 

temperatures. 

Importantly, in Figure 10, the magnetic field interaction UB in our statistic equation is substituted 

by the pseudo-gap energy at optimum doping. Thus, as many studies claim, the many-body 

interactions in terms of macroscopic Bosons are some of the reasons why high-Tc cuprates exhibit a 

considerably higher critical temperate. Moreover, for the determination of Tc, the pseudo-gap energy 

that is derived from the mass of a macroscopic Boson is crucial. 

5. Discussion 

5.1. Macroscopic Boson and high-Tc cuprates 

We propose a particle describing high-Tc cuprates is not a normal hole but a macroscopic Boson, 

which is formed by the conservation of angular momentum in 2D and by rotational motion of a hole 

itself. The concept of a macroscopic Boson, as mentioned, provided a unique partition function; this 

partition function can explain every property in the anomaly metal phase. Moreover, the presence of 

this Boson gives substantial reason why high-Tc cuprates have significantly high critical temperature 

when considered with many-body interactions. 

5.2. Anomaly metal phase and transition temperature T0 

Thus far, to understand the mechanism of a high-Tc cuprate, it was important to study the source 

of pseudo-gap energy. Although this is true, another important factor that should be understood is 

the source of the transition temperature T0, which defines the anomaly metal phase appearance. As 

mentioned, all equations that describe the anomaly metal phase have the parameter T0 and Tc. 

Therefore, the excessive focus on the origin of pseudo-gap energy made most researchers less careful 

of the source of the transition temperature T0, and this attitude confused researchers when 

considering the mechanism.  

5.3. Highlights of the process for the materials to undergo superconductivity  

Let us review the process, which describes the mechanism from forming a macroscopic Bosons 

to undergoing BE condensation. First, high-Tc cuprate reaches the transition temperature T0 with a 

lower or no refrigeration. At this stage, because the wavelength of a hole along c-axis becomes longer 

than the width of a 2D CuO2 surface, the net 3D disappears and the conservation of angular 

momentum forms a macroscopic Boson, which indicates the rotation of a hole producing a magnetic 

field energy. Thus, this magnetic field energy gives a mass of macroscopic Boson. 

By further refrigeration, our established statistic equation results in the following: 

1. Many-body interactions, including the magnetic field energy of macroscopic Bosons and 

Coulomb interactions, result in very short relative distance of two holes (i.e., the net coherence of ~1 

nm) as a result of all the sphere shells being superposed. Note that, at this stage, the paring of two 

macroscopic Bosons indicates the pairing of two holes. 

2. Simultaneously, two holes gain a strong combination of the Lorentz force because the relative 

kinetic energy among two holes becomes 0; note that all Cooper pairs take the identical energy and 

thus BE condensation is produced, which is the source of the Meissner effect. 

Although the derivation of a macroscopic wave function inevitably results in the London 

equation using the GL equation [31]; herein, let us review the reason why the Meissner effect is 

derived by another approach, thus stressing the converged and constant phase 𝜃0. 

Under an applied magnetic field B (i.e., vector potential A), we can derive the Aharonov–Bohm 

(AB) effect [32] from the initial macroscopic wave function. 𝜓𝐴 = |𝜓|𝑒𝑥𝑝[(𝜃0 + 2𝑞ħ ∫𝐴𝑑𝑠) 𝑗},      (71) 
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where q, j, and 𝜃0 denote the hole charge, imaginary unit and converged phase of the macroscopic 

wave function, respectively.         

From eq. (71), it is derived that (𝜃0 + 2𝑞ħ ∫𝐴𝑑𝑠) = 2𝑛𝜋,       (72) 

where n is the integer. Assuming n = 0, we have 𝜃0 = − 2𝑞ħ ∫𝐴𝑑𝑠 ,                                                 (73) 

and considering center-of-mass motion, 𝜃0 = 2𝑘0𝑥,                                                      (74) 
Substituting eq. (74) in eq. (73) and differentiating both sides of eq. (73), we obtain 2𝑘0 = − 2𝑞ħ 𝐴.                (75) 

The probability density flow is then defined as follows: 𝑗𝑠 = 𝑞|𝜓|2 ħ𝑘0𝑚 ,             (76-1) ∫|𝜓|2𝑑𝑣 = 1.                   (76-2) 
Substituting eq. (75) in eq. (76-1), we derive the following London equation: 𝑗𝑠 = −𝑞2|𝜓|2 1𝑚 𝐴.                (77) 

This is the identical result from approaches by the GL equation [36].             

5.4. The reason why high-Tc cuprates have significantly high critical temperature 

As mentioned, an attractive force is the Lorentz force when two charged particles have no 

relative kinetic energy. However, as shown in Figure 11, this concept can be satisfied in s-wave pair 

and d-wave pair. Considering this schematic, the pair symmetry of high-Tc cuprates is not very 

important. Rather, it is crucial to focus on an irregular many-body interactions in high-Tc cuprates 

with an explanation of the significantly high critical temperature. 

 

Figure 11. Schematic of paring symmetries. The principle to generate an attractive force between two 

charged particles is that relative momentum must be equal. That is, when this principle is satisfied 

and if outer macroscopic heat energy does not disturb, the two charged particles between a long 

distance are combined by the generated attractive force, which stems from the Lorentz force. The 

above figure illustrates this principle, i.e., s-wave and d-wave symmetries. This is why there is another 

irrelevant particle among force–experiencing two particles. This irrelevant charged particle with 

different momentum does not experience this attractive force. However, the Coulomb interactions 

does not have this characteristic. 
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As per the model employed to handle many-body interactions in terms of charged particles, it 

is normally impossible for two particles to take their relative distance shorter than ~10-7 m. In this 

case, however, our employed equation in many-body interactions has magnetic field interaction 𝑈𝐵 

in eq. (28) because of the presence of macroscopic Bosons (i.e. pseudo-gap energy) ad Coulomb 

interactions. Therefore, this fact renders relative distance between two macroscopic Bosons to be 

almost 0 up to a high temperature, which makes the net coherence of two holes become the order on 

the cell of a CuO2 surface (i.e. ~1 nm). This fact indicates that the combination energy becomes very 

strong. 

This is demonstrated as shown in Figure 10, which results in a critical temperature of ~140 K. 

Considering 𝑈𝐵 in eq. (28) in our model equation to handle many-body interactions is pseudo-gap 

energy, eq. (18), which is essentially equal to the mass of a macroscopic Boson, the parameter η [m] 
(i.e., radius of a Boson and order on a CuO2 cell) determines the critical temperature. This parameter 

determines both a Debye temperature and a band gap. Thus, this fact does not contradict the critical 

current equation (40) in this review section or our previous study [1]. Furthermore, as per our derived 

statistic equation, the larger UB is, the higher a critical temperature Tc, and actual high-Tc indicates 

that UB is sufficiently large, which is caused by the fact that the parameter η [m] is sufficiently small, 
in addition to optimum doping. 

In eq. (28), given the value of 0 for 𝜉𝐺, immediately the doping variable becomes fixed and the 

maximum critical temperature Tc, max is derived; 𝑘𝐵𝑇𝑐,𝑚𝑎𝑥 = 23 𝑈𝐵,0,       (78) 

where 𝑈𝐵,0 indicates the pseudo-gap of eq. (18) for maximum doping. 

The calculation of quantities by eq. (78) is shown in Figure 12. In this figure, the horizontal axis 

implies the η of the radius of a macroscopic Boson. This parameter indicates the unit cell order of the 
CuO2 surface. An important point is that, considering the parameter η is proportional to the lattice 
constant and although every high-Tc cuprate has macroscopic Bosons, differences in lattice constants 

render their critical temperature to be variable. Thus, if the type of material among the high-Tc 

cuprates differs, then the critical temperature is different. 

To conclude, the existence of a macroscopic Boson indicates that: 

1) It causes the anomaly metal phase in high-Tc cuprates. 
2) Irregular many-body interactions are caused by it, which results in a high critical temperature 

higher than LN2. 
Note that, if we consider electron-doping in a Mott insulator, carrier concentration dominates 

over the lattice concentration ni considering local electrons at each lattice in the Mott insulator; thus, 

the sign of the function ln in eq. (18) of pseudo-gap energy (i.e., UB in eq. (28)) is altered. Hence, the 

sign of UB in eq. (28) becomes the opposite, which makes electron-doping unable to have a high 

critical temperature because, on the contrary, UB would prevent the enhancement of critical 

temperatures Tc. 
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Figure 12. The maximum Tc,max for optimum doping vs. the radius of a macroscopic Boson η. Of note, 
the parameter η depends on a lattice constant. As shown, Tc,max is very sensitive for parameters η. This 
indicates that, among high- Tc cuprates, varying substances renders their maximum critical 

temperatures to be variable. Moreover, it is important to recognize that Tc,max is essentially equal to 

the pseudo-gap at maximum doping. 

5.5. Image of Cooper paring of two holes when 𝑇 ≤ 𝑇𝐶 

Figure 13 is an image that a hole on 2D of CuO2 cell takes a circle, which in turn becomes a 

macroscopic Boson. When two macroscopic Bosons are close to each other and when the relative 

velocity between the two holes is zero, these two holes take the identical and rotational velocity and 

take the identical angular frequency as shown in Figure 14. Therefore, when the attractive force 

principle is satisfied, in which the fact that relative velocity is zero is the source of an attractive force 

between them, the two holes take rotations, keeping the constant relative distance. This fact is 

represented in Figure 15. That is, these holes take parallel motions. This corresponds to the d-wave 

pairing.  

 

Figure 13. Schematic of a macroscopic Boson. 
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Figure 14. Schematic of paring of two macroscopic Bosons (i.e., the two holes). 

 

Figure 15. Translation of the aforementioned Figure 14. 

5.6. Consideration of significances in this paper 

We believe that this study is significant because: 

1) It clarified why high-Tc cuprates have actual high critical temperature higher than LN2. 

2) It demonstrated that all puzzles, including the properties of anomaly metal phase reported in 
previous articles, have been attributed to the presence of a macroscopic Boson. 
To date, multiple theoretical investigations were reported to explain the mechanism of high-Tc 

cuprates but most of them used numerical computing or fitting methods; however, a general 

understanding of how the mechanism worked was largely unclear. Therefore, we proposed a 

detailed explanation of the mechanism that has been proposed for a comprehensive understanding 

of high-Tc cuprates. 

Anticipated results and spillover effects: 

1) The analytical and physical understanding of high-Tc cuprates described in this study will 
promote the search for and synthesis of new materials exhibiting higher critical temperature near 
room temperature than standard materials at any given pressure. 

2) All fields of condensed matter physics rely on statistical methods. Therefore, pure analytical (not 
numerical) approaches can be applied to many-body interactions. Our model that handles many-
body interactions will provide new results to unsolved problems in condensed matter physics. 
For example, the analysis of many-body interactions of magnetic quanta would solve the primary 
problems of physics and superconducting technologies such as analytical formulation of critical 
current density. 
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6. Conclusion 

This study described theoretically high-Tc cuprate properties such as the transition temperatures 

on doping, Hall effect or electron specific heat coefficient on doping. Moreover, it established a novel 

model to handle general many-body interactions, which explained why the high-Tc cuprates exhibit 

a significantly high critical temperature. 

In general, the derived resultant equations predicted values accurately agree with data from 

experimental studies with no numerical calculations and fitting methods. 

As discussed in the Discussion, consider the summary of significances in the present study. 

1) It has uncovered the source of mysteries in high-Tc cuprates, i.e., the presence of a macroscopic 
Boson. 

2) It has succeeded in describing the anomaly metal phase with a pure theory, which has no fitting 
or numerical calculations and which agrees with experiments. 

3) It has established a new model to handle general many-body interactions; using this model, this 
study has clarified why high-Tc cuprates have considerably high critical temperatures. 
The resistivity on lower doping in the anomaly metal phase is not discussed in this study. 

However, an equation for conductivity, which takes linearly temperature dependence (i.e., non-

linearly resistivity), was obtained in the theoretical section of this study because the carrier 

concentration in eq. (43), which lineally depends on temperatures, indicates the conductivity. 

However, the non-lineally resistivity in the anomaly metal phase, which appears only on low doping 

and mobility from the experiments is unclear because it is directly related to superconductivity (i.e., 

resistivity = 0). Therefore, because it does involve macroscopic Bosons, magnetic flux quanta and I-V 

characteristic, the subject is complex. Thus, we expect additional investigations on the subject 

involving magnetic flux quanta and critical current density in future.  

Acknowledgments: We thank Enago (www.enago.jp) for the English language Review. 

Appendix 

Analytical calculations of Curie temperatures considering many-body interactions 

S1. Introduction   

The purpose of this appendix is to confirm the proposed new model to handle many-body 

interactions described in the main text by applying another physical phenomenon. For example, we 

now introduce transitions of ferromagnetic material, i.e., Curie temperature. 

Before conducting an actual calculation, we will briefly discuss certain background information 

to understand the significance of this appendix and to confirm our established model. Concerning 

transition phenomena, many studies have been reported [34–39]. In particular, the Ising model is the 

most famous and basic. According to our literature review, however, few studies exist, which 

accurately predicted that the transition temperatures agreed with the experimental data. Moreover, 

many statistic physics texts claim that the Ising model in 2D provides an equation of transition 

temperature but there is no known model in 3D. If we follow the existing theory, a calculation of 

transition temperature indicates the evaluation of exchange interaction. However, this interaction is 

quite abstract and thus it difficult to evaluate in every ferromagnetic material. A general formula to 

determine a transition temperature has not been obtained because the partition function considering 

many-body interactions cannot be mathematically calculated.  

In this Appendix, using our established model for many-body interactions, we predict the actual 

values of transition temperatures, which sufficiently agree with experimental values. These 

calculations do not involve any numerical calculation or fitting method. Here, we provide a new 

model for statistical physics considering many-body interactions.  

S2. Predictions of Curie temperature using our employed model to handle many-body interactions 
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As shown in Figure S1, a magnetic moment 𝜇⃑ is located in the center of a sphere shell dN at 

which the temperature is Ti. Similar to that of the main text, the following balanced relation holds: 

(magnetic field interaction from magnetic moments) = 
 32 𝑘𝐵𝑇𝑖𝑑𝑁    (S-1) 

In this equation, the left-hand side is given as follows: −𝜇 ∙ 𝐵⃗  
As every basic text describes, a magnetic field B is represented as follows: 𝐵⃗ = − 𝜇04𝜋 [ 𝜇⃗⃗ 𝑟3 − 3(𝜇∙⃗⃗  ⃗𝑟)⃗⃗⃗⃗ 𝑟 𝑟5 ],        (S-2) 

where r is radius of the sphere shell dN. 

 

Figure S1. A schematic of our model to apply a ferromagnetic material. Basically, the concept to 

handle many-body interactions is the same as the case presented in the main text. That is, force of 

expansion from the central magnetic moment 𝝁  ⃗⃗ ⃗⃗  is balanced to force of compression from the 

immediately outer locations, which are equal to kinetic energies in the differential number dN. Note 

that this case does not include the magnetic field interaction using macroscopic Bosons. Calculating 

the balanced equation results in a statistic equation that involves many-body interactions. 

In this equation, the first term indicates ferromagnetism, while the second term indicates 

antiferromagnetism. Because the present case is to handle a ferromagnetic material, we employ the 

first term. Moreover, the directions of two magnetic moments 𝜇⃑ are assumed to be parallel, i.e., the 

scalar product between two 𝜇⃑ is positive. Accordingly, the above equation becomes  −𝜇 ∙ [− 𝜇04𝜋 𝜇⃗⃗ 𝑟3] = 32 𝑘𝐵𝑇𝑖𝑑𝑁.        (S-3) 

Moreover, as mentioned, dN is expressed as follows considering the volume element of the 

integral: 𝜇04𝜋 |𝜇 |2 1𝑟3 = 32 𝑘𝐵𝑇𝑖𝑑𝑁 = 32 𝑘𝐵𝑇𝑖 × 𝑔𝑓𝑑𝑘⃗ ,      (S-4-1) d𝑘⃗ = 1𝑑𝑣 = 14𝜋3 𝑟3.               (S-4-2) 

Thus, an important equation is derived as follows: 𝜇0|𝜇 |2 = 92 𝑘𝐵𝑇𝑖𝑔𝑓 = 92 𝑘𝐵𝑇𝑖𝑔 1exp(−𝐸𝑖−𝐸𝐹𝑘𝐵𝑇𝑖 )−1.      (S-5) 

 
In this Bose statistic equation, Ei denotes the zero-point energy of phonon, i.e., the Debye 

temperature and 𝐸𝐹 is a chemical potential, which is equal to the Gibbs free energy, but especially 
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in this case implies only an internal energy. Therefore, this chemical potential is derived from electron 

specific heat coefficient γ as follows: 𝜇0|𝜇 |2 = 92 𝑘𝐵𝑔 𝑇exp[− 1𝑘𝐵𝑇(32𝑘𝐵𝜃𝐷+𝛾𝑇2)]−1.      (S-6) 

In this case, a transition temperature of Tc is assumed to be obtained by considering the 

extremum from this equation. Hence, to calculate differentials, Ti is considered to be a variable 

continuous temperature T because there are now no dependent parameters on the index i except Ti. 

Therefore, the following equation is calculated. 𝑑𝑑𝑇 𝜇0|𝜇 |2 = 0 .         (S-7) 

Consequently, the following equation is obtained: 𝛾𝑇2−32𝑘𝐵𝜃𝐷𝑘𝐵𝑇 = −1,         (S-8-1) T ≡ 𝑇𝑐 = − 𝑘𝐵2𝛾 + √3𝑘𝐵𝜃𝐷2𝛾 ≈ √3𝑘𝐵𝜃𝐷2𝛾 .       (S-8-2) 

Table S1 lists the physical constants of a ferromagnetic metal Fe. 

Table S1. Fe physical constants. 

Debye temperature 𝜃𝐷     470 K 

Electron specific heat coefficient γ  8.4 × 10−27 J/K2 

Employing these physical constants, the transition temperature Tc for the metal Fe is calculated 

as follows: 𝑇𝑐 ≈ 1.08 × 103 K .          (S-9) 
Because measurements of the transition report 1043 K, the agreement is sufficient. 

Then, we consider the transition temperature of the ferromagnetic Ni. The material Ni has much 

less thermal conductivity, unlike the metal Fe. This indicates that a chemical energy, i.e., the internal 

thermal energy is allowed to be ignored. Thus, from eq. (S-8-1), the Tc equation is simply expressed 

as follows: 32 𝑘𝐵𝜃𝐷 ≈ 𝑘𝐵𝑇𝑐.         (S-10) 

Because the Debye temperature of Ni is reported as 450 K, Tc is calculated as follows: 𝑇𝑐 ≈ 675 K .        (S-11) 
Compared with a measured transition value 627 K, the agreement can be considered to be 

sufficient. 
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