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Analytical Descriptions of High-T. Cuprates by
Introducing Rotating Holes and a New Model to
Handle Many-Body Interactions
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Nihon University, 1-2-1 Izumi-Cho, Narashinoshi, Chiba 275-8575 Japan; shinichi.ishiguri@gmail.com

Abstract: This study describes the properties of high-T. cuprates by introducing rotating holes that are created
by angular momentum conservations on a 2D CuO: surface, and which have a different mass from that of a
normal hole because of the magnetic field energy induced by the rotation. This new particle called a
macroscopic Boson describes the doping dependences of pseudo-gap temperature and the transition
temperature at which an anomaly metal phase appears and describes the origin of the pseudo-gap.
Furthermore, this study introduces a new model to handle many-body interactions, which results in a new
statistic equation. This statistic equation describing many-body interactions accurately explains why high-Tec
cuprates have significantly high critical temperatures. Moreover, a partition function of macroscopic Bosons
describes the properties of anomaly metal phase, which sufficiently agree with experiments. Note that, the
calculations were conducted, using the result from our previous study that analytically describes the doping
dependence of Te. By introducing a macroscopic Boson and the new statistical model for many-body
interactions, this study uncovered the mystery of high- T. cuprates, which have been a challenge for many
researchers. An important point is that, in this study, pure analytical calculations are consistently conducted,
which agree with experimental data well (i.e., they do not use numerical calculations or fitting methods but
use many actual physical constants).

Keywords: high-Tc cuprates; macroscopic Boson; many-body interactions; pseudo-gap; critical
temperature; anomaly metal phase; conservation of angular momentum; attractive force; cooper
pair

Introduction

First of all, note that, as the abstract mentioned, the present paper is written under the condition
that our previously published article [1] was understood that describes the T-formula analytically.
However, the present paper will provide the review sections.

Although several significant advancements have been presented, from the initial discovery of a
superconductor, the most impressive discoveries are CuO2-based superconductors (i.e., high-T.
cuprates) [2]. This is because, prior to this result, superconductors generally require significantly high
refrigeration because of their lower critical temperature (~20 K). However, because high-T.cuprates
have higher T. than LN;, they received considerable attention and interests from condensed matter
physics researchers and researchers in technologies. They demonstrated interest in the technical
merits when applied to superconducting magnetic energy storage and energy transmission [3-5].
Thus, initial results demonstrated that high-T. cuprates involved researchers from many condensed
matter physics and related technologies.

However, condensed matter physics researchers investigated high-T. cuprates for much deeper
reasons, i.e., they are the first case at which the standard band model and the Bardeen-Cooper—
Schieffer (BCS) theory are not applied, which indicates that novel physical phenomena occurred.
(Recent H-based superconductors [6-9] with extremely high pressures have high potentials to be
applied to the BCS theory.) Note that it was considered that BCS theory could be applied to materials
whose critical temperatures are up to around 30 K. Furthermore, crucially while BCS theory exhibits
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isotope effects, it was found that, in high-T. cuprates, the normal isotope effects were not applied.
Considering these facts, it is clear that the mechanism of the high-T. cuprates differs from that of BCS
theory, which gave this paper a motivation to make the mechanism be clear. Moreover, it is obvious
that, similar to the BCS theory, the use of quantum field theory is not adequate because quantum
field theory is extremely abstract and does not reflect the fact that a phenomenon in condensed matter
physics involves many actual physical constants.

Furthermore, many claimed that it is related to many-body interactions [10], which made many
theoretical researchers” approaches to the mechanism difficult. Thus, it is necessary to consider the
mechanism of the cuprates with many-body interactions.

Moreover, while all researchers agree that the carrier is a Cooper pair, the origin is still unclear.
Although multiple theories exist discussing the nature of the force to combine a Cooper pair and the
origin of pseudo-gap using RVB model or Hubbard-like model, few theoretical articles analytically
address and explain experiments data, in addition to the anomaly metal phase and the transition
temperature To at which the anomaly metal phase appears. Thus, our paper needs to make clear the
origin of attractive force to provide a Cooper pair.

Currently, there are many theories besides BCS theory. Here, let us consider why these existing
theories are insufficient: Although many studies about the experiments have been reported [11-16],
(in particular, STM and STS [17,18] experimental methods to date revealed many aspects in high-Te
cuprates,), no theory describes all of the experimental data.

These theories are divided to two methods: either Fermi-liquid model or resonating valence
bond (RVB) model [19-22]. However, these theories have undetermined parameters, which
inevitably leads to numerical or fitting methods. We must mention that they are insufficient because
many related and actual physical parameters (i.e., physical constants) should be involved when the
properties of high-T. cuprates are considered.

For example, several researchers claim that, because of the existence of magnetic-field
interactions, the natural force to combine a Cooper pair must be spin interactions. However, as will
be mentioned in this study and our previous study [1], magnetic-field interactions are not generally
only the spin interactions. Furthermore, the spin-fluctuation [22] model is a numerical one; in this
sense, this model is similar to the Hubbard-like model [23].

These models have multiple parameters to determine or to fit; thus, they do not reflect actual
physical picture the high-Tccuprates originally have. Moreover, if the interaction was defined as spin
interactions, they could not explain why other multiple physical parameters such as phonons are
related [24,25].

That is, thus far research-related challenges have been prevented from a complete investigation
of the abovementioned issues. If the calculations can be analytically solved, condensed matter physics
will make considerable progress in developing then methods for fabricating compounds with higher
critical temperatures could be developed through condensed matter physics fields. Thus, uncovering
the physical mechanics of high-T. cuprates is urgently required, and has motivated the present study.
We thus provide new answers to the above questions.

Briefly, the understanding of high-T. cuprates requires

1. Analytical calculations of many-body interactions. Most theories use a numerical or fitting
method; however, these approaches cannot clarify the physical picture in high-T. cuprates.
2. Tounderstand the nature of the force to combine a Cooper pair over long distance.

