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Article 

Analytical Descriptions of High‐Tc Cuprates by 

Introducing Rotating Holes and a New Model to 

Handle Many‐Body Interactions 

Shinichi Ishiguri 

Nihon University, 1‐2‐1 Izumi‐Cho, Narashinoshi, Chiba 275‐8575 Japan; shinichi.ishiguri@gmail.com 

Abstract: This study describes the properties of high‐Tc cuprates by introducing rotating holes that are created 

by angular momentum conservations on a 2D CuO2 surface, and which have a different mass from that of a 

normal  hole  because  of  the  magnetic  field  energy  induced  by  the  rotation.  This  new  particle  called  a 

macroscopic  Boson  describes  the  doping  dependences  of  pseudo‐gap  temperature  and  the  transition 

temperature  at  which  an  anomaly  metal  phase  appears  and  describes  the  origin  of  the  pseudo‐gap. 

Furthermore, this study  introduces a new model to handle many‐body  interactions, which results  in a new 

statistic equation. This statistic equation describing many‐body interactions accurately explains why high‐Tc 

cuprates have significantly high critical temperatures. Moreover, a partition function of macroscopic Bosons 

describes  the properties of anomaly metal phase, which sufficiently agree with experiments. Note  that,  the 

calculations were conducted, using the result from our previous study that analytically describes the doping 

dependence  of  Tc.  By  introducing  a  macroscopic  Boson  and  the  new  statistical  model  for  many‐body 

interactions,  this study uncovered  the mystery of high‐ Tc cuprates, which have been a challenge  for many 

researchers. An important point is that, in this study, pure analytical calculations are consistently conducted, 

which agree with experimental data well (i.e., they do not use numerical calculations or fitting methods but 

use many actual physical constants). 

Keywords:  high‐Tc  cuprates; macroscopic  Boson; many‐body  interactions;  pseudo‐gap;  critical 

temperature; anomaly metal phase; conservation of angular momentum; attractive  force; cooper 

pair 

 

Introduction 

First of all, note that, as the abstract mentioned, the present paper is written under the condition 

that our previously published article [1] was understood that describes the Tc‐formula analytically. 

However, the present paper will provide the review sections. 

Although several significant advancements have been presented, from the initial discovery of a 

superconductor,  the most  impressive  discoveries  are  CuO2‐based  superconductors  (i.e.,  high‐Tc 

cuprates) [2]. This is because, prior to this result, superconductors generally require significantly high 

refrigeration because of their lower critical temperature (~20 K). However, because high‐Tc cuprates 

have higher Tc than LN2, they received considerable attention and interests from condensed matter 

physics  researchers  and  researchers  in  technologies. They demonstrated  interest  in  the  technical 

merits when applied  to superconducting magnetic energy storage and energy  transmission  [3–5]. 

Thus, initial results demonstrated that high‐Tc cuprates involved researchers from many condensed 

matter physics and related technologies. 

However, condensed matter physics researchers investigated high‐Tc cuprates for much deeper 

reasons,  i.e.,  they are  the  first  case at which  the  standard band model and  the Bardeen–Cooper–

Schieffer  (BCS)  theory are not applied, which  indicates  that novel physical phenomena occurred. 

(Recent H‐based superconductors  [6–9] with extremely high pressures have high potentials  to be 

applied to the BCS theory.) Note that it was considered that BCS theory could be applied to materials 

whose critical temperatures are up to around 30 K. Furthermore, crucially while BCS theory exhibits 
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isotope effects, it was found that, in high‐Tc cuprates, the normal isotope effects were not applied. 

Considering these facts, it is clear that the mechanism of the high‐Tc cuprates differs from that of BCS 

theory, which gave this paper a motivation to make the mechanism be clear. Moreover, it is obvious 

that, similar to the BCS theory, the use of quantum field theory is not adequate because quantum 

field theory is extremely abstract and does not reflect the fact that a phenomenon in condensed matter 

physics involves many actual physical constants. 

Furthermore, many claimed that it is related to many‐body interactions [10], which made many 

theoretical researchers’ approaches to the mechanism difficult. Thus, it is necessary to consider the 

mechanism of the cuprates with many‐body interactions. 

Moreover, while all researchers agree that the carrier is a Cooper pair, the origin is still unclear. 

Although multiple theories exist discussing the nature of the force to combine a Cooper pair and the 

origin of pseudo‐gap using RVB model or Hubbard‐like model, few theoretical articles analytically 

address and explain experiments data,  in addition  to  the anomaly metal phase and  the  transition 

temperature T0 at which the anomaly metal phase appears. Thus, our paper needs to make clear the 

origin of attractive force to provide a Cooper pair. 

Currently, there are many theories besides BCS theory. Here, let us consider why these existing 

theories are insufficient: Although many studies about the experiments have been reported [11–16], 

(in particular, STM and STS [17,18] experimental methods to date revealed many aspects in high‐Tc 

cuprates,), no theory describes all of the experimental data. 

These  theories are divided  to  two methods: either Fermi‐liquid model or  resonating valence 

bond  (RVB)  model  [19–22].  However,  these  theories  have  undetermined  parameters,  which 

inevitably leads to numerical or fitting methods. We must mention that they are insufficient because 

many related and actual physical parameters (i.e., physical constants) should be involved when the 

properties of high‐Tc cuprates are considered. 

For  example,  several  researchers  claim  that,  because  of  the  existence  of  magnetic‐field 

interactions, the natural force to combine a Cooper pair must be spin interactions. However, as will 

be mentioned in this study and our previous study [1], magnetic‐field interactions are not generally 

only the spin interactions. Furthermore, the spin‐fluctuation [22] model is a numerical one; in this 

sense, this model is similar to the Hubbard‐like model [23]. 

These models have multiple parameters to determine or to fit; thus, they do not reflect actual 

physical picture the high‐Tc cuprates originally have. Moreover, if the interaction was defined as spin 

interactions,  they could not explain why other multiple physical parameters such as phonons are 

related [24,25]. 

That is, thus far research‐related challenges have been prevented from a complete investigation 

of the abovementioned issues. If the calculations can be analytically solved, condensed matter physics 

will make considerable progress in developing then methods for fabricating compounds with higher 

critical temperatures could be developed through condensed matter physics fields. Thus, uncovering 

the physical mechanics of high‐Tc cuprates is urgently required, and has motivated the present study. 

We thus provide new answers to the above questions.  

Briefly, the understanding of high‐Tc cuprates requires 

1. Analytical  calculations  of many‐body  interactions. Most  theories  use  a  numerical  or  fitting 

method; however, these approaches cannot clarify the physical picture in high‐Tc cuprates. 

2. To understand the nature of the force to combine a Cooper pair over long distance. 

Combining with our previous study [1], we will propose a concept of macroscopic Boson. This 

paper  will  describe  the  mechanism  of  high‐Tc  cuprates,  using  only  this  concept,  with  the 

consideration of many‐body interactions. That is, basically, just only the existence of the macroscopic 

Boson will describe the mechanism of high‐Tc cuprates. 

As the contents of this paper, first we introduce a concept of macroscopic Boson, in which its 

mass and spin are described. Then using the partition function, the pseudo‐gap energy is explained. 

Moreover, the method to handle many‐body interaction will be introduced. Next, as the review of 

our previous article, we obtain the formula of Tc [1]. The calculations of obtaining formulas of T* and 

T0 are positioned, analyzing anomaly metal phases. Section 3  is Method  in which more  concrete 
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calculation methods are  indicated. Then Result and Discussion sections are  followed. Finally,  the 

paper concludes the entire contents in section 6. 

2. Theory 

Let  us  consider  a  theoretical  structure  briefly.  This  theory  is  based  on  the  emergence  of  a 

Macroscopic Boson under the transition temperature T0. Moreover, the mass of this Boson is related 

to the pseudo‐gap temperature T*. Then for calculations of the critical temperature Tc, there are two 

ways in the derivation: the one comes from the combination of the macroscopic Bosons (i.e., Cooper 

pairs) and the other is originated from handling many‐body interaction of the macroscopic Bosons. 

However, this paper will discuss that these two ways are essentially same. Afterwards, this paper 

will consider the anomaly metal phases based on the partition function of the Bosons. The common 

point is that every property in the cuprates is represented only by the assumption of the macroscopic 

Bosons. 

Moreover, as a material, the present theory assumes that 

i) it has a CuO2 2‐dimentional surface, and 

ii)  its carries are holes (i.e., electron carries are not handled in this paper). 

2.1. Introduction of New Particle and Pseudo‐Gap Relating to the New Particle 

2.1.1. Introduction of a Macroscopic Boson 

When considering a CuO2 surface as the most important point [25] and when the refrigeration is 

sufficient such that a hole’s wavelength becomes larger than that of width of the surface, it is assumed 

that 2D  is completely  formed. This  indicates  that, on  the surface, an angular momentum must be 

conserved; thus, each hole takes a circle by self‐rotating. At this time, because this rotating circle has 

magnetic field energy, we consider that a new particle has been created. Note that the creations of 

the particles imply a phase transition T0, which will be described later in this paper. This is related to 

the  electron nematic phase  [26]. Going  forward, we  refer  to  this new particle  as  a  “macroscopic 

Boson”; the schematic is shown in Figure 1. 

For a literature support of the assumption of a macroscopic Boson, please refer to [27]. Moreover, 

this fact corresponds to the fact that, in a CuO2 surface, a local persistent current exists [26]. 

 

Figure 1. Schematic of a macroscopic Boson. Normally, holes move in 3D when their kinetic energy 

is high. However, when refrigeration reduces the momentum along z‐direction, the complete x‐y 2D 

motion is formed. Thus, a conservation of the angular momentum creates a rotation movement by a 

hole itself. This transition will be described later. Because a current circle by the rotation generates 

magnetic field energy, which determines the mass of this circle, this circle is essentially different from 

a  normal  hole. We will  refer  to  this  new  particle  as  “a macroscopic  Boson.”  The  radius  η  of  a 

macroscopic Boson is assumed to be of the order of a CuO2 cell (i.e., ~1 nm). 
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2.1.2. Calculating the Mass of a Macroscopic Boson 

First,  let us  calculate  the mass  of  a macroscopic Boson. Generally, magnetic  field  energy  is 

represented as follows: 

2U ൌ
ଵ

ଶ
𝐼𝛷଴ െ 𝜇௦ሬሬሬ⃗ ∙ 𝐻ሬሬ⃗ ൌ

ଵ

ଶ
𝐼𝛷଴ െ 𝜇௦,௭𝐻௭    (1)

where I, Φ0,  𝜇௦ሬሬሬ⃗   and 𝐻ሬሬ⃗   denote a current surrounding a macroscopic Boson, the magnetic flux of a 

macroscopic Boson having a unique value, the spin magnetic moment of a hole, and the generated 

magnetic field in the macroscopic Boson. Note that it is assumed that the magnetic field direction is 

along the z‐axis. Moreover,  if we do not substitute the more concrete equation of  𝜇௦,௭, the second 

term  is  formed  generally  in  terms  of  the  electromagnetism.  If we  assumed  that  the particle  is  a 

fermion,  then  𝜇௦,௭  would have both  the positive and  the negative numbers. However, as will be 

mentioned later, at a temperature T0, the identical and uniform particles are emerged. This implies 

that the uniformed energy U requires that  𝜇௦,௭  be zero. Therefore, the particle must be a boson. 

Considering the same reason, the flux must be quantized as 

𝛷଴ ൌ
௛

௘
,    (2)

where h and e denote the Planck constant and the charge of a hole, respectively. Note that this study 

used both the constants h and ħ as Planck constants. 

In the current of Equation (1), the cyclotron angular frequency is introduced. 

I ൌ
௘

்
ൌ 2𝜋𝑒𝜔௖ ൌ 2𝜋𝑒

௘஻బ
௠
ൌ 2𝜋𝑒ଶ

ఓబுబ
௠

,  (3)

where  ωc, B0,  and  u0 denote  the  cyclotron  angular  frequency,  the  constant  and  unique  value  of 

magnetic field in a macroscopic Boson, and the magnetic permeability in the vacuum, respectively. 

Thus, Equation (1) becomes 

U ൌ
ଵ

ଶ
2𝜋𝑒ଶ

ఓబுబ
௠

௛

௘
,    (4)

where considering the flux of Equation (2) 

𝐻଴ ൌ
௛

௘

ଵ

ఓబగఎమ
,    (5)

where η is the approximated radius of a macroscopic Boson. 

Because the magnetic field B0 is expressed as Equation  (5), the rest energy,  i.e.,  the mass of a 

macroscopic Boson is formed as follows: 

𝟐𝐔 ൌ 𝛑𝒆𝟐
𝝁𝟎
𝒎

𝒉

𝒆

𝟏

𝝁𝟎𝝅𝜼𝟐
𝒉

𝒆
ൌ

𝒉𝟐

𝒎𝜼𝟐
.    (6)

2.1.3. Spin of a Macroscopic Boson 

Let us now consider the spin of a macroscopic Boson. As mentioned, Equation (1) claims that 

the second term of this equation must be zero. This implies that the direction of spins of a hole and 

that of the magnetic field is perpendicular. Thus, if the direction of the magnetic field is assumed to 

be z‐axis, then the directions of hole spins must be x‐or y‐axis. 

Therefore, using the Pauli matrix, this case considers only the x‐ and y‐components. 

𝑠௫ ൌ
ħ

ଶ
ቀ0 1

1 0
ቁ.    (7‐1)

𝑠௬ ൌ
ħ

ଶ
ሺ0 െ𝑖
𝑖 0

ሻ,    (7‐2)

where i denotes the imaginary unit. 

In this study, a spin angular momentum is defined as the determinant from the Pauli matrix. 

Thus, each determinant is as follows: 
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det𝑠௫ ൌ െ
ଵ

ଶ
ħ,    (8‐1)

det𝑠௬ ൌ
ଵ

ଶ
ħ.    (8‐2)

Therefore, a net spin angular momentum of a macroscopic Boson is calculated as follows: 

𝐬 ≡ 𝐝𝐞𝐭𝒔𝒙 ൅ 𝒅𝒆𝒕𝒔𝒚 ൌ 𝟎 ∙ ħ.    (9)

Next, let us consider the orbital angular momentum l: 

𝑙௭ ൌ 𝜂ଶ𝑚௛𝜔௖,    (10)

where 

 

𝜔௖ ≡
௘஻

௠೓
,        and  (11)

mh is the mass of a hole, and η is the radius of a macroscopic Boson. 

Thus, 

𝑙௭ ൌ 𝜂ଶ𝑒𝐵.    (12)

The magnetic flux is provided as 

𝛷஻ ൌ
௛

௘
ൌ 𝜋𝜂ଶ𝐵.  (13)

Accordingly, 

𝑙௭ ൌ 2ħ.  (14)

To conclude, the net spin j is 

𝒋 ൌ 𝟎 ∙ ħ ൅ 𝟐ħ ൌ 𝟐ħ,  (15)

which implies the macroscopic Boson is a boson. 

The above result indicates that, although a single hole behaves as a Fermion, this macroscopic 

Boson  on  2 D  behaves  as  a  boson. Thus,  the  name  of  this particle  is derived  from  this  fact. As 

described, as long as considering 2D, the statistic property would alter. 

2.1.4. Obtain the Partition Function of Macroscopic Bosons 

Because  a macroscopic Boson  on  2D  follows  the Bose’s  partition  function, we  simply must 

consider the following: 

𝑓௥ ൌ
ଵ

ୣ୶୮൬
ಶ೔షಶಷ
ೖಳ೅

൰ିଵ
,  (16)

where Ei,  |𝐸ி|,  𝑘஻,and T denote energy, a chemical potential (i.e.,  𝐸ி ൏ 0), the Boltzmann constant, 

and temperature, respectively. An important point is that the exponential function is approximated 

as a Maclaurin series, 

𝒇𝒓 ൎ
𝟏

𝑬𝒊ష𝑬𝑭
𝒌𝑩𝑻

ା𝟏ି𝟏
ൌ

𝒌𝑩𝑻

𝑬𝒊ି𝑬𝑭
.    (17)

This abovementioned partition function is very important because all properties in the anomaly metal 

phase in CuO2‐based superconductors are described using this partition function. We will see how 

this equation describes properties of the anomaly metal phase later. 

Moreover, this equation has another expression. Because we are now considering the chemical 

potential  from Bosons and  the general boson partition  function,  the  following equation generally 

holds: 

𝐸ி ൌ 𝐸 ൅ 𝑘஻𝑇𝑙𝑛ሺ
ேಲ
௡೔
ሻ,  (18)
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where the absolute value of the second term must dominate the value of the first term because the 

chemical  potential  is  negative,  and  where  𝑁஺   denotes  accepter  concentration.  Moreover, 
ேಲ
ଶ௡೔
 

indicates a doping parameter in this study. The number 2 is attached because of the presence of spins. 

Therefore, because ni indicates the concentration of lattices, 
ேಲ
௡೔
  of the function ln is less than the value 

of the number 1 as long as we consider the image in which holes are doped in a Mott insulator (That 

is, if the carrier is an electron, 
ேಲ
௡೔
  of the function ln is more than the value of the number 1 in the Mott 

insulator). Using the equation above, the partition function, Equation (17), is translated as follows: 

𝒇𝒓 ൌ െሾ𝐥𝐧 ቀ
𝑵𝑨
𝒏𝒊
ቁሿି𝟏  .    ((17‐2))

2.1.5. Calculate the Pseudo‐Gap Energy 

Let us calculate the pseudo‐gap energy, which is directly related to the mass of a macroscopic 

Boson. First, we define the carrier concentration of macroscopic Bosons considering a 2D energy state 

density. 

𝐷ଶ ሺ𝐸ሻ ൌ
௠

గħమ
≡ 𝑝଴,      (19)

𝑛 ൌ
ଵ

ௗ
 ,𝐷ଶሺ𝐸ሻ𝑓௥𝑑𝐸׬   (20)

where 𝐷ଶሺ𝐸ሻ, n, and d denote energy state density in 2D, particle concentration, and width of the 2D 

sheet, respectively. An important point to note is that the parameter d [m] is consistently substituted 

by the number 1; however, the reason of the appearances in certain equations clarify the meaning of 

these equations. The integral for concentration (20) is simply because the energy state density in 2D 

is constant as indicated in Equation (19) and because partition function fr is represented by Equation 

(17‐2). In the process of this calculation of Equation (20), an energy E0 appears as follows: 

𝐸଴ ൌ െ
ௗ

௣బ
𝑛଴ ൈ lnሺ

ேಲ
௡೔
ሻ,    (21)

This energy E0 is assumed to be essentially equal to the pseudo‐gap energy. Combined with the mass 

of a macroscopic Boson, this pseudo‐gap energy is represented as follows: 

𝐸଴ ൌ െ𝑈 ൈ 𝑙𝑛 ቀ
ேಲ
௡೔
ቁ ൌ െ

ଵ

ଶ

௛మ

௠ఎమ
ln ሺ

ேಲ
௡೔
ሻ.    (22‐1)

The abovementioned pseudo‐gap energy equation has a coefficient for doping function ln. This factor 

is identical to the zero‐point energy: 

ଵ

ଶ
ħ𝜔 ൌ

ଵ

ଶ

௛మ

௠ఎమ
.    (22‐2)

The  above  equation  implies  that  this derived  energy E0 merely  indicates  a potential.  In  general, 

however, an energy gap appears or disappears involving a photon’s emission or absorption, which 

has a momentum. This fact indicates that, for a potential to become a general energy gap, the potential 

is given the product of the fine‐structure constant α, which includes characteristic impedance Z0 for 

electromagnetic waves. Typically, the fine‐structure constant α is determined as follows: 

α ൌ
௓బ௘మ

ସగħ
ൌ

ଵ

ଵଷ଻.଴
.    (23)

In Equation (23), the impedance Z0 works as the specific impedance to electromagnetic waves. Thus, 

the net pseudo‐gap energy  |𝛥|଴  is derived as follows, which will give the temperature of pseudo‐

gap T* as discussed later. 

|𝜟|𝟎 ൌ െ
𝟏

𝟐

𝒉𝟐

𝒎𝜼𝟐
𝜶 ൈ 𝐥𝐧ሺ

𝑵𝑨
𝒏𝒊
ሻ.    (24)
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2.2. Superconductivity with Consideration of Many‐Body Interactions 

It is necessary to describe why macroscopic Bosons undertake Bose–Einstein (BE) condensation 

by forming a pair from two macroscopic Bosons, although they have been already general Bosons 

such as Cooper pairs. In the previously published paper [1], we reported a new attractive force to 

combine particles from local current in a CuO2 cell [26]. This local current is equal to both rotational 

and self‐current, which creates  the mass of macroscopic Bosons; hence,  the result of  the previous 

paper  agrees with  the descriptions  in  the present paper. Therefore,  in  this  section, based on  the 

understanding that two macroscopic Bosons form a pair, we describe why BE condensation occurs 

considering many‐body interactions between Bosons. 

2.2.1. Description of the Model and the Principle to Many‐Body Interaction 

There are many‐body interactions among the carriers in various materials. In particular, this fact 

is essential to high‐Tc cuprates because the general band theory cannot be applied. The many‐body 

interactions of carriers indicate there are many local temperatures Ti in the materials, where i is index 

for a location. In other words, only in a temperature Ti, thermal equilibrium can be assumed. Figure 

2 shows our model for handling many‐body interactions. In this figure, a radius ai forms a sphere 

shell,  which  has  differential  number  dN  and  local  temperature  Ti. Moreover,  in  the  center,  a 

macroscopic Boson is presented. The immediately outer particles out of dN yield a pressure to this 

sphere  shell, which  is  equal  to  the kinetic  energies of particles  in  dN  (i.e.,  it  is  represented by  a 

temperature  Ti).  However,  the  central  macroscopic  Boson  provides  force  of  expansion,  which 

indicates  electrostatic  energy,  i.e.,  Coulomb  interactions.  Moreover,  this  case  adds  magnetic 

interactions between macroscopic Bosons as an expansion  force. Note  that  it  is assumed  that  the 

number N is sufficiently large and thus we can consider the differential dN. 

 

Figure  2. Schematic of our  established model  to handle many‐body  interactions. Considering  the 

nature of many‐body interactions, note that temperatures are locally different. However, this model 

claims  that  in  the differential number  dN  (a macroscopic Boson  takes  the  center  and  dN  takes  a 

temperature  𝑻𝒊 ),  a  thermal  equilibrium  can  be  assumed.  Therefore,  a  balance  between  force  of 

expansion from Coulomb interactions, in addition to the magnetic field interactions from the Bosons 

and force of compression from immediate outer side, which is equal to the kinetic energies in dN (i.e., 

a temperature  𝑻𝒊), is formed. Calculating this balanced equation results in a new statistical equation. 

Considering that these forces of expansion should be balanced to a force of compression  in a 

sphere shell, the following relation holds: 

(Coulomb interaction energy and magnetic field interaction energy) = 
ଷ

ଶ
𝑘஻𝑇௜ ൈ 𝑑𝑁 

𝑎௜ 

dN, 𝑇௜  

ai 
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2.2.2. Calculate the Principal Equation of Our Model and the Internal Quantum State 

Calculate  the  abovementioned  principle‐equation  in  the  previous  subsection.  First,  dN  is 

represented as follows: 

𝑑𝑁 ൌ gfd𝑘ሬ⃗ ൌ 𝑔𝑓ሺ
ଵ

ௗ௩
ሻ,  (25)

where k, v, g, and f denote wave number, volume, state number, and partition function for the Boson, 

respectively. In the equation of dN, as mentioned, state number g and partition function f are given 

as follows: 

𝑓 ≡ 𝑓௥ ൌ െሾln ሺ
ேಲ
௡೔
ሻሿିଵ.  (17‐2)

g ൌ
ଵ

ௗ
𝐷ଶሺ𝐸ሻ𝑑𝐸׬ ൌ 𝑝଴𝐸଴,    (19‐2)

𝐷ଶሺ𝐸ሻ ൌ
௠

గħమ
≡ 𝑝଴,    (19)

𝐸଴ ൌ |𝛥|଴ ൌ െ
ଵ

ଶ

௛మ

௠ఎమ
𝛼 ൈ lnሺ

ேಲ
௡೔
ሻ.      (24)

Thus, fg is given as follows: 

𝑓𝑔 ൌ 𝑝଴
ଵ

ଶ

௛మ

௠ఎమ
𝛼.      (26)

To  calculate  the  left‐hand  side of  the abovementioned balanced  equation  in principle of  the 

previous subsection, the electrostatic energy UE is calculated as follows: 

𝑈ா ൌ
ଵ

ଶ
𝜀଴ሺ

௘

ସగఌబ௔೔
మሻ
ଶ𝑑𝑣,  (27)

where  𝜀଴  and 𝑎௜  denote the permittivity for the vacuum and the radius which dN is taking in the 

model. 

At this time, a volume element of the integral is expressed as follows: 

𝑑𝑣 ൌ
ଵ

ୢ௞ሬ⃗
ൌ

ସగ

ଷ
𝑎௜
ଷ.  (28)

Moreover, the magnetic interaction Vp from macroscopic Bosons is given as follows: 

𝑉௣ ൌ 𝑈஻𝑑𝑁.  (29)

Consequently, the resultant equation is provided by 

𝑎௜
ଶ ൌ

ଽఌబ
௘మ
ሺ3𝑘஻𝑇௜ െ 2𝑈஻ሻ𝑓𝑔.    (30)

As shown in Figure 3, the central macroscopic Boson behaves under the model of the infinite 

well‐potential.  Thus,  as  every  elementary  quantum mechanics  textbook  [e.g.,[28]]  describes,  the 

eigenvalue and wave function of it are presented as follows: 

𝝍𝒊ሺ𝒓ሻ ൌ ට
𝟐

𝟐𝒂𝒊
𝐬𝐢𝐧 ሺ

𝒊𝝅𝒓

𝟐𝒂𝒊
ሻ,      (31)

 𝑬𝒊 ൌ
𝟏

𝟐𝑴
ሺ
ħ𝒊𝝅

𝟐𝒂𝒊
ሻ𝟐,    (32)

where M, i, and r denote the mass of a macroscopic Boson, index, and microscopic variable of sphere‐

coordinates, respectively. These equations indicate that a particle under the many‐body interactions 

forms a stationary wave and that the wave function of the stationary wave and the eigenvalue (i.e., 

kinetic energy) are determined by a radius ai. 
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Figure 3. A basic model of infinite well‐potential. This model is directly related to the immediate prior 

figure model. The diameter 2𝒂𝒊  varies depending on a temperature  𝑻𝒊. A macroscopic Boson in this 

well‐potential forms a stationary wave, and its wave function and eigenvalue are presented in every 

basis textbook. 

2.2.3. Describe BE Condensation and the Superconducting Transition 

Using the abovementioned concept, we consider how BE condensation occurs. In addition to a 

sphere shell having temperature Ti,, another sphere shell having temperature Tj is considered. When 

we accept a combination of two macroscopic Bosons by a force F, these two Bosons must have the 

identical kinetic energy because, in general and as mentioned in our previous paper [1], a relative 

and attractive force appears only when their relative velocities become the same. In particular, this 

fact is applied when an attractive Lorentz force is generated between moving and charged particles 

whose  velocities  are  identical.  Thus,  when  forming  a  pair  from  two  macroscopic  Bosons,  the 

eigenvalues, Equation (32), indexed by i and j becomes equal. That is, 

ห𝐸௜ െ 𝐸௝ห ൌ 0.      (33)

This indicates that an index i and j becomes equal, resulting in that all the radius ai and eigenvalue Ei 

take the identical radius a0 and EB because of the arbitrary property of index i and j. Hence, if a pair 

forms, every energy of macroscopic Bosons undergoes the identical energy EB, which indicates all the 

rest Bosons take pairs and BE condensation. 

Moreover, as shown in Figure 4, considering index i to be equal j indicates that temperatures Ti 

and Tj must be equal. Even at this moment, positions r of wave functions, Equation (31), are common 

and thus the two sphere shells take the superposition, i.e., the relative distance ξG between the two 

sphere shells should be 0. Thus, the net coherence of two holes becomes on a cell order, 1 nm, as 

reported  by many  literatures.  This  physical  picture  is  described  as  that  one‐unit  cell  has  two‐

combined macroscopic Bosons  and  that,  over  the  entire  2D  surface,  these  unit  cells  having  two 

macroscopic Bosons become uniform. Thus, by BE condensation, it can be assumed that the particle 

number is one and that  𝑑𝑁 → 0. Therefore, the established shells vanish and thus the radius of a0 →η, 
which  implies  the  rest  interactions  will  be  only  for  the  neighboring  particles,  not  many‐body 

interactions. 

As mentioned,  the  occurrence  of  BE  condensation  and  forming  two‐combined  Bosons  are 

equivalent. Thus, a critical temperature can be obtained both by the way of the combination of the 

particles and by the approach of the many‐body interactions. 

Employing  the  abovementioned  equation  (30),  an  equation  of  the  relative distance  between 

sphere shells ξG for temperature T is derived as follows: 

𝟏

𝟒
𝝃𝑮
𝟐 ൌ

𝟗𝜺𝟎
𝒆𝟐
ሺ𝟑𝒌𝑩〈𝑻〉 െ 𝟐𝑼𝑩ሻ𝒈𝒇,    (34)

2𝑎௜ 

𝑉 ൌ ∞ 𝑉 ൌ ∞ 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 October 2024 doi:10.20944/preprints202005.0105.v5

https://doi.org/10.20944/preprints202005.0105.v5


  10 

 

where  UB  is  substituted  with  pseudo‐gap  |𝛥|଴   in  Equation  (24).  Note  that,  in  this  equation, 

considering BE condensation and single‐particle picture, p0 of gf in Equation (26) is redefined as the 

value  1. As will  be  discussed  in  the  Results  section,  temperatures  at which  𝜉ீ
ଶ ൑ 0   indicates  a 

superconductivity  state  and  the  transition  temperature  Tc  at  which  𝜉ீ ൌ 0   indicates  a  critical 
temperature. 

 

 

Figure 4. Schematic of two macroscopic Bosons having many‐body interactions. The relative distance 

of  𝝃𝑮 indicates  one  between  two macroscopic Bosons. When  an  attractive  force  F  between  them 

appears and because  the relative kinetic energy becomes 0,  indexes  i and  j  take  the same. Thus, a 

superposition between  them occurs,  rendering  𝝃𝑮be 0. That  is,  two Bosons now  combine  to be a 

Cooper pair. Employing the statistic equations from our established model, we can predict this type 

of transition. 

2.3. Review to Obtain the Formula for Tc 

Note that this section is the review section for Ref. [1] 

Herein, we would like to note the reason why there are Fermi energy and chemical potential EF 

[29]  in  this  paper. At  this  stage  that  two‐macroscopic  Bosons  take  a  combination  at  a  unit  cell, 

although we  cannot  consider many‐body  interactions,  there  is  a non‐zero  temperature, which  is 

originated from the interaction for the neighboring Cooper pairs (i.e.,  T ൑ 𝑇௖). This is equivalent to 
the  fact that  the neighboring holes  in the Cooper pairs between unit cells collide with each other, 

which implies that each Cooper pair is repeatedly formed and destroyed [1]. Thus, only in the case 

of  T ൑ 𝑇௖, we consider the Fermi energy, i.e.,  𝐸ி ൒ 0. 

2.3.1. Derivation of a General Energy Gap (Review) 

Let us review our previous study [1], which describes a force F to combine two particles and a 

critical  temperature Tc on doping. Note  that because  this  is a review  to understand  the stream of 

outlined derivations of a critical temperature Tc, certain equations in the calculation and derivation 

processes  are  left  out.  In  case  that  our  readers  are  interested  in  the  detail,  the  paper  can  be 

downloaded as an Open Access paper. 

First, we assume that a general energy gap  |𝛥|  is proportional to both Fermi energy and Critical 

temperature as follows [1]: 

|𝛥|ଶ ൌ 𝑘஻𝑇௖𝐸ி.        (35)

In this equation, the Fermi energy in a p‐type material [30] is employed as follows: 

𝐸ி ൌ 𝐸௜ െ 𝑘஻𝑇𝑙𝑛ሺ
ேಲ
௡೔
ሻ.    (36)

Note that we are considering the carrier is a hole. 

In this equation, a superconducting energy gap is introduced. 

𝑎௜ dN, 𝑇௜ 
𝑎௝ dN, 𝑇௝ 

𝜉ீ 
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2𝐸௜ ൌ 𝑘஻𝑇௖      (37)

Substituting these energies and employing the state equation with the universal gas constant R, the 

following equations are obtained. 

|𝛥|ଶ ൌ
ଵ

ଶ
ሺ𝑘஻𝑇௖ሻଶ ቄ1 െ 2

்

೎்
ln ሺ

ேಲ
௡೔
ሻቅ    (38)

and 

|𝜟|𝟐 ൌ
𝟏

𝟐
ሺ𝒌𝑩𝑻𝒄ሻ𝟐 ቄ𝟏 െ 𝟐

𝟏

𝑻𝒄

|𝜴𝑩|

𝑹

𝟏

𝝆𝒔
𝐥𝐧 ሺ

𝑵𝑨
𝒏𝒊
ሻቅ    (39)

where 

|𝛺஻| ൌ 𝑝𝑉.  (40)

where 𝛺஻  denotes a thermodynamic potential, and ρs is the concentration of Cooper pairs. In this 

manner, a general expression of energy gap  for  temperatures was derived. Note  that  interactions 

between Cooper pairs and Cooper pairs is assumed to be relatively small (i.e., that is merely local 

and neighboring collisions), which justifies the employment of the state equation. 

2.3.2. Generation of an Attractive Force that Combines Two Carriers (Review) 

To consider the superconducting energy gap, it is necessary to mention a force F, which results 

in  a  combination  of  a  Cooper  pair.  As  previously mentioned,  two  charged  particles  generally 

experience an attractive  force with each other when  they are moving with  the same velocity,  i.e., 

when the relative energy or momentum is 0. As shown in Figure 5a–d, two parallel conductors along 

which the same direction and same amount of a current are presented. From the electromagnetism, 

these current leads experience an attractive force with each other, which is attributed to the Lorentz 

force. When we shorten these leads to a wavelength of a carrier, this attractive force still exists. This 

indicates that two charged particles with identical wave numbers are attracted to each other. This 

attractive force stems from the Lorentz force. 

2.3.3. Derivation of Tc (Review) 

Considering the principle of generating an attractive force and assuming that the wave function 

of a hole is a plane wave and that the magnetic field generated by the moving holes is derived from 

a linear current, the Lorentz force F is given as follows: 

𝐹 ൌ 𝑞ଶ
ħఓబ
௠మ

ସగమ

௞మ
𝛽|𝜓|ଶ𝑘ଶ

ଵ

ଶ௥
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 ൌ

ଶ௤మగమఓబħ

௠మ 𝛽|𝜓|ଶ ଵ
௥
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑,    (41)

where ψ, r, θ, ϕ, q, β, k m, and μ0 denote wave function of a hole, relative distance of two holes, angle 

associated with the Lorentz force, angle related with two wave number of holes, the electric charge 

of a hole, constant, common wave number, the mass of an electron, and magnetic permeability of the 

vacuum, respectively. Note that this equation employs the probability density flux as current density. 

The energy u (i.e., superconducting energy gap) from the line integral of the above force F is 

represented as follows: 

𝑢 ൌ െ
ଶ௤మగమఓబħ

௠మ 𝛽|𝜓|ଶ lnሺ𝑟ሻ ൈ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 ൅ 𝑢଴    𝑢଴ ൑ 0,        (42)

where 𝑢଴  denotes an integral constant. 

𝛼 ≡ െ
ଶ௤మగమఓబħ

௠మ ln ሺ𝜉ሻ ൈ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑,  (43)

where ξ denotes the coherence of a Cooper pair. 

𝑢 ൌ 𝛼𝛽|𝛹|ଶ ൅ 𝑢଴.    (44)

It is assumed that  |𝛥|  is proportional to Tc. That is,  |𝛥|  is proportional to the energy u. 
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𝛼ᇱ|𝛥| ൌ 𝑢 ൌ
ଵ

ଶ
𝑘஻𝑇௖  ,  (45)

𝛼ᇱ|𝛥| ൌ 𝛼𝛽|𝛹|ଶ ൅ 𝑢଴.    (46)

Therefore, the relationship between α and  𝛼ᇱ  is a linear dependence 
That is, 

𝛼ᇱ ≡ 𝜌𝛼.  (47)

According to the analysis of the dimension, the constant ρ has the unit [1/J]. 

 

Figure 5. (a) Currents in the same direction. (b) Shorter leads with currents in the same direction. (c) 

Holes with same direction and equal velocity. (d) Center‐of‐mass motion of Cooper pair. 
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Thus, we can give the equation that 

𝜌 ≡
ଵ

௞ಳఏವ
,  (48)

where  𝑘஻  and  𝜃஽  denote the Boltzmann constant and the Debye temperature, respectively. 

Equation (45) is squared: 

𝛼ᇱଶ|𝛥|ଶ ൌ
ଵ

ସ
𝑘஻
ଶ𝑇௖ଶ.        (49)

That is, 

|𝛥|ଶ ൌ
௞ಳ
మ

೎்
మ

ସఈᇲమ
.    (50)

From Equation (39), 

௞ಳ
మ

೎்
మ

ସఈᇲమ
ൌ ሺ𝑘஻𝑇௖ሻଶሼ

ଵ

ଶ
െ

ଵ

೎்

|ఆಳ|

ோ

ଵ

ఘೞ
ln ቀ

ேಲ
௡೔
ቁሽ.      (51)

By the organization of the above equation and the substitution of  𝛼ᇱ, 

𝑇௖ ൌ െ4ሾ
ଵ

௞ಳఏವ
ሺെ

ଶ௤మగమఓబħ

௠మ ln ሺ𝜉ሻ ൈ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑ሻሿଶ
|ఆಳ|

ோ

ଵ

ఘೞ
ln ሺ

ேಲ
௡೔
ሻ.      (52)

In this equation, the thermodynamics potential is replaced by that of zero temperature,  |𝛺஻|଴  , and 
the integral constant  𝑇௖,௠  is instead introduced. This implies that when  |𝛺஻| → |𝛺஻|଴, the difference 
is renormalized to  𝑇௖,௠: 

𝑇௖ ൌ െ4ሾ
ଵ

௞ಳఏವ
ሺെ

ଶ௤మగమఓబħ

௠మ ln ሺ𝜉ሻ ൈ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑ሻሿଶ
|ఆಳ|బ
ோ

ଵ

ఘೞ
ln ቀ

ேಲ
௡೔
ቁ െ 𝑇௖,௠.    (53)

where 

𝑇௖,௠ ≡ 𝜃஽  [1]    (54)

and 

|𝛺஻|଴ ൌ 𝑝଴𝑉,    (55)

where p0 and V denote the pressure and volume, respectively. 

Again, 

𝑇௖ ൌ െ4𝛼ᇱଶ
|ఆಳ|బ
ோఘೞ

ln ቀ
ேಲ
௡೔
ቁ െ 𝜃஽  ,  (56‐1)

where 

α ൌ െ
ଶ௤మగమఓబħ

௠మ ln ሺ𝜉ሻ ൈ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑  ,    (56‐2)

𝛼ᇱ ൌ
ଵ

௞ಳఏವ
𝛼 ൌ െ

ଵ

௞ಳఏವ

ଶ௤మగమఓబħ

௠మ ln ሺ𝜉ሻ ൈ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑  .    (56‐3)

In this process, we added a Debye temperature θD and a net coherence ξ to the equations. Note 

that, to an integral constant Tc,m in Equation (53), the BCS formula under a particular condition was 

employed. That  is,  in the formula Tc of the BCS theory, because the Boson combination energy  in 

high‐Tc cuprates is generally sufficiently large, which attributed to the short coherence (note that, the 

shorter the coherence is, the larger the magnetic field associated with the Lorentz force becomes), the 

large value of NV  in the BCS formula of Tc makes the exponential function be almost the value 1. 

Thus,  only  the  Debye  temperature  in  the  BCS  formula  is  left.  Concerning  the  thermodynamic 

potential, the following equation is applied under the condition of BE condensation. 

|𝛺஻|଴ ൌ 𝑝଴𝑉 ൌ
ଶ

ହ
𝐸ி଴,  (57)

where EF0 denotes the Fermi energy at zero temperature. Moreover, here the volume V is assumed to 

be the unit, i.e., the number 1. Thus, the critical temperature becomes 
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𝑇௖ ൌ െ4 ቀ
ଵ

௞ಳఏವ
ቁ
ଶ
ሺ
ଶ௤మగమఓబħ

௠మ ln ሺ𝜉ሻ ൈ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑ሻଶ
ଶிಷబ
ହோఘೞ

ln ቀ
ேಲ
௡೔
ቁ െ 𝜃஽  .  (58)

Moreover, we derive a 2D critical temperature equation from the above. Thus, to conclude, the 

critical temperature equation is derived as follows: 

〈𝑻𝒄〉𝟐 ൌ െ𝟒ቀ
𝟏

𝒌𝑩𝜽𝑫𝟐
ቁ
𝟐
ሺ
𝟐𝒒𝟐𝝅𝟐𝝁𝟎ħ

𝒎𝟐 𝐥𝐧 ሺ𝝃ሻ ൈ 𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝝋ሻ𝟐
𝟐𝑭𝑭𝟎𝒏𝒒
𝟓𝑹𝝈𝒔

𝐥𝐧 ቀ
𝝈

𝒏𝒊𝟐
ቁ െ 𝜽𝑫𝟐          (59)

where σ, σs, θD2, and nq denote  the surface density of carriers,  the surface density of pairs, Debye 

temperature in 2D, and the number of layers. Note that all constants in the consequent equation have 

actual physical meaning and unit. This indicates that no numerical calculations or fitting methods are 

required. This fact is consistent everywhere in the present study. 

Note that, in Equation (42) for the superconducting energy gap, the probability density function 

is interpreted as follows: 

|𝜓|ଶ𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 ൌ |𝜓|ଶ𝑠𝑖𝑛𝜃 sin ቀ𝜑 ൅
𝜋
2
ቁ ൌ

1
2

|𝜓|ଶ ቄെ cos ቀ𝜃 ൅ 𝜑 ൅
𝜋
2
ቁ ൅ cos ሺ𝜃 െ 𝜑 ൅

𝜋
2
ሻቅ  (60)

which shows that the gap is anisotropic [31]. 

Note that we assume that  𝜃஽ଶ  and EF0 are not varied very much over kinds of the cuprates. In 

Figure 6, a result of this review section is shown where used physical parameters are listed in Table 

1. Note that for additional details, please see the Method section at which the full list of employed 

physical constants are presented. As shown, our derived critical temperature equation sufficiently 

agrees with a typical high‐Tc copulate [32]. Note that the reason why the Fermi energy is relatively 

large is related to the property of the Mott insulator. For more details, please refer to [1]. 

 

Figure 6. A  result of  typical critical  temperature on doping. This  is derived  from  the equation by 

combining pseudo‐gap energy  (i.e.,  the general energy gap) and  superconducting energy gap. At 

doping 0.16, the critical temperature reaches the maximum, which agrees with the experiments [e.g., 

[32]] In calculations, no numerical calculations or fitting method are employed. The values of critical 

temperatures  are  relatively  sensitive  for  Debye  temperature  and  Fermi  energy  in  our  derived 

equation. 

Table 1. Physical parameters in the equation of critical temperature. 

Debye temperature  𝜃஽ଶ  113.5 K 

Coherence ξ  1 nm 

Fermi energy EF0  7.65 ൈ 10ିଵଽJ 
The number of layer nq  3 

doping 

C
ritical tem

p
eratu

re Tc [K
/m

] 
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2.4. Calculations for Obtaining Formulas for T* and T0 

2.4.1. Derive the Pseudo‐Gap Temperature T *. 

Now, we again consider the relation between a general energy gap and temperature, as shown 

in Equation (38) 

𝑇 ൌ െ
|௱|మ

௞ಳ
మ

ଵ

೎்

ଵ

୪୬ ሺ
ಿಲ
೙೔
ሻ
,    (38)

 

When the previously derived energy gap from a macroscopic Boson is substituted for an energy gap 

in the abovementioned equation, then variable temperature T must become a constant of pseudo‐gap 

temperature T*. Therefore,  the  temperatures Tc and T* have  a dependent  relationship. Thus,  as  a 

formula of pseudo‐gap temperature T*, the following equation holds: 

𝑻∗ ൌ െ
𝟏

𝒌𝑩
𝟐
𝟏

𝟒
ሺ𝟑.𝟒 ൈ 𝟏𝟎ି𝟐𝟏ሻ𝟐ሾ𝐥𝐧 ሺ

𝑵𝑨
𝒏𝒊
ሻሽ
𝟐 𝟏

𝑻𝒄

𝟏

𝐥𝐧 ሺ
𝑵𝑨
𝒏𝒊
ሻ
ൌ െ

𝟏

𝒌𝑩
𝟐
𝟏

𝟒
ሺ𝟑.𝟒 ൈ 𝟏𝟎ି𝟐𝟏ሻ𝟐ሾ𝐥𝐧ሺ

𝑵𝑨
𝒏𝒊
ሻሽ
⬚ 𝟏

𝑻𝒄
,    (61)

where to the equation of  |𝛥|଴  of Equation (24)  in creating Equation (61), each physical parameter 

was  substituted. That  is,  the physical parameters m, h, and α  in Equation  (24) were given actual 

values. Note that radius η is approximated as 1 nm. 

2.4.2. Derive the Transition Temperature T0 

In this study, we consider the anomaly metal phase properties in CuO2–based superconductors. 

These properties are primarily determined by the transition temperature T0, which is directly related 

to appearances of the macroscopic Boson as particles. To obtain an equation for the temperature T0, 

we consider first the concentration dependent on the magnetic fields. Next, derivations of the Hall‐

effect coefficient RH are discussed. The concentration depends on absolute of energy, –uBe,, where u 

and Be denote self‐magnetic moment of a macroscopic Boson and applied magnetic field, respectively. 

That  is,  the  absolute  of  energy,  uBe,  involves  Boltzmann  statistics  and  thus  it  is  related  to 

concentration (i.e., the number) of macroscopic Bosons. 

In the previously appeared concentration Equation (20), the calculation for energy integral, in 

turn,  is  actually  conducted  because  we  attempted  to  obtain  the  concentration  dependent  on 

temperature T. 

𝑛 ൌ 𝑘஻𝑇
ଵ

ௗ
𝑝଴ ׬

ௗா

ாିாಷ
ൌ 𝑘஻𝑇

ଵ

ௗ

௕
௔

𝑝଴ ൈ lnሺ బ்

೎்
ሻ,    (62)

where 

a ൌ 𝑘஻𝑇௖          𝑏 ൌ 𝑘஻𝑇଴          (62‐2)

Note  that  the  second  form  of  fr  in  Equation  (17‐2)  is  not  employed  here.  Equation  (62)  is  very 

important  because  the  concentration  n  is  proportional  to  the  temperature  T, which  describes  a 

property of the anomaly metal state. As mentioned, considering an energy –uBe, the Boltzmann statics 

is represented as follows: 

𝑛 ൌ 𝑛଴exp ሺെ
ఓ஻೐
௞ಳ்

ሻ,    (63)

where n0 is the concentration of holes and n implies that the concentration of the macroscopic Bosons 

whose orbital momenta are the same directions as that of the magnetic field Be. 

  𝑻𝟎 ≡
𝝁𝑩𝒆
𝒌𝑩
    (64)

Using the above equation, 

𝑛 ൌ 𝑛଴exp ሺെ బ்

்
ሻ ൎ 𝑛଴ሾ1 െ

బ்

்
ሿ    (63‐2)
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Note that, in the above equation,  బ்

்
൑ 1  is formed as the condition, because the concentrations n and 

n0 must be positive. When  𝑇 → ∞, the number of holes is equal to that of the macroscopic Bosons, 

which implies that the net number of the macroscopic Bosons takes zero. This is equivalent to zero 

magnetic fields when considering Equation (63). However, after the refrigeration, in the boundary 

condition,  బ்

்
≡ 1, obviously a transition temperature is defined, which implies the emergence of a 

macroscopic Boson. 

Now we begin to calculate RH. 

In Equation (63), the exponential function is approximated by the Maclaurin series. 

n ൎ 𝑛଴ሺ1 െ
ఓ஻೐
௞ಳ்

ሻ.  (65)

In the above equation, the previously calculated concentration n, Equation (62), is applied. 

𝑘஻𝑇
௣బ
ௗ
ൈ lnሺ బ்

೎்
ሻ ൌ 𝑛଴ሺ1 െ

ఓ஻೐
௞ಳ்

ሻ.      (66)

Solving this equation for n0 and using the general definition of RH, we reach an important equation. 

𝑅ு ൌ
ഋಳ೐
ೖಳ೅

ିଵ

௘௞ಳ்
೛బ
೏
ൈ୪୬ሺ

೅బ
೅೎
ሻ
.    (67)

Considering the above equation (67), we also derive the transition temperature T0 ,Equation (64). In 

short, the transition temperature T0 implies appearances of both a macroscopic Boson and anomaly 

metal phase 

2.4.3. Implement the Formulation of T0 

To implement the formula T0, it is necessary to obtain u and Be in Equation (64). First, a magnetic 

moment u is generally defined as follows: 

𝜇 ൌ 𝐼𝑆,  (68)

where  I and S  (ൎ 𝜂ଶ  ) denote the self‐current and the area  in which a magnetic flux  is presented. 

Seeing the schematic of Figure 1 of a macroscopic Boson (which assumes the motion of a hole to be a 

circle)  and  because  the magnetic  flux  of  it  should  be  quantized  as  h/e,  the magnetic  flux  of  a 

macroscopic Boson is as follows: 

𝛷଴ ൌ 𝐵଴𝜋𝜂ଶ ≡
௛

௘
.    (69)

That is, 

𝐵଴ ൌ
௛

௘

ଵ

గఎమ
,    (69‐2)

where radius η is approximated on a cell of the CuO2 surface. That is, 

𝜂 ൎ 1  nm    (70)

This implies that the magnetic field B0 is universally constant. 

Moreover, assuming that a magnetic field in a macroscopic Boson is equal to the central magnetic 

field generated by a moving hole, a persistent current I in a magnetic moment is calculated as follows: 

𝐼 ൌ
ଵ

ఓబ
2𝜂𝐵଴.        (71)

Consequently, a magnetic moment u is derived as follows: 

𝝁 ൎ
𝟐

𝝁𝟎
𝜼
𝒉

𝒆
.    (72)

While an applied magnetic field Be in the definition of T0 is variable, the magnetic field B0 is a constant 

derived by the physical constants. This fact allows us to  introduce a variable quantum number N 

between Be and B0 
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𝐵଴
ଵ

ே
ൌ 𝐵௘.            (73)

Moreover, this variable integer N is undergone by the partition function fr. 

𝑁 ൌ 𝑁଴𝑓௥,                      (74)

where Equation (17‐2) is applied as fr. 

However,  without  an  external  applied  magnetic  field,  high‐Tc  cuprates  generally  achieve 

superconductivity.  Why  do  our  high‐Tc  cuprates  become  superconductive  by  forming  many 

independent macroscopic Bosons? This  can be understood by  considering  an analogy  that  every 

magnetic moment  in a  ferromagnetic material spontaneously acquires the same orientation under 

Curie  temperatures.  Thus,  high‐Tc  cuprates  have  a  property  that  is  similar  to  a  ferromagnetic 

material. We claim that this fact is related to the electronic nematic phase [26]. 

In this case, because macroscopic Bosons are formed in 2D CuO2 surface, the weak interactions 

between  macroscopic  Bosons  can  justify  the  abovementioned  calculation.  The  appearance  of 

temperature T  in  Equation  (63)  guarantees  the  existence  of  these weak  interactions.  (The  actual 

calculations  of  Curie  temperatures  with  complete  consideration  of many‐body  interactions  are 

presented in the Appendix A of this study.) 

Assembling  these  facts,  the  conclusive  equation  of  the  transition  temperature T0  is derived, 

which depends on carrier doping. 

𝑻𝟎 ൎ െ
𝟏

𝒌𝑩
ሺ
𝟐

𝝁𝟎
𝜼
𝒉

𝒆
ሻሺ

𝒉

𝒆𝝅𝜼𝟐
ሻ
𝟏

𝑵𝟎
𝐥𝐧ሺ

𝑵𝑨
𝒏𝒊
ሻ.        (75)

As described later, this equation of T0 and the formula of critical temperature Tc will be crucial factors 

when calculating properties of the anomaly metal phase. 

2.5. Analyze Anomaly Metal Phase 

2.5.1. More Comprehensive Calculation of RH 

Next, we derive dependences on  temperature of RH. Up  to  the previous section,  the general 

equation of RH was derived.  In  this  equation, we  introduce  the  following  approximation  to  the 

general equation of RH. 

ఓ஻೐
௞ಳ்

≫ 1.    (76)

According to this approximation, the general equation of RH becomes as follows: 

𝑅ு ൎ
ఓ஻೐

௘ሺ௞ಳ்ሻమ
೛బ
೏
ൈ୪୬ሺ

೅బ
೅೎
ሻ
.  (77)

Thus, the approximated equation of RH is determined by the applied magnetic fields Be. That is, this 

RH equation depends on both quantum number N and the universal magnetic field B0. 

𝑅ு ൎ
ఓ஻బ

௘ሺ௞ಳ்ሻమ
೛బ
೏
ൈ୪୬ሺ

೅బ
೅೎
ሻ

ଵ

ே
.       (78)

Note that the universal magnetic field B0 is one in a macroscopic Boson. Thus, in view of magnetic 

field energy, an application of magnetic field, which dominates over the universal magnetic field B0 

results  in  the destructions of macroscopic Bosons and makes the anomaly metal phase disappear. 

Moreover, the employment of quantum number N indicates that the RH equation is determined by 

doping. That is, variable integer N is expressed by the partition function fr, which indicates doping. 

ଵ

ே
ൌ

ଵ

ேబ௙ೝ
ൌ െ

ଵ

ேబ
ൈ lnሺ

ேಲ
௡೔
ሻ.    (79)

Considering this, the approximated RH equation becomes 

𝑹𝑯 ൎ െ
𝝁𝑩𝟎

𝒆ሺ𝒌𝑩𝑻ሻ𝟐
𝒑𝟎
𝒅
ൈ𝐥𝐧 ሺ

𝑻𝟎
𝑻𝒄
ሻ

𝟏

𝑵𝟎
ൈ 𝐥𝐧ሺ

𝑵𝑨
𝒏𝒊
ሻ.      (80)

As reported in many studies [33], this derived equation of RH is proportional to  ሺ
ଵ

்
ሻଶ. 
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In the Results section, we will depict this RH equation in terms of both doping parameters and 

temperatures T. 

2.5.2. Calculate the Electron Specific Heat Coefficient in the Anomaly Metal Phase 

In turn,  let us consider electron specific heat coefficient  in the anomaly metal phase. Because 

electron specific heat coefficient is essentially equal to the average energy UE, it is simply necessary 

to calculate the average energy using the partition function fr. Thus, average energy using partition 

function fr (Equation (17)) for energy integrals is determined as follows: 

𝑈ா ൌ
ா௙ೝௗா׬

௙ೝௗா׬
.            (81)

Note that the lower limitation a and the upper limitation b of these integrals are given as follows: 

a ൌ 𝑘஻𝑇௖      𝑏 ൌ 𝑘஻𝑇଴.          (82)

Assuming  the chemical energy  for macroscopic Bosons  (i.e., not Fermi energy  for single holes)  is 

sufficiently small, the calculation results in 

𝑈ா ൌ
௞ಳ బ்ି௞ಳ ೎்ାாಷൈ୪୬ሺ

ೖಳ೅బషಶಷ
ೖಳ೅೎షಶಷ

ሻ

୪୬ሺ
ೖಳ೅బషಶಷ
ೖಳ೅೎షಶಷ

ሻ
ൎ

௞ಳሺ బ்ି்಴ሻ

୪୬ሺ
೅బ
೅೎
ሻ
.      (83)

In general, electron specific heat coefficient is derived by differential in terms of temperature to the 

average energy. In this study, however, ΔT is employed rather than the differential for temperature. 

Moreover, this ΔT is assumed to be (T0‐Tc) in this study. Therefore, using the average energy UE and 

ΔT, electron specific heat coefficient is expressed as a calculation process. 

𝛾଴ ൌ
௎ಶ

ሺ௱்ሻమ
ൌ

௞ಳ

బ்ି ೎்

ଵ

୪୬ሺ
೅బ
೅೎
ሻ
.  (84)

Furthermore,  to  obtain  electron  specific  heat  coefficient with  the  unit  [J/mol K2],  the Avogadro 

constant  𝑁଴
஺   is  considered  because  previously  calculated  average  energy UE  indicates  one  for  a 

macroscopic Boson. Consequently, the electron specific heat coefficient is derived as follows: 

𝛄 ൌ
𝑵𝟎
𝑨𝒌𝑩

𝑻𝟎ି𝑻𝒄

𝟏

𝐥𝐧ሺ
𝑻𝟎
𝑻𝒄
ሻ
.    (85)

2.6. Summary of the Logical Flow 

(1) First, assuming a macroscopic Boson, which is based on angular momentum conservation on a 

CuO2 surface, its energy, the mass, and the net spin were calculated; the implementation of the 

integral of the concentration resulted in a pseudo‐gap energy. During this process, the two types 

of partition equations fr were derived. 

(2) To handle many‐body interactions, a sphere shell with a local temperature Ti and differential 

particle number dN is introduced. From the forces that are balanced for both inside and outside 

the shell, a basic statistic equation, inner wave function and eigenvalue in a shell were derived. 

(3) The generation principle of attractive force: “The Lorentz force is applied between two charged 

particles when  their  relative  velocity  is  0.” Considering  this  principle,  the  abovementioned 

statistic equation,  inner wave function and  inner eigenvalue realize that the combination of a 

Cooper pair results in BE condensation. 

(4) Therefore,  the  superconducting  energy  gap  and  Tc were  calculated. During  this  process,  a 

general energy gap is derived. 

(5) Combining  the  general  energy  gap  and  the mass  of  a macroscopic  Boson,  the  pseudo‐gap 

temperature, T*, formula was obtained. 

(6) The transition temperature T0 at which anomaly metal phase and the macroscopic Bosons appear 

was  defined  by  the  Boltzmann  statistics:  Combining  the  Boltzmann  statistics,  particle 

concentration  was  implemented.  Considering  the  form  of  this  equation,  the  transition 

temperature T0 was derived. 

(7) Because the resulted T0 has the magnetic moment of a macroscopic Boson u and magnetic field 
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Be, these two factors were formulated. Thus, the T0 formula was implemented. 

(8) The  derived  RH  equation  was  approximated,  and  electron  specific  heat  coefficient  γ  was 

calculated. 

3. Methods 

Herein, we describe the detailed method for the Results section. 

3.1. Calculation Tool 

We employed the MS Excel software. 

3.2. Physical Constants for Calculations 

Table  2  shows  the  primary  physical  constants  in  this  study.  Of  note,  although  Debye 

temperatures for 3D and 2D are different, we employed 2D one 

Table 2. Physical constants in the obtained equations. 

Debye temperature  𝜃஽ଶ  113.5 K 

Coherence ξ  1 nm 

Fermi energy EF0  7.65 ൈ 10ିଵଽJ 
The number of layer nq  3 

Boltzmann constant kB  1.38 ൈ 10ିଶଷJ/K 
Magnetic permeability in vacuum μ0  4π ൈ 10ି଻H/m 
Electron mass m  9.1 ൈ 10ିଷଵkg 
Electric charge of an electron e or q  1.6 ൈ 10ିଵଽ𝐶 
Radius of a macroscopic Boson η  1 ൈ 10ିଽm 
Planck constant 1 h  6.62 ൈ 10ିଷସ𝐽 ∙ 𝑠 
Planck constant 2 ħ  1.05 ൈ 10ିଷସ𝐽 ∙ 𝑠 
Fine structure constant α  1/137 
Avogadro constant  𝑁஺

଴  6.0 ൈ 10ଶଷ 𝑚𝑜𝑙ିଵ 
Permittivity in vacuum ε0  8.8 ൈ 10ିଵଶ𝐹/𝑚 

Universal gas constant R  8.31  J ∙ 𝑚𝑜𝑙ିଵ ∙ 𝐾ିଵ 

3.3. Resulted Equations 

3.3.1. Critical Temperature 

〈𝑻𝒄〉𝟐 ൌ െ𝟒ቀ
𝟏

𝒌𝑩𝜽𝑫𝟐
ቁ
𝟐
ሺ
𝟐𝒒𝟐𝝅𝟐𝝁𝟎ħ

𝒎𝟐 𝐥𝐧 ሺ𝝃ሻ ൈ 𝒔𝒊𝒏𝜽𝒄𝒐𝒔𝝋ሻ𝟐
𝟐𝑬𝑭𝟎𝒏𝒒
𝟓𝑹𝝈𝒔

𝐥𝐧 ቀ
𝝈

𝒏𝒊𝟐
ቁ െ 𝜽𝑫𝟐  .  (59)

The critical temperature is shown above again. Concerning anisotropic properties, sine and cosine 

are given the maximum values of 1. Table 2 lists the physical constants used except for concentrations. 

3.3.2. How to Determine ni and ρs 

In Equation  (59), 
ఙ

௡೔మ
  is  identical for 

ேಲ
௡೔
, because the  length along  the c‐axis, d,  is consistently 

given the value of 1 by considering the 2D surface. Moreover, it is necessary to determine the values 

of 1/σs, i.e., 1/ρs when given the doping variable 
୒ఽ
ଶ୬౟
  as follows: 

(How to determine ni) 

In this study, the concentration ni indicates lattice concentration. Because the unit cell of the CuO2 

surface is of the 1‐nm order, the following assumption is introduced 

2𝑛௜ ൌ
ଵ

ௗ

ଵ

ሺଵ଴షవሻమ
ൌ

ଵ

ௗ
ൈ 10ଵ଼,    [1/m3]    (86)

Note  that  d  has  the  unit  of  [m]  and  the  consistent  value  of  1  because we  are  considering  two 

dimensions. 
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Because the critical temperature Equation (59) uses the universal gas constant, 

R ൌ 8.31  ሾJ ∙ 𝑚𝑜𝑙ିଵ ∙ 𝐾ିଵሿ,    (87)

the concentration ni must be transformed into one with the unit [mol/L]. 

Thus, consider the following: 

1) Avogadro constant  𝑁஺
଴ 

2) 1[L] =  10ିଷ ሾ𝑚ଷሿ 

Therefore, the concentration ni is typically 

𝑛௜ ൌ
ଵ

ௗ
8.3 ൈ 10ିଵ଴[mol/L].    (88)

 

(How to determine 1/ρs) 

First, in the MS Excel sheet, the variable‐doping ratio 
ேಲ
ଶ௡೔
  is in the range of 0.005–0.5. Note that 

the number 2 appears due to spins. Then, 
ேಲ
௡೔
  is calculated based on the abovementioned variable 

doping ratio. 

1/ρs should be determined by the constant concentration, Equation (88) 

ଵ

ఘೞ
ൌ 𝑥

ଵ

௡೔
  ,    (89‐1)

where x denotes dimensionless variable. To give Equation (89‐1) the meaning, variable x is provided 

as 

𝑥 ൌ
ேಲ
௡೔
.       (89‐2)

3.3.3. Pseudo‐Gap Temperature and Transition Temperature at which an Anomaly Metal Phase 

Occurs 

We list the results of each transition temperatures, which will be shown in the Results section. 

𝑻∗ ൌ െ
𝟏

𝒌𝑩
𝟐
𝟏

𝟒
ሺ𝟑.𝟒 ൈ 𝟏𝟎ି𝟐𝟏ሻ𝟐ሾ𝐥𝐧ሺ

𝑵𝑨
𝒏𝒊
ሻሽ
⬚ 𝟏

𝑻𝒄
.        (61)

𝑻𝟎 ൎ െ
𝟏

𝒌𝑩
ሺ
𝟐

𝝁𝟎
𝜼
𝒉

𝒆
ሻሺ

𝒉

𝒆𝝅𝜼𝟐
ሻ
𝟏

𝑵𝟎
𝐥𝐧ሺ

𝑵𝑨
𝒏𝒊
ሻ.  (75)

Of note,  𝑁଴ ൎ 1.0 ൈ 10଺, for example. 

3.3.4. Physical Results of the Anomalous Metal Phase 

(Hall effect coefficient) 

𝑹𝑯 ൎ െ
𝝁𝑩𝟎

𝒆ሺ𝒌𝑩𝑻ሻ𝟐
𝒑𝟎
𝒅
ൈ𝐥𝐧 ሺ

𝑻𝟎
𝑻𝒄
ሻ

𝟏

𝑵𝟎
ൈ 𝐥𝐧ሺ

𝑵𝑨
𝒏𝒊
ሻ.    (80)

Of note, 𝑁଴ ൌ 1.1 ൈ 10ଶ,  for example. Because B0  is constant,  the variation of  integer N0  indicates 

variation in the applied magnetic field Be, 

Moreover, in the abovementioned resulting equation, the following constants were employed. 

μ ൎ
ଶ

ఓబ
𝜂
௛

௘
,    (72)

𝐵଴ ൌ
௛

௘

ଵ

గఎమ
,  (69‐2)

௠

గħమ
≡ 𝑝଴,    (19)

(Electron specific heat coefficient) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 October 2024 doi:10.20944/preprints202005.0105.v5

https://doi.org/10.20944/preprints202005.0105.v5


  21 

 

𝛄 ൌ
𝑵𝟎
𝑨𝒌𝑩

𝑻𝟎ି𝑻𝒄

𝟏

𝐥𝐧ሺ
𝑻𝟎
𝑻𝒄
ሻ
.        (85)

3.3.5. Results of the Many‐Body Interaction Model 

𝟏

𝟒
𝝃𝑮
𝟐 ൌ

𝟗𝜺𝟎
𝒆𝟐
ሺ𝟑𝒌𝑩〈𝑻〉 െ 𝟐𝑼𝑩ሻ𝒈𝒇,    (34)

where 

𝑔𝑓 ≡ 𝑝଴
ଵ

ଶ

௛మ

௠ఎమ
𝛼.    (26)

Of note, in Equation (26), considering the BE condensation and single‐particle picture,  𝑝଴ ≡ 1 

𝑈஻ ൌ 𝐸଴ ൌ |𝛥|଴ ൌ െ
ଵ

ଶ

௛మ

௠ఎమ
𝛼 ൈ lnሺ

ேಲ
௡೔
ሻ.      (24)

 

The doping variable is fixed as a constant only in the abovementioned equation. 

ேಲ
ଶ௡೔

≡ 0.16 ሺ𝑜𝑝𝑡𝑖𝑚𝑎𝑙ሻ. 

3. Results 

As  a  general  notation,  for  the  comparisons  between  the  experiments  and  the  values  of  our 

theory, this paper cited the experimental literatures in each case. Overall, the agreements are good. 

First, Figure  7  shows  the  entire depictions of Tc, T*,  and T0 on doping because of  analytical 

calculations. Generally, the agreements with the experiments are good [e.g., 32]. Moreover, in Figure 

8, the result of theoretical calculations of the Hall coefficient RH is indicated. As shown, the lower 

doping, the higher RH, and the RH behave as non‐linear on temperatures. 

 

Figure 7. The complete depiction from theoretical calculations of Tc, T*, and T0 vs. doping. Note that 

the horizontal axis is 
𝑵𝑨

𝟐𝒏𝒊
. For the previous figure of Tc graph, T* and T0 are added. Note that T* is 

depicted on  the understanding  that  it  is  smaller  than T0. Moreover, T* has  the gradual  and  easy 

minimum point on touching Tc‐ dome at the doping 0.21. Thus, it does not exist in the Tc‐dome. As 

mentioned, no numerical calculations and fitting methods are employed. T0 begins with about 500 K 

and vanishes almost at the same doping at which Tc disappears. As mentioned in the main body, this 

transition temperature is important when considering the anomaly metal phase. 
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Figure  8.  Hall‐effect  coefficient  RH  on  both  temperature  and  doping.  As  reported  in  many 

experimental papers, lowering the doping dose arises the RH. The calculated values generally agree 

with experiments (See Ref [33] of the experiment as a reference）. 

Because  of  the  statistic  equation  for  the  many‐body  interactions,  Figure  10  shows 

superconductivity  state up  to  a  critical  temperature  ~140 K.  In  this  figure,  the  state  that  relative 

distance  𝜉ீ   between  two  spherical  shells  (i.e.,  two macroscopic Bosons)  is under  0  indicates  the 

superconductivity  state. From  the  further  temperatures higher  than  this  critical  temperature,  the 

relative distance  𝜉ீ   becomes much  larger  as  a  change of non‐continuity. Obviously,  a  transition 

occurs at ~140 K. This result accurately agrees with  the experiments such as  [34].  Importantly,  in 

Figure 10,  the macroscopic Boson energy UB  (i.e.,  the magnetic  field  interaction Equation  (29)), at 

optimum doping, is substituted in our statistic equation. Thus, the many‐body interactions in terms 

of macroscopic Bosons are the reasons why high‐Tc cuprates exhibit a considerably higher critical 

temperature. 

Furthermore, Figure  9  shows  a  result of  theoretical  calculation  for  the  electron  specific heat 

coefficient. According to the experiments [35,36], the calculation values are valid; moreover, it takes 

a maximum at a higher doping. 
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Figure 9. A  theoretical result of electron specific heat coefficient on doping. At  the relatively high 

doping, the curve takes the maximum, which agrees with the experiments. In other words, to both 

lower doping or higher doping from this the maximum, electron specific heat coefficient decreases. 

 

Figure 10. Relative distance between  two macroscopic Bosons versus  temperature. Because, up  to 

about 140 K,  relative distances  𝝃𝑮 𝐢s not defined according  to our  statistic equation  to handle  the 
many‐body  interactions,  the  net  coherence  of  two  holes  is  defined  as  about  1  nm,  i.e., 

superconductivity  state  is  maintained.  However,  at  higher  temperatures,  relative  distances  𝝃𝑮 
suddenly becomes  𝟏𝟎ି𝟕𝒎  order. Obviously, a transition occurs at around 140 K. As an important 

notation, the macroscopic Boson energy UB is substituted at the optimum doping of 0.16. Thus, the 

many‐body interaction in terms of macroscopic Bosons (not holes) is one of the reasons why high‐Tc 

cuprates exhibit extremely high critical temperatures. 

5. Discussion 

5.1. Macroscopic Boson and high‐Tc Cuprates 

We propose a particle describing high‐Tc cuprates is not a normal hole but a macroscopic Boson, 

which is formed by the conservation of angular momentum in 2D and by rotational motion of a hole 

itself. The concept of a macroscopic Boson, as mentioned, provided a unique partition function; this 

partition function can explain every property in the anomaly metal phase. Moreover, the presence of 

this Boson gives substantial reason why high‐Tc cuprates have significantly high critical temperature 

when considered with many‐body interactions. 

Let us consider how Figure 7 relations each transition to the existence of a macroscopic Boson: 

In  the  equation  of  Tc,  considering  that  the  coherence  ξ  is  essentially  equal  to  the  radius  η  of  a 

macroscopic Boson does relation the critical temperature Tc to the macroscopic Boson. Furthermore, 

to the Equation (38) (𝑇 ൌ െ
|௱|మ

௞ಳ
మ

ଵ

೎்

ଵ

୪୬ ሺ
ಿಲ
೙೔
ሻ
), substituting the energy of a macroscopic Boson results in the 

temperature T*. Additionally, considering Equation (63) (𝑛 ൌ 𝑛଴ exp ቀെ
ఓ஻೐
௞ಳ்

ቁ), the value of e‐1 provides 

the transition temperature T0 (i.e., Equation (75)), which implies a creation of macroscopic Boson at 

that transition temperature. 
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5.2. Anomaly Metal Phase and Transition Temperature T0 

Thus far, to understand the mechanism of a high‐Tc cuprate, it was important to study the source 

of pseudo‐gap energy. Although this is true, another important factor that should be understood is 

the source of the transition temperature T0, which defines the anomaly metal phase appearance. As 

mentioned, all equations that describe the anomaly metal phase have the parameter T0 and Tc. 

5.3. Highlights of the Process for the Materials to Undergo Superconductivity 

Let us review the process, which describes the mechanism from forming a macroscopic Bosons 

to undergoing BE condensation. First, high‐Tc cuprate reaches the transition temperature T0 with a 

lower or no refrigeration. At this stage, because the wavelength of a hole along c‐axis becomes longer 

than  the width  of  a  2D  CuO2  surface,  the  net  3D  disappears  and  the  conservation  of  angular 

momentum forms a macroscopic Boson, which indicates the rotation of a hole producing a magnetic 

field energy. Thus, this magnetic field energy gives a mass of macroscopic Boson. 

By further refrigeration, our established statistic equation results in the following: 

1. Many‐body  interactions,  including  the magnetic  field  energy  of macroscopic Bosons  and 

Coulomb interactions, result in very short relative distance of two holes (i.e., the net coherence of ~1 

nm) as a result of two the sphere shells being superposed. Note that, at this stage, the paring of two 

macroscopic Bosons indicates the pairing of two holes. 

2. Simultaneously, considering the short relative distance, two holes gain a strong combination 

of the Lorentz force when the relative kinetic energy among two holes becomes 0; note that all Cooper 

pairs  take  the  identical energy and  thus BE condensation  is produced, which  is  the source of  the 

Meissner effect. 

Although  the  derivation  of  a macroscopic wave  function  inevitably  results  in  the  London 

equation using  the GL  equation  [37]; herein,  let us  review  the  reason why  the Meissner  effect  is 

derived by another approach, thus stressing the converged and constant phase  𝜃଴. 
Under an applied magnetic field B (i.e., vector potential A), we can derive the Aharonov–Bohm 

(AB) effect [38] from the initial macroscopic wave function. 

𝜓஺ ൌ |𝜓|𝑒𝑥𝑝ሾሺ𝜃଴ ൅
ଶ௤

ħ
𝐴𝑑𝑠ሻ׬ 𝑗ሽ,    (89)

where q, j, and  𝜃଴  denote the hole charge, imaginary unit and converged phase of the macroscopic 

wave function, respectively.       

From Equation (89), it is derived that 

ሺ𝜃଴ ൅
ଶ௤

ħ
𝐴𝑑𝑠ሻ׬ ൌ 2𝑛𝜋,    (90)

where n is the integer, and considering center‐of‐mass motion, 

𝜃଴ ൌ 2𝑘଴𝑥,    (91)

Substituting Equation (91) in Equation (90) and differentiating both sides of Equation (90), we obtain 

2𝑘଴ ൌ െ
ଶ௤

ħ
𝐴.    (92)

The probability density flow is then defined as follows: 

𝑗௦ ൌ 𝑞|𝜓|ଶ ħ௞బ
௠
,    (93‐1)

𝜓|ଶ𝑑𝑣|׬ ൌ 1.    (93‐2)

Substituting Equation (92) in Equation (93‐1), we derive the following London equation: 

𝑗௦ ൌ െ𝑞ଶ|𝜓|ଶ ଵ

௠
𝐴.    (94)

This is the identical result from approaches by the GL equation. 
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5.4. The Reason Why High‐Tc Cuprates Have Significantly High Critical Temperature 

As mentioned,  an  attractive  force  is  the Lorentz  force when  two  charged particles  have  no 

relative kinetic energy. However, as shown in Figure 11, this concept can be satisfied in s‐wave pair 

and d‐wave pair. Considering  this  schematic,  the pair  symmetry of high‐Tc  cuprates  is not very 

important. Rather, it is crucial to focus on an irregular many‐body interactions in high‐Tc cuprates for 

an explanation of the significantly high critical temperature. 

 

 

Figure 11. Schematic of paring symmetries. The principle to generate an attractive force between two 

charged particles is that relative momentum must be equal. That is, when this principle is satisfied 

and  if outer macroscopic heat energy does not disturb,  the  two charged particles between a  long 

distance are combined by  the generated attractive  force, which stems  from  the Lorentz  force. The 

above figure illustrates this principle, i.e., s‐wave and d‐wave symmetries. This is why there is another 

irrelevant  particle  among  force–experiencing  two  particles.  This  irrelevant  charged  particle with 

different momentum does not experience  this attractive  force. However, the Coulomb  interactions 

does not have this characteristic. 

As per the model employed to handle many‐body interactions in terms of charged particles, it 

is normally impossible for two particles to take their relative distance shorter than ~10‐7 m. In this 

case, however, our employed equation in many‐body interactions has magnetic field interaction 𝑈஻ 
in Equation (34) because of the presence of macroscopic Bosons (i.e., pseudo‐gap energy) ad Coulomb 

interactions. Therefore,  this  fact  renders  relative distance between  two macroscopic Bosons  to be 

almost 0 up to a high temperature, which makes the net coherence of two holes become the order on 

the cell of a CuO2 surface (i.e., ~1 nm). This fact indicates that the combination energy becomes very 

strong. 

This is demonstrated as shown in Figure 10, which results in a critical temperature of ~140 K. 

Considering 𝑈஻  in Equation (34) in our model equation to handle many‐body interactions is pseudo‐

gap  energy,  Equation  (24), which  is  essentially  equal  to  the mass  of  a macroscopic  Boson,  the 

parameter η [m] (i.e., radius of a Boson and order on a CuO2 cell) determines the critical temperature. 

As per our derived statistic equation, the larger UB is, the higher a critical temperature Tc, and actual 

high‐Tc indicates that UB is sufficiently large, which is caused by the fact that the parameter η [m] is 

sufficiently small, in addition to optimum doping. 

In Equation (34), given the value of 0 for 𝜉ீ, immediately the doping variable becomes fixed and 

the representative critical temperature Tc, rep is derived; 

𝑘஻𝑇௖,௥௘௣ ൌ
ଶ

ଷ
𝑈஻,଴,    (95)

where  𝑈஻,଴  indicates  the pseudo‐gap of Equation  (24)  for maximum doping. Thus, Tc  implies  the 

representative critical temperature. 

The calculation of quantities by Equation (95) is shown in Figure 12. In this figure, the horizontal 

axis implies η of the radius of a macroscopic Boson. This parameter indicates the unit cell order of the 

CuO2 surface. An important point is that, considering the parameter η is proportional to the lattice 

constant and although every high‐Tc cuprate has macroscopic Bosons, differences in lattice constants 
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render  their  critical  temperature  to  be  variable. Thus,  if  the  type  of material  among  the high‐Tc 

cuprates differs, then the critical temperature is different. 

To conclude, the existence of a macroscopic Boson indicates that: 

1) It causes the anomaly metal phase in high‐Tc cuprates. 

2) Irregular many‐body interactions are caused by it, which results in a high critical temperature 

higher than LN2. 

Note that, if we consider electron‐doping in a Mott insulator, carrier concentration dominates 

over the lattice concentration ni considering local electrons at each lattice in the Mott insulator; thus, 

the sign of the function ln in Equation (24) of pseudo‐gap energy (i.e., UB in Equation (34)) is altered. 

Hence, the sign of UB in Equation (24) becomes the opposite, which makes electron‐doping unable to 

have a high critical  temperature because, on  the contrary, UB would prevent  the enhancement of 

critical temperatures Tc. 

 

Figure 12. The representative Tc,rep for optimum doping vs. the radius of a macroscopic Boson η. Of 

note, the parameter η depends on a lattice constant. As shown, Tc,rep is very sensitive for parameters 

η. This indicates that, among high‐ Tc cuprates, varying substances renders their critical temperatures 

to be variable. 

5.5. Image of Cooper Paring of Two Holes When  𝑇 ൑ 𝑇஼ 

Figure 13 is an image that a hole on 2D of CuO2 cell takes a circle, which implies a macroscopic 

Boson. When two macroscopic Bosons are close to each other and when the relative velocity between 

the two holes is zero, these two holes take the identical and rotational velocity and take the identical 

angular frequency as shown in Figure 14. Therefore, when the attractive force principle is satisfied, 

in which the fact that relative velocity is zero is the source of an attractive force between them, the 

two holes take rotations, keeping the constant relative distance. This fact is represented in Figure 15. 

That is, these holes take parallel motions. This corresponds to the d‐wave pairing. 
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Figure 13. Schematic of a macroscopic Boson. 

 

Figure 14. Schematic of paring of two macroscopic Bosons (i.e., the two holes). 

 

Figure 15. Translation of the aforementioned Figure 14. 

5.6. Consideration of Significances in This Paper 

We believe that this study is significant because: 

1) It clarified why high‐Tc cuprates have actual high critical temperature higher than LN2. 

2) It demonstrated that almost puzzles, including the properties of anomaly metal phase reported 

in previous articles, have been attributed to the presence of a macroscopic Boson. 

To date, multiple theoretical investigations were reported to explain the mechanism of high‐Tc 

cuprates  but most  of  them  used  numerical  computing  or  fitting methods;  however,  a  general 

understanding  of  how  the mechanism  worked  was  largely  unclear.  Therefore,  we  proposed  a 

detailed explanation of the mechanism that has been proposed for a comprehensive understanding 

of high‐Tc cuprates. 

Anticipated results and spillover effects: 

1) The  analytical  and  physical  understanding  of  high‐Tc  cuprates  described  in  this  study will 

promote  the search  for and synthesis of new materials exhibiting higher critical  temperature 

near room temperature than standard materials at any given pressure. 

2) All fields of condensed matter physics rely on statistical methods. Therefore, pure analytical (not 

numerical)  approaches  can  be  applied  to many‐body  interactions. Our model  that  handles 

many‐body  interactions will provide new  results  to unsolved problems  in condensed matter 

physics. For example, the analysis of many‐body interactions of magnetic quanta would solve 

the  primary  problems  of  physics  and  superconducting  technologies  such  as  analytical 

formulation of critical current density. 

6. Conclusion 

This study described theoretically high‐Tc cuprate properties such as the transition temperatures 

on doping, Hall effect or electron specific heat coefficient on doping. Moreover, it established a novel 

model to handle general many‐body interactions, which explained why the high‐Tc cuprates exhibit 

a significantly high critical temperature. 

In general, the derived resultant equations’ values accurately agree with data from experimental 

studies with no numerical calculations and fitting methods. 

𝑒ା 𝑒ା 
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As discussed in the Discussion, consider the summary of significances in the present study. 

1) It has uncovered the source of mysteries in high‐Tc cuprates, i.e., the presence of a macroscopic 

Boson. 

2) It has succeeded in describing the anomaly metal phase with a pure theory, which has no fitting 

or numerical calculations and which agrees with experiments. 

3) It has established a new model to handle general many‐body interactions; using this model, this 

study has clarified why high‐Tc cuprates have considerably high critical temperatures. 

The  resistivity  on  lower doping  in  the  anomaly metal phase  is not discussed  in  this  study. 

However,  an  equation  for  conductivity, which  takes  linearly  temperature dependence  (i.e.,  non‐

linearly  resistivity),  was  obtained  in  the  theoretical  section  of  this  study  because  the  carrier 

concentration in Equation (62), which lineally depends on temperatures, indicates the conductivity. 

However, this equation employs the critical temperature Tc and thus, over the lower doping, in which 

the  resistivity  appears,  this  equation  is  not  available  because,  over  the  lower  doping,  critical 

temperatures are not defined. Thus, this will be a natural follow‐up. 

Moreover,  the  theory  this  paper  presented  seems  not  to  describe  electron  doping  cuprates. 

Furthermore, very recently, 2‐dimentional CDW phases dependent on doping were measured. Thus, 

it  is  necessary  to  research  these  facts  as  follow‐ups. However,  in Appendix  B  of  this  paper,  a 

preliminary calculation of the 2‐dimensional CDW will be presented. 
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Appendix A 

Analytical calculations of Curie temperatures considering many‐body interactions 

Appendix A.1. Introduction 

The purpose of this appendix A is to confirm the proposed new model to handle many‐body 

interactions described in the main text by applying another physical phenomenon. For example, we 

now introduce transitions of ferromagnetic material, i.e., Curie temperature. 

Before conducting an actual calculation, we will briefly discuss certain background information 

to understand  the significance of  this appendix. Concerning  transition phenomena, many studies 

have been reported. In particular, the Ising model is the most famous and basic. According to our 

literature  review,  however,  few  studies  exist,  which  accurately  predicted  that  the  transition 

temperatures agreed with the experimental data. Moreover, many statistic physics textbooks claim 

that  the  Ising model  in 2D provides an equation of  transition  temperature but  there  is no known 

model in 3D. If we follow the existing theory, a calculation of transition temperature indicates the 

evaluation of exchange interaction. However, this interaction is quite abstract and thus it difficult to 

evaluate in every ferromagnetic material. A general formula to determine a transition temperature 

has not been obtained because the partition function considering many‐body interactions cannot be 

mathematically calculated. 

In  this Appendix A, using our established model  for many‐body  interactions, we predict  the 

actual values of transition temperatures, which sufficiently agree with experimental values. These 

calculations do not  involve any numerical calculation or  fitting method. Here, we provide a new 

model for statistical physics considering many‐body interactions. 

Appendix A.2. Predictions of Curie Temperature Using Our Employed Model to Handle Many‐Body 

Interactions 

As shown in Figure A1, a magnetic moment  𝜇⃑  is located in the center of a sphere shell dN at 
which the temperature is Ti. Similar to that of the main text, the following balanced relation holds: 
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(magnetic field interaction from magnetic moments) = 
 ଷ

ଶ
𝑘஻𝑇௜𝑑𝑁        (A‐1)

In this equation, the left‐hand side is given as follows: 

െ𝜇⃗ ∙ 𝐵ሬ⃗  
As every basic text describes, a magnetic field B is represented as follows: 

𝐵ሬ⃗ ൌ െ
ఓబ
ସగ
ሾ
ఓሬሬ⃗

௥య
െ

ଷሺఓ∙ሬሬሬ⃗ ௥ሻሬሬሬሬ⃗ ௥⃗

௥ఱ
ሿ,      (A‐2)

where r is radius of the sphere shell dN. 

 

Figure A1. A schematic of our model  to apply a  ferromagnetic material. Basically,  the concept  to 

handle many‐body interactions is the same as the case presented in the main text. That is, force of 

expansion  from  the  central magnetic moment  𝝁  ሬሬሬሬ⃗   is  balanced  to  force  of  compression  from  the 

immediately outer locations, which are equal to kinetic energies in the differential number dN. Note 

that this case does not include the magnetic field interaction using macroscopic Bosons. Calculating 

the balanced equation results in a statistic equation that involves many‐body interactions. 

In  this  equation,  the  first  term  indicates  ferromagnetism, while  the  second  term  indicates 

antiferromagnetism. Because the present case is to handle a ferromagnetic material, we employ the 

first term. Moreover, the directions of two magnetic moments  𝜇⃑  are assumed to be parallel, i.e., the 

scalar product between two  𝜇⃑  is positive. Accordingly, the above equation becomes 

െ𝜇⃗ ∙ ቂെ
ఓబ
ସగ

ఓሬሬ⃗

௥య
ቃ ൌ

ଷ

ଶ
𝑘஻𝑇௜𝑑𝑁.      (A‐3)

Moreover, as mentioned, dN is expressed as follows considering the volume element of the integral: 

 
ఓబ
ସగ

|𝜇⃗|ଶ ଵ

௥య
ൌ

ଷ

ଶ
𝑘஻𝑇௜𝑑𝑁 ൌ

ଷ

ଶ
𝑘஻𝑇௜ ൈ 𝑔𝑓𝑑𝑘ሬ⃗ ,      (A‐4‐1)

d𝑘ሬ⃗ ൌ
ଵ

ௗ௩
ൌ

ଵ
రഏ
య
௥య
.    (A‐4‐2)

Thus, an important equation is derived as follows: 

  𝜇଴|𝜇⃗|ଶ ൌ
ଽ

ଶ
𝑘஻𝑇௜𝑔𝑓 ൌ

ଽ

ଶ
𝑘஻𝑇௜𝑔

ଵ

ୣ୶୮൬ି
ಶ೔షಶಷ
ೖಳ೅೔

൰ିଵ
.  (A‐5)

In this Bose statistic equation, Ei denotes the zero‐point energy of phonon, i.e., the Debye temperature 

and  𝐸ி  is a chemical potential, which is equal to the Gibbs free energy, but especially in this case 

implies only an internal energy. Therefore, this chemical potential is derived from electron specific 

heat coefficient γ as follows: 

  𝜇଴|𝜇⃗|ଶ ൌ
ଽ

ଶ
𝑘஻𝑔

்

ୣ୶୮൤ି
భ

ೖಳ೅
ቀ
య
మ
௞ಳఏವାఊ்మቁ൨ିଵ

.     (A‐6)

In this case, a transition temperature of Tc is assumed to be obtained by considering the extremum 

from  this  equation. Hence,  to  calculate differentials, Ti  is  considered  to be a variable  continuous 

temperature T because there are now no dependent parameters on the index i except Ti. Therefore, 

the following equation is calculated. 
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ௗ

ௗ்
𝜇଴|𝜇⃗|ଶ ൌ 0  .    (A‐7)

Consequently, the following equation is obtained: 

ఊ்మି
య
మ
௞ಳఏವ

௞ಳ்
ൌ െ1,    (A‐8‐1)

  T ≡ 𝑇௖ ൌ െ
௞ಳ
ଶఊ
൅ ට

ଷ௞ಳഇವ
ଶఊ

ൎ ට
ଷ௞ಳഇವ
ଶఊ

.    (A‐8‐2)

Table A1 lists the physical constants of a ferromagnetic metal Fe. 

Table A1. Fe physical constants. 

Debye temperature  𝜃஽  470 K 

Electron specific heat coefficient γ  8.4 ൈ 10ିଶ଻  J/K2 

Employing these physical constants, the transition temperature Tc for the metal Fe is calculated 

as follows: 

 𝑇௖ ൎ 1.08 ൈ 10ଷ  K .        (A‐9)

Because measurements of the transition report 1043 K, the agreement is sufficient. 

Then, we consider the transition temperature of the ferromagnetic Ni. The material Ni has much 

less thermal conductivity, unlike the metal Fe. This indicates that a chemical energy, i.e., the internal 

thermal  energy  is  allowed  to be  ignored. Thus,  from Equation  (A‐8‐1),  the Tc‐equation  is  simply 

expressed as follows: 

ଷ

ଶ
𝑘஻𝜃஽ ൎ 𝑘஻𝑇௖.    (A‐10)

Because the Debye temperature of Ni is reported as 450 K, Tc is calculated as follows: 

𝑇௖ ൎ 675  K .  (A‐11)

Compared with a measured transition value 627 K, the agreement can be considered to be sufficient. 

Appendix B 

A study of 2‐dimensional CDW 

Appendix B.1. Introduction 

Very  recently,  in  the phase diagram  in  the  cuprates,  a  2‐dimentional Charge Density wave 

(CDW) transition was found [39]. Although some are mentioning that the recent phase diagram has 

been more complex, considering the existence of the macroscopic Boson will result relatively easily 

in the CDW transition. For example, this CDW appears for a parallel magnetic field for the c‐axis 

[40,41], which indirectly implies the existence of a macroscopic Boson. Because of the existence of the 

macroscopic Boson, now we consider only 2‐dimentional CDW. This appendix B would like to derive 

this CDW transition. 

Appendix B.2. Calculations 

The CDW is, in short, a stational wave, and thus we employ Figure 3 and its equations in the 

main body. 

The eigenvalue of the stational wave in Figure 3 is again 

𝐸௜ ൌ
ଵ

ଶெ
ሺ
ħగ௜

ଶ௔೔
ሻଶ.      (B‐1) 

Using equation, the following assumption is provided. 

𝑀𝑐ଶ ≡ 𝑘஻𝑇∗,        (B‐2) 
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where M is the mass of a macroscopic Boson and c is the seed of light. 

In this appendix, the parameter ai is assumed to be 

𝑎௜ ≡ 1.6 ൈ 10ି଺m. (B‐3) 

The above Ei is a merely energy level, different from two energy levels. Thus, as mentioned in 

the main body, the fine structure constant α is used to derive a gap of the CDW. 

𝑘஻𝑇஼஽ௐ ≡ 𝛼𝐸௜ ൌ 𝛼
ଵ

ଶ
ሺ
ħ௜గ

ଶ௔೔
ሻଶሺ

௞ಳ்∗

௖మ
ሻିଵ,   (B‐4) 

In the above equation, 

𝑖 ≡ 𝑁଴,    (B‐5) 

where 

𝑁 ൌ 𝑁଴𝑓௥. 

Thus, 

𝑇஼஽ௐ ൌ 𝛼
ଵ

ଶ௞ಳ
ቄ
గħ

ଶ௔೔
𝑁ሾെln ሺ

ேಲ
௡೔
ሻሿାଵቅ

ଶ
ൈ ሺ

௞ಳ்∗

௖మ
ሻିଵ. (B‐6) 

In this paper, the phase of the CDW is defined as total macroscopic Bosons are condensed on the 

condition that Equation (B‐2) is formed. Thus, N=1 is assumed. 

In Figure A2, the result is shown, which well agrees with the experiments [39]. Note that the 

doping of the maximum is 0.12 (i.e., 1/8), which is also agreed [42,43]. Note that, for the method to 

create this figure, refer to Method section in the main body. Moreover, the result is not a numerical 

or fitting calculation. 

Note that, importantly, in the superconductivity, the total macroscopic Bosons are condensed 

but the difference in the CDW is the condensation having the condition Equation (B2). This implies 

that the macroscopic Bosons are condensed in the CDW phase but they do not take a Cooper pair. 

 

Figure A2. The phase diagram  including  the  2‐dimentional CDW phase. The yellow  curve  is  the 

transition. This figure was created on the basis of Figure 7 in the man body. 
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