Combining with our previous study [1], we will propose a concept of macroscopic Boson. This
paper will describe the mechanism of high-T. cuprates, using only this concept, with the
consideration of many-body interactions. That is, basically, just only the existence of the macroscopic
Boson will describe the mechanism of high-T.cuprates.

As the contents of this paper, first we introduce a concept of macroscopic Boson, in which its
mass and spin are described. Then using the partition function, the pseudo-gap energy is explained.
Moreover, the method to handle many-body interaction will be introduced. Next, as the review of
our previous article, we obtain the formula of T¢ [1]. The calculations of obtaining formulas of T"and
To are positioned, analyzing anomaly metal phases. Section 3 is Method in which more concrete
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calculation methods are indicated. Then Result and Discussion sections are followed. Finally, the
paper concludes the entire contents in section 6.

2. Theory

Let us consider a theoretical structure briefly. This theory is based on the emergence of a
Macroscopic Boson under the transition temperature To. Moreover, the mass of this Boson is related
to the pseudo-gap temperature T". Then for calculations of the critical temperature T, there are two
ways in the derivation: the one comes from the combination of the macroscopic Bosons (i.e., Cooper
pairs) and the other is originated from handling many-body interaction of the macroscopic Bosons.
However, this paper will discuss that these two ways are essentially same. Afterwards, this paper
will consider the anomaly metal phases based on the partition function of the Bosons. The common
point is that every property in the cuprates is represented only by the assumption of the macroscopic
Bosons.

Moreover, as a material, the present theory assumes that

i) it has a CuO: 2-dimentional surface, and
ii) its carries are holes (i.e., electron carries are not handled in this paper).

2.1. Introduction of New Particle and Pseudo-Gap Relating to the New Particle
2.1.1. Introduction of a Macroscopic Boson

When considering a CuOzsurface as the most important point [25] and when the refrigeration is
sufficient such that a hole’s wavelength becomes larger than that of width of the surface, it is assumed
that 2D is completely formed. This indicates that, on the surface, an angular momentum must be
conserved; thus, each hole takes a circle by self-rotating. At this time, because this rotating circle has
magnetic field energy, we consider that a new particle has been created. Note that the creations of
the particles imply a phase transition To, which will be described later in this paper. This is related to
the electron nematic phase [26]. Going forward, we refer to this new particle as a “macroscopic
Boson”; the schematic is shown in Figure 1.

For a literature support of the assumption of a macroscopic Boson, please refer to [27]. Moreover,
this fact corresponds to the fact that, in a CuO:z surface, a local persistent current exists [26].

| L.

=»X X
z e+
e+ A’le
T>T, T<T,

Figure 1. Schematic of a macroscopic Boson. Normally, holes move in 3D when their kinetic energy
is high. However, when refrigeration reduces the momentum along z-direction, the complete x-y 2D
motion is formed. Thus, a conservation of the angular momentum creates a rotation movement by a
hole itself. This transition will be described later. Because a current circle by the rotation generates
magnetic field energy, which determines the mass of this circle, this circle is essentially different from
a normal hole. We will refer to this new particle as “a macroscopic Boson.” The radius n of a
macroscopic Boson is assumed to be of the order of a CuOzcell (i.e., ~1 nm).
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2.1.2. Calculating the Mass of a Macroscopic Boson

First, let us calculate the mass of a macroscopic Boson. Generally, magnetic field energy is
represented as follows:

1 — 2 1
2U =~ I®y — pi5 - H = 210 — ps . H, 1)

where I, @, ji; and H denote a current surrounding a macroscopic Boson, the magnetic flux of a
macroscopic Boson having a unique value, the spin magnetic moment of a hole, and the generated
magnetic field in the macroscopic Boson. Note that it is assumed that the magnetic field direction is
along the z-axis. Moreover, if we do not substitute the more concrete equation of y;,, the second
term is formed generally in terms of the electromagnetism. If we assumed that the particle is a
fermion, then u;, would have both the positive and the negative numbers. However, as will be
mentioned later, at a temperature To, the identical and uniform particles are emerged. This implies
that the uniformed energy U requires that u;, be zero. Therefore, the particle must be a boson.
Considering the same reason, the flux must be quantized as

Dy =-, 2)

where 1 and e denote the Planck constant and the charge of a hole, respectively. Note that this study
used both the constants i and 7 as Planck constants.
In the current of Equation (1), the cyclotron angular frequency is introduced.

_e _ _ eBy __ 2 BoHo
== =2new, =2ne— = 2me”=——, 3)

where @, Bo, and uo denote the cyclotron angular frequency, the constant and unique value of
magnetic field in a macroscopic Boson, and the magnetic permeability in the vacuum, respectively.
Thus, Equation (1) becomes

U =22me2to0l )

where considering the flux of Equation (2)

h 1

o = < o ©®

where 7 is the approximated radius of a macroscopic Boson.
Because the magnetic field Bois expressed as Equation (5), the rest energy, i.e., the mass of a
macroscopic Boson is formed as follows:

2
2U = ezt 1 b _ M7 (6)

mepgnnZe mn?

2.1.3. Spin of a Macroscopic Boson

Let us now consider the spin of a macroscopic Boson. As mentioned, Equation (1) claims that
the second term of this equation must be zero. This implies that the direction of spins of a hole and
that of the magnetic field is perpendicular. Thus, if the direction of the magnetic field is assumed to
be z-axis, then the directions of hole spins must be x-or y-axis.

Therefore, using the Pauli matrix, this case considers only the x- and y-components.

=3 o) 1)

—i

Sy = 2(? 0 (7-2)

where i denotes the imaginary unit.
In this study, a spin angular momentum is defined as the determinant from the Pauli matrix.

Thus, each determinant is as follows:
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dets, = ——h, (8-1)
dets, = %h. (8-2)
Therefore, a net spin angular momentum of a macroscopic Boson is calculated as follows:
s = dets, + dets, = 0 h. )
Next, let us consider the orbital angular momentum [:
I, = n*mya, (10)
where
w, = ;—i, and (1)
mnis the mass of a hole, and 1) is the radius of a macroscopic Boson.
Thus,
I, =n%eB. (12)
The magnetic flux is provided as
Oy = Z = nn?B. (13)
Accordingly,
l, = 2h. (14)
To conclude, the net spin j is
j=0-h+2h=2h, (15)

which implies the macroscopic Boson is a boson.

The above result indicates that, although a single hole behaves as a Fermion, this macroscopic
Boson on 2 D behaves as a boson. Thus, the name of this particle is derived from this fact. As
described, as long as considering 2D, the statistic property would alter.

2.1.4. Obtain the Partition Function of Macroscopic Bosons

Because a macroscopic Boson on 2D follows the Bose’s partition function, we simply must
consider the following;:

1

P L (16)

exp( kBT

fr =

where Ei, |Er|, kg,and T denote energy, a chemical potential (i.e., Er < 0), the Boltzmann constant,
and temperature, respectively. An important point is that the exponential function is approximated
as a Maclaurin series,

1 kpT

= rewri (17)
BT

This abovementioned partition function is very important because all properties in the anomaly metal
phase in CuO»z-based superconductors are described using this partition function. We will see how
this equation describes properties of the anomaly metal phase later.

Moreover, this equation has another expression. Because we are now considering the chemical
potential from Bosons and the general boson partition function, the following equation generally
holds:

Ep = E + kpTIn(-2), (18)
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where the absolute value of the second term must dominate the value of the first term because the
chemical potential is negative, and where N, denotes accepter concentration. Moreover, ;v—?:
indicates a doping parameter in this study. The number 2 is attached because of the presence of spins.
Therefore, because ni indicates the concentration of lattices, IZL_? of the function In is less than the value

of the number 1 as long as we consider the image in which holes are doped in a Mott insulator (That

is, if the carrier is an electron, % of the function I is more than the value of the number 1 in the Mott
L

insulator). Using the equation above, the partition function, Equation (17), is translated as follows:

fr=—mn(G)". ((17-2)

2.1.5. Calculate the Pseudo-Gap Energy

Let us calculate the pseudo-gap energy, which is directly related to the mass of a macroscopic
Boson. First, we define the carrier concentration of macroscopic Bosons considering a 2D energy state
density.

D, (E) = = = py, (19)

n =2 J Dy(E)fdE, (20)

where D,(E), n, and d denote energy state density in 2D, particle concentration, and width of the 2D
sheet, respectively. An important point to note is that the parameter d [m] is consistently substituted
by the number 1; however, the reason of the appearances in certain equations clarify the meaning of
these equations. The integral for concentration (20) is simply because the energy state density in 2D
is constant as indicated in Equation (19) and because partition function f is represented by Equation
(17-2). In the process of this calculation of Equation (20), an energy Eoappears as follows:

d N
E, = =0T X ln(n—’:), (21)

This energy Eois assumed to be essentially equal to the pseudo-gap energy. Combined with the mass
of a macroscopic Boson, this pseudo-gap energy is represented as follows:

2
Eo=—UxIn(4) = =2 In (54), (22-1)

n; 2 mn?

The abovementioned pseudo-gap energy equation has a coefficient for doping function In. This factor
is identical to the zero-point energy:

1 1 h?
~hw =

Jhow=2-"s (22-2)
The above equation implies that this derived energy Eo merely indicates a potential. In general,
however, an energy gap appears or disappears involving a photon’s emission or absorption, which
has a momentum. This fact indicates that, for a potential to become a general energy gap, the potential
is given the product of the fine-structure constant @, which includes characteristic impedance Zo for
electromagnetic waves. Typically, the fine-structure constant « is determined as follows:

_ Zge? 1
=T T 1370 (23)

In Equation (23), the impedance Zoworks as the specific impedance to electromagnetic waves. Thus,
the net pseudo-gap energy |4, is derived as follows, which will give the temperature of pseudo-
gap T" as discussed later.

h? N
|A|0 =——W(¥Xln(f . (24:)
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2.2. Superconductivity with Consideration of Many-Body Interactions

It is necessary to describe why macroscopic Bosons undertake Bose-Einstein (BE) condensation
by forming a pair from two macroscopic Bosons, although they have been already general Bosons
such as Cooper pairs. In the previously published paper [1], we reported a new attractive force to
combine particles from local current in a CuOz cell [26]. This local current is equal to both rotational
and self-current, which creates the mass of macroscopic Bosons; hence, the result of the previous
paper agrees with the descriptions in the present paper. Therefore, in this section, based on the
understanding that two macroscopic Bosons form a pair, we describe why BE condensation occurs
considering many-body interactions between Bosons.

2.2.1. Description of the Model and the Principle to Many-Body Interaction

There are many-body interactions among the carriers in various materials. In particular, this fact
is essential to high-Tc cuprates because the general band theory cannot be applied. The many-body
interactions of carriers indicate there are many local temperatures Ti in the materials, where 7 is index
for a location. In other words, only in a temperature T, thermal equilibrium can be assumed. Figure
2 shows our model for handling many-body interactions. In this figure, a radius ai forms a sphere
shell, which has differential number dN and local temperature Ti. Moreover, in the center, a
macroscopic Boson is presented. The immediately outer particles out of dN yield a pressure to this
sphere shell, which is equal to the kinetic energies of particles in dN (i.e., it is represented by a
temperature Ti). However, the central macroscopic Boson provides force of expansion, which
indicates electrostatic energy, i.e., Coulomb interactions. Moreover, this case adds magnetic
interactions between macroscopic Bosons as an expansion force. Note that it is assumed that the
number N is sufficiently large and thus we can consider the differential AN.

Figure 2. Schematic of our established model to handle many-body interactions. Considering the
nature of many-body interactions, note that temperatures are locally different. However, this model
claims that in the differential number dN (a macroscopic Boson takes the center and dN takes a
temperature T; ), a thermal equilibrium can be assumed. Therefore, a balance between force of
expansion from Coulomb interactions, in addition to the magnetic field interactions from the Bosons
and force of compression from immediate outer side, which is equal to the kinetic energies in dN (i.e.,
a temperature T;), is formed. Calculating this balanced equation results in a new statistical equation.

Considering that these forces of expansion should be balanced to a force of compression in a
sphere shell, the following relation holds:

(Coulomb interaction energy and magnetic field interaction energy) = %k gT; X AN
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2.2.2. Calculate the Principal Equation of Our Model and the Internal Quantum State

Calculate the abovementioned principle-equation in the previous subsection. First, dN is
represented as follows:

dN = gfdk = gf (o), (25)

where k, v, g, and f denote wave number, volume, state number, and partition function for the Boson,
respectively. In the equation of dN, as mentioned, state number g and partition function f are given

as follows:
f=f=-MCHI™ (17-2)
g == [ D,(E)AE = pyEy, (19-2)
Dy(E) = =5 = po, (19)
2
E, = |A|0=—§mh—nzaxln(1:1—‘;. (24)
Thus, fg is given as follows:
h2
f9=posmza (26)

To calculate the left-hand side of the abovementioned balanced equation in principle of the
previous subsection, the electrostatic energy Uk is calculated as follows:

e

Uy = %so( )2dv, 7)

2
4mega;

where ¢, and a; denote the permittivity for the vacuum and the radius which dN is taking in the
model.
At this time, a volume element of the integral is expressed as follows:

=—aj;. (28)
Moreover, the magnetic interaction Vp from macroscopic Bosons is given as follows:
V, = UgdN. (29)
Consequently, the resultant equation is provided by
a} = 22 (3ksT; - 2Up)f g. (30)

As shown in Figure 3, the central macroscopic Boson behaves under the model of the infinite
well-potential. Thus, as every elementary quantum mechanics textbook [e.g.,[28]] describes, the
eigenvalue and wave function of it are presented as follows:

Vi) = [Esin G, G1)
1  him
0= 2 Ga) (32)

where M, i, and r denote the mass of a macroscopic Boson, index, and microscopic variable of sphere-
coordinates, respectively. These equations indicate that a particle under the many-body interactions
forms a stationary wave and that the wave function of the stationary wave and the eigenvalue (i.e.,
kinetic energy) are determined by a radius ai.
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Figure 3. A basic model of infinite well-potential. This model is directly related to the immediate prior
figure model. The diameter 2a; varies depending on a temperature T;. A macroscopic Boson in this
well-potential forms a stationary wave, and its wave function and eigenvalue are presented in every
basis textbook.

2.2.3. Describe BE Condensation and the Superconducting Transition

Using the abovementioned concept, we consider how BE condensation occurs. In addition to a
sphere shell having temperature Ti, another sphere shell having temperature Tj is considered. When
we accept a combination of two macroscopic Bosons by a force F, these two Bosons must have the
identical kinetic energy because, in general and as mentioned in our previous paper [1], a relative
and attractive force appears only when their relative velocities become the same. In particular, this
fact is applied when an attractive Lorentz force is generated between moving and charged particles
whose velocities are identical. Thus, when forming a pair from two macroscopic Bosons, the
eigenvalues, Equation (32), indexed by i and j becomes equal. That is,

|E: — ;| = 0. (33)

This indicates that an index i and j becomes equal, resulting in that all the radius aiand eigenvalue Ei
take the identical radius a0 and Esbecause of the arbitrary property of index 7 and j. Hence, if a pair
forms, every energy of macroscopic Bosons undergoes the identical energy Es, which indicates all the
rest Bosons take pairs and BE condensation.

Moreover, as shown in Figure 4, considering index i to be equal j indicates that temperatures T
and Tj must be equal. Even at this moment, positions r of wave functions, Equation (31), are common
and thus the two sphere shells take the superposition, i.e., the relative distance £c between the two
sphere shells should be 0. Thus, the net coherence of two holes becomes on a cell order, 1 nm, as
reported by many literatures. This physical picture is described as that one-unit cell has two-
combined macroscopic Bosons and that, over the entire 2D surface, these unit cells having two
macroscopic Bosons become uniform. Thus, by BE condensation, it can be assumed that the particle
number is one and that dN — 0. Therefore, the established shells vanish and thus the radius of a0 —7,
which implies the rest interactions will be only for the neighboring particles, not many-body
interactions.

As mentioned, the occurrence of BE condensation and forming two-combined Bosons are
equivalent. Thus, a critical temperature can be obtained both by the way of the combination of the
particles and by the approach of the many-body interactions.

Employing the abovementioned equation (30), an equation of the relative distance between
sphere shells £c for temperature T is derived as follows:

282 =20 (3ky(T) - 2Up)gf, (34)
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where Us is substituted with pseudo-gap |4|, in Equation (24). Note that, in this equation,
considering BE condensation and single-particle picture, poof gf in Equation (26) is redefined as the
value 1. As will be discussed in the Results section, temperatures at which ¢Z < 0 indicates a
superconductivity state and the transition temperature T. at which {; = 0 indicates a critical
temperature.

$a

Figure 4. Schematic of two macroscopic Bosons having many-body interactions. The relative distance
of &g indicates one between two macroscopic Bosons. When an attractive force F between them
appears and because the relative kinetic energy becomes 0, indexes i and j take the same. Thus, a
superposition between them occurs, rendering &gbe 0. That is, two Bosons now combine to be a
Cooper pair. Employing the statistic equations from our established model, we can predict this type
of transition.

2.3. Review to Obtain the Formula for Tc

Note that this section is the review section for Ref. [1]

Herein, we would like to note the reason why there are Fermi energy and chemical potential Er
[29] in this paper. At this stage that two-macroscopic Bosons take a combination at a unit cell,
although we cannot consider many-body interactions, there is a non-zero temperature, which is
originated from the interaction for the neighboring Cooper pairs (i.e., T < T;). This is equivalent to
the fact that the neighboring holes in the Cooper pairs between unit cells collide with each other,
which implies that each Cooper pair is repeatedly formed and destroyed [1]. Thus, only in the case
of T < T, we consider the Fermi energy, i.e., Er = 0.

2.3.1. Derivation of a General Energy Gap (Review)

Let us review our previous study [1], which describes a force F to combine two particles and a
critical temperature Tc on doping. Note that because this is a review to understand the stream of
outlined derivations of a critical temperature T, certain equations in the calculation and derivation
processes are left out. In case that our readers are interested in the detail, the paper can be
downloaded as an Open Access paper.

First, we assume that a general energy gap |4| is proportional to both Fermi energy and Critical
temperature as follows [1]:

|AI2 = kBTCEF‘ (35)
In this equation, the Fermi energy in a p-type material [30] is employed as follows:

Ep=E, — kBTln(’TVl—‘i1 . (36)

Note that we are considering the carrier is a hole.
In this equation, a superconducting energy gap is introduced.
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2E; = kyT. (37)

Substituting these energies and employing the state equation with the universal gas constant R, the
following equations are obtained.

1412 = 3 (ks T)? {1 - 271 (32)} (38)
and
412 = 5 (kpTo)? {1 - 2152~ In (1)} (39)
where
1251 = pV. (40)

where 25 denotes a thermodynamic potential, and psis the concentration of Cooper pairs. In this
manner, a general expression of energy gap for temperatures was derived. Note that interactions
between Cooper pairs and Cooper pairs is assumed to be relatively small (i.e., that is merely local
and neighboring collisions), which justifies the employment of the state equation.

2.3.2. Generation of an Attractive Force that Combines Two Carriers (Review)

To consider the superconducting energy gap, it is necessary to mention a force F, which results
in a combination of a Cooper pair. As previously mentioned, two charged particles generally
experience an attractive force with each other when they are moving with the same velocity, i.e.,
when the relative energy or momentum is 0. As shown in Figure 5a—d, two parallel conductors along
which the same direction and same amount of a current are presented. From the electromagnetism,
these current leads experience an attractive force with each other, which is attributed to the Lorentz
force. When we shorten these leads to a wavelength of a carrier, this attractive force still exists. This
indicates that two charged particles with identical wave numbers are attracted to each other. This
attractive force stems from the Lorentz force.

2.3.3. Derivation of Tc (Review)

Considering the principle of generating an attractive force and assuming that the wave function
of a hole is a plane wave and that the magnetic field generated by the moving holes is derived from
a linear current, the Lorentz force F is given as follows:

F=q? f:nL;“kizzmlpPkZ 2—1rsinﬁcos<p = miﬁ#ﬁll[)lz %sin@cosq), (41)
where 1, , 6, ¢, q, B, k m, and po denote wave function of a hole, relative distance of two holes, angle
associated with the Lorentz force, angle related with two wave number of holes, the electric charge
of a hole, constant, common wave number, the mass of an electron, and magnetic permeability of the
vacuum, respectively. Note that this equation employs the probability density flux as current density.

The energy u (i.e., superconducting energy gap) from the line integral of the above force F is
represented as follows:

2 2.2 h 3
u= —%ﬁhﬂz In(r) X sinfcos@ +uy uy <0, (42)

where u, denotes an integral constant.

Q= ZanZZuOh
m

In (&) X sinBcosy, (43)

where & denotes the coherence of a Cooper pair.
u=ap|¥|*+ u,. (44)

It is assumed that |4]| is proportional to Tc. That is, |4| is proportional to the energy u.
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a'lA] =u = %kBTC , (45)
a'lAl = aBlP|? + u,. (46)
Therefore, the relationship between @ and a' is a linear dependence
That is,
a' = pa. (47)

According to the analysis of the dimension, the constant p has the unit [1/]].

Q2
= &
i 5
= =

; o
= Electromagnetic =4
% force %
= @
. ]
ES (=g
o =-
= 3

(a)

a &
: :
= @
@ =
= Electromagnetic 'z.:
o =)
5 force u]
] Q
& &
B o
0 =t
=

(b)

fo—o1

+e +e

(c)

+e

(d)

Figure 5. (a) Currents in the same direction. (b) Shorter leads with currents in the same direction. (c)
Holes with same direction and equal velocity. (d) Center-of-mass motion of Cooper pair.
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Thus, we can give the equation that
_ 1
P =igen (48)
where kg and 6, denote the Boltzmann constant and the Debye temperature, respectively.
Equation (45) is squared:
a'’?|A|? = 2 kBT, (49)
That is,
2m2
4|2 = 22 (50)
From Equation (39),
kETZ 1 1egl1 N
L = (e To?G — 58 n (32 (51)
By the organization of the above equation and the substitution of «’,
T, = —4[k89 (—2n "0“ In (&) x sinBcosep)]? 28! pl In (“1’1—:‘). (52)

In this equation, the thermodynamics potential is replaced by that of zero temperature, |2z], , and
the integral constant T, is instead introduced. This implies that when |2z]| = |Q2z],, the difference
is renormalized to T ,,:

_ 1 2¢%m Moh 2 128lo B|o Ny
T, = _4[1037( In (¢) X sinBcose)] p —In (n_l) —Tem- (53)
where
Tc,m = GD [1] (54)
and
12510 = PoV, (55)
where po and V denote the pressure and volume, respectively.
Again,
12 128lo
T = =422 1n (n) 6p (56-1)
where
a= —@ln (&) x sinBcose , (56-2)
;1 _ 1 2q%n?ugh
=% = "o e In (¢) X sinfBcosg . (56-3)

In this process, we added a Debye temperature Opand a net coherence & to the equations. Note
that, to an integral constant Temin Equation (53), the BCS formula under a particular condition was
employed. That is, in the formula T. of the BCS theory, because the Boson combination energy in
high-T.cuprates is generally sufficiently large, which attributed to the short coherence (note that, the
shorter the coherence is, the larger the magnetic field associated with the Lorentz force becomes), the
large value of NV in the BCS formula of Tc makes the exponential function be almost the value 1.
Thus, only the Debye temperature in the BCS formula is left. Concerning the thermodynamic
potential, the following equation is applied under the condition of BE condensation.

12510 = PoV = ZEro, (57)

where Erodenotes the Fermi energy at zero temperature. Moreover, here the volume V'is assumed to
be the unit, i.e., the number 1. Thus, the critical temperature becomes
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1 2 h 2F, N
T, =—4 (RBBD) EL bR (8) x sinfcosg)? 22 (n—A) — 6, . (58)

Moreover, we derive a 2D critical temperature equation from the above. Thus, to conclude, the
critical temperature equation is derived as follows:

(T.)p = —4( L ) (Zq LAITLY (&) x sm(:?cosq))2 FO’:"I (L) —0p, (59)

kgOp2 m? niz
where o, 05, Op2, and nq denote the surface density of carriers, the surface density of pairs, Debye
temperature in 2D, and the number of layers. Note that all constants in the consequent equation have
actual physical meaning and unit. This indicates that no numerical calculations or fitting methods are
required. This fact is consistent everywhere in the present study.

Note that, in Equation (42) for the superconducting energy gap, the probability density function
is interpreted as follows:

T I
[|?sinBcosg = |ip|?sind sin ((p + ) |1p| { cos (6 +o+ —) +cos(@—¢@+ —)} (60)
2 2
which shows that the gap is anisotropic [31].

Note that we assume that 6, and Eroare not varied very much over kinds of the cuprates. In
Figure 6, a result of this review section is shown where used physical parameters are listed in Table
1. Note that for additional details, please see the Method section at which the full list of employed
physical constants are presented. As shown, our derived critical temperature equation sufficiently

agrees with a typical high-T. copulate [32]. Note that the reason why the Fermi energy is relatively
large is related to the property of the Mott insulator. For more details, please refer to [1].

1.40E+02
1.20E+02
1.00E+02
8.00E+01
6.00E+01
4.00E+01

2.00E+01

[w/51] 21 @4njesadwa) |e21314)

0.00E+00

doping

Figure 6. A result of typical critical temperature on doping. This is derived from the equation by
combining pseudo-gap energy (i.e., the general energy gap) and superconducting energy gap. At
doping 0.16, the critical temperature reaches the maximum, which agrees with the experiments [e.g.,
[32]] In calculations, no numerical calculations or fitting method are employed. The values of critical
temperatures are relatively sensitive for Debye temperature and Fermi energy in our derived

equation.
Table 1. Physical parameters in the equation of critical temperature.
Debye temperature 6, 1135K
Coherence & 1 nm
Fermi energy Ero 7.65 x 10719]

The number of layer 74 3
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2.4. Calculations for Obtaining Formulas for T" and To
2.4.1. Derive the Pseudo-Gap Temperature T".

Now, we again consider the relation between a general energy gap and temperature, as shown
in Equation (38)

_lar1 1
kB TC In (NA) (38)

When the previously derived energy gap from a macroscopic Boson is substituted for an energy gap
in the abovementioned equation, then variable temperature T must become a constant of pseudo-gap
temperature T". Therefore, the temperatures Tcand T* have a dependent relationship. Thus, as a
formula of pseudo-gap temperature T", the following equation holds:

s -21y2 -21y2
where to the equation of |4], of Equation (24) in creating Equation (61), each physical parameter
was substituted. That is, the physical parameters m, h, and a in Equation (24) were given actual
values. Note that radius 7 is approximated as 1 nm.

2.4.2. Derive the Transition Temperature To

In this study, we consider the anomaly metal phase properties in CuO2-based superconductors.
These properties are primarily determined by the transition temperature To, which is directly related
to appearances of the macroscopic Boson as particles. To obtain an equation for the temperature To,
we consider first the concentration dependent on the magnetic fields. Next, derivations of the Hall-
effect coefficient RH are discussed. The concentration depends on absolute of energy, —uB., where u
and Bedenote self-magnetic moment of a macroscopic Boson and applied magnetic field, respectively.
That is, the absolute of energy, uBe, involves Boltzmann statistics and thus it is related to
concentration (i.e., the number) of macroscopic Bosons.

In the previously appeared concentration Equation (20), the calculation for energy integral, in
turn, is actually conducted because we attempted to obtain the concentration dependent on
temperature T.

1 b dE
n = kgT ~Po fa F_Ep kBT 7 Po X ln(—) (62)
where
a= kBTC b = kBTO (62'2)

Note that the second form of fr in Equation (17-2) is not employed here. Equation (62) is very
important because the concentration n is proportional to the temperature T, which describes a
property of the anomaly metal state. As mentioned, considering an energy —uBe, the Boltzmann statics
is represented as follows:

k ) (63)

where nois the concentration of holes and n implies that the concentration of the macroscopic Bosons
whose orbital momenta are the same directions as that of the magnetic field Be.

T, = 12 (64)
Using the above equation,

n =nyexp (— —) = ny[l— 7 (63-2)
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Note that, in the above equation, % < 1 is formed as the condition, because the concentrations n and
no must be positive. When T — oo, the number of holes is equal to that of the macroscopic Bosons,
which implies that the net number of the macroscopic Bosons takes zero. This is equivalent to zero
magnetic fields when considering Equation (63). However, after the refrigeration, in the boundary
condition, % = 1, obviously a transition temperature is defined, which implies the emergence of a
macroscopic Boson.

Now we begin to calculate RH.

In Equation (63), the exponential function is approximated by the Maclaurin series.

B2, (65)

n=ny(l— e

In the above equation, the previously calculated concentration n, Equation (62), is applied.

kpT 2 X In(2) = no(1 - 7). (66)

Solving this equation for no and using the general definition of RH, we reach an important equation.

uBe_,

kT
Ry =—3F——. 67
H ekBT%Oxln(;—g) (67)
Considering the above equation (67), we also derive the transition temperature To,Equation (64). In
short, the transition temperature To implies appearances of both a macroscopic Boson and anomaly
metal phase

2.4.3. Implement the Formulation of To

To implement the formula T, it is necessary to obtain # and Be in Equation (64). First, a magnetic
moment u is generally defined as follows:

u=1S, (68)

where [ and S (= n? ) denote the self-current and the area in which a magnetic flux is presented.
Seeing the schematic of Figure 1 of a macroscopic Boson (which assumes the motion of a hole to be a
circle) and because the magnetic flux of it should be quantized as h/e, the magnetic flux of a
macroscopic Boson is as follows:

@, = Bymn? == (69)
That is,
o = Zn%,z (69-2)
where radius nis approximated on a cell of the CuO:2 surface. That is,
n=1nm (70)

This implies that the magnetic field Bo is universally constant.
Moreover, assuming that a magnetic field in a macroscopic Boson is equal to the central magnetic
field generated by a moving hole, a persistent current I in a magnetic moment is calculated as follows:

=1
I'=--2nB,. (71)
Consequently, a magnetic moment u is derived as follows:
2_h
L b (72)

While an applied magnetic field Be in the definition of To is variable, the magnetic field Bois a constant
derived by the physical constants. This fact allows us to introduce a variable quantum number N
between B. and Bo


https://doi.org/10.20944/preprints202005.0105.v5

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 October 2024 d0i:10.20944/preprints202005.0105.v5

17
1
BO E = Be. (73)
Moreover, this variable integer N is undergone by the partition function fr.
N = Nof;, (74)

where Equation (17-2) is applied as fr.

However, without an external applied magnetic field, high-Te cuprates generally achieve
superconductivity. Why do our high-T. cuprates become superconductive by forming many
independent macroscopic Bosons? This can be understood by considering an analogy that every
magnetic moment in a ferromagnetic material spontaneously acquires the same orientation under
Curie temperatures. Thus, high-T. cuprates have a property that is similar to a ferromagnetic
material. We claim that this fact is related to the electronic nematic phase [26].

In this case, because macroscopic Bosons are formed in 2D CuO:2 surface, the weak interactions
between macroscopic Bosons can justify the abovementioned calculation. The appearance of
temperature T in Equation (63) guarantees the existence of these weak interactions. (The actual
calculations of Curie temperatures with complete consideration of many-body interactions are
presented in the Appendix A of this study.)

Assembling these facts, the conclusive equation of the transition temperature To is derived,
which depends on carrier doping.

h

1,2
ks (_ emnn

kg “no

h
Ty~ — n-)(

D) - InCCA). (75)

n

As described later, this equation of Toand the formula of critical temperature Tc will be crucial factors
when calculating properties of the anomaly metal phase.

2.5. Analyze Anomaly Metal Phase
2.5.1. More Comprehensive Calculation of RH

Next, we derive dependences on temperature of RH. Up to the previous section, the general
equation of RH was derived. In this equation, we introduce the following approximation to the
general equation of RH.

UBe
kT

» 1. (76)

According to this approximation, the general equation of RH becomes as follows:

~__ HBe
e(kBT)ZpT;’xln(%). (77)

Thus, the approximated equation of RH is determined by the applied magnetic fields Be. That is, this
RH equation depends on both quantum number N and the universal magnetic field Bo.

~ MBo 1
e(kBT)Z%Oxln(;—g) N (78)

Note that the universal magnetic field Bo is one in a macroscopic Boson. Thus, in view of magnetic

field energy, an application of magnetic field, which dominates over the universal magnetic field Bo

results in the destructions of macroscopic Bosons and makes the anomaly metal phase disappear.

Moreover, the employment of quantum number N indicates that the RH equation is determined by

doping. That is, variable integer N is expressed by the partition function fr, which indicates doping.
11

- - _ 1L Na
N Neh T N In( n’ 79)

Considering this, the approximated RH equation becomes

[lB(] 1 NA
(.

Ry~-——20 2 xn
H e(kBT)szoxln (%)) No n; (80)

As reported in many studies [33], this derived equation of RH is proportional to (%)2.


https://doi.org/10.20944/preprints202005.0105.v5

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 October 2024 d0i:10.20944/preprints202005.0105.v5

18

In the Results section, we will depict this RH equation in terms of both doping parameters and
temperatures T.

2.5.2. Calculate the Electron Specific Heat Coefficient in the Anomaly Metal Phase

In turn, let us consider electron specific heat coefficient in the anomaly metal phase. Because
electron specific heat coefficient is essentially equal to the average energy Uk, it is simply necessary
to calculate the average energy using the partition function fr. Thus, average energy using partition
function fr (Equation (17)) for energy integrals is determined as follows:

_ JEfrdE
E™ [frag” (81)
Note that the lower limitation 2 and the upper limitation b of these integrals are given as follows:

a=kpT, b=kgT,. (82)

Assuming the chemical energy for macroscopic Bosons (i.e., not Fermi energy for single holes) is
sufficiently small, the calculation results in

kpTo—EF
_ kBTO_kBTC+EFX1n(kBTC—EF) - kB(TO_TC)
F= RpTo-E . (83)
In( B’ 0 F) 1n(_0)
kpTc—Ef Tc

In general, electron specific heat coefficient is derived by differential in terms of temperature to the
average energy. In this study, however, AT is employed rather than the differential for temperature.
Moreover, this AT is assumed to be (To-Te) in this study. Therefore, using the average energy Ut and
AT, electron specific heat coefficient is expressed as a calculation process.

Ug kp 1

Yo = Gmz = 1o, I (84)

Furthermore, to obtain electron specific heat coefficient with the unit [J/mol K?], the Avogadro
constant N¢' is considered because previously calculated average energy Ur indicates one for a
macroscopic Boson. Consequently, the electron specific heat coefficient is derived as follows:
_ Nikp 1
 ToTem(Ry

(85)

2.6. Summary of the Logical Flow

(1) First, assuming a macroscopic Boson, which is based on angular momentum conservation on a
CuO:surface, its energy, the mass, and the net spin were calculated; the implementation of the
integral of the concentration resulted in a pseudo-gap energy. During this process, the two types
of partition equations fr were derived.

(2) To handle many-body interactions, a sphere shell with a local temperature Ti and differential
particle number dN is introduced. From the forces that are balanced for both inside and outside
the shell, a basic statistic equation, inner wave function and eigenvalue in a shell were derived.

(3) The generation principle of attractive force: “The Lorentz force is applied between two charged
particles when their relative velocity is 0.” Considering this principle, the abovementioned
statistic equation, inner wave function and inner eigenvalue realize that the combination of a
Cooper pair results in BE condensation.

(4) Therefore, the superconducting energy gap and Tc were calculated. During this process, a
general energy gap is derived.

(5) Combining the general energy gap and the mass of a macroscopic Boson, the pseudo-gap
temperature, T", formula was obtained.

(6) The transition temperature To at which anomaly metal phase and the macroscopic Bosons appear
was defined by the Boltzmann statistics: Combining the Boltzmann statistics, particle
concentration was implemented. Considering the form of this equation, the transition
temperature Towas derived.

(7) Because the resulted Tohas the magnetic moment of a macroscopic Boson u and magnetic field
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Be, these two factors were formulated. Thus, the To formula was implemented.
(8) The derived RH equation was approximated, and electron specific heat coefficient y was
calculated.

3. Methods

Herein, we describe the detailed method for the Results section.

3.1. Calculation Tool

We employed the MS Excel software.

3.2. Physical Constants for Calculations

Table 2 shows the primary physical constants in this study. Of note, although Debye
temperatures for 3D and 2D are different, we employed 2D one

Table 2. Physical constants in the obtained equations.

Debye temperature 6, 113.5K

Coherence & 1 nm

Fermi energy Ero 7.65 x 107%7]

The number of layer nq 3

Boltzmann constant ks 1.38 x 10723] /K
Magnetic permeability in vacuum po 41t X 1077H/m
Electron mass m 9.1 x 1073'kg

Electric charge of an electron e or q 1.6 x 1071°C
Radius of a macroscopic Boson 7 1%x107°m
Planck constant 1 h 6.62 X 10734 s
Planck constant 2 1.05 x 10734] - s
Fine structure constant o 1/137
Avogadro constant N 6.0 x 10%* mol™*
Permittivity in vacuum ¢o 8.8 x 1071%F/m
Universal gas constant R 831 J-mol™*-K!

3.3. Resulted Equations

3.3.1. Critical Temperature

4

(T,), = —4 (L) (2" LT L) (&) x sinfcosg)? > W:" In (—) —0p . (59)

kp6Op2 m? njz

The critical temperature is shown above again. Concerning anisotropic properties, sine and cosine
are given the maximum values of 1. Table 2 lists the physical constants used except for concentrations.

3.3.2. How to Determine ni and 0s

In Equation (59), ni is identical for IZ—A, because the length along the c-axis, d, is consistently
i2 i

given the value of 1 by considering the 2D surface. Moreover, it is necessary to determine the values

of 1/0s, i.e., 1/0s when given the doping variable % as follows:

(How to determine ni)
In this study, the concentration ni indicates lattice concentration. Because the unit cell of the CuO2
surface is of the 1-nm order, the following assumption is introduced
1 1

1
2m = e =g X 107 [1/m] (5

Note that d has the unit of [m] and the consistent value of 1 because we are considering two
dimensions.
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Because the critical temperature Equation (59) uses the universal gas constant,
R=831[J-mol™t-K™1], (87)
the concentration #ni must be transformed into one with the unit [mol/L].
Thus, consider the following:
1) Avogadro constant N}
2) 1[L]= 1073 [m?]
Therefore, the concentration #i is typically
n; ==8.3 x 107°[mol/L]. (88)

(How to determine 1/ps)
First, in the MS Excel sheet, the variable-doping ratio % is in the range of 0.005-0.5. Note that

the number 2 appears due to spins. Then, % is calculated based on the abovementioned variable
3

doping ratio.
1/0s should be determined by the constant concentration, Equation (88)
1,1
e X (89-1)

where x denotes dimensionless variable. To give Equation (89-1) the meaning, variable x is provided

as
Ng

x=-4 (89-2)

ng

3.3.3. Pseudo-Gap Temperature and Transition Temperature at which an Anomaly Metal Phase
Occurs

We list the results of each transition temperatures, which will be shown in the Results section.

. 11 - N 1
T = _E1(3'4 x 10 21)2[ln(n—’;)} o (61)
~ =Ly e
Ty~ — o (211D () - I, (75)
Of note, Ny = 1.0 x 105, for example.
3.3.4. Physical Results of the Anomalous Metal Phase
(Hall effect coefficient)
~—— HFBo 1 Na
R~ = e man v, < MG (80)

Of note, Ny = 1.1 x 10?, for example. Because Bo is constant, the variation of integer No indicates
variation in the applied magnetic field B,
Moreover, in the abovementioned resulting equation, the following constants were employed.

2 h
W=y (72)
h 1
Bo =07 (69-2)
5 =Po (19)

(Electron specific heat coefficient)
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_ Nfkg 1
" To-Tem(Y)' (85)
3.3.5. Results of the Many-Body Interaction Model
1.2 _ 9%
Zfa =2 (3kp(T) — 2Ug)gf, (34)
where
1 h?
9f =Pz (26)
Of note, in Equation (26), considering the BE condensation and single-particle picture, p, = 1
1 h? N
Ug=E, = |A|0=—Em—nzaxln(n—?). (24:)

The doping variable is fixed as a constant only in the abovementioned equation.

Y4 =016 (optimal).

2n;

3. Results

As a general notation, for the comparisons between the experiments and the values of our
theory, this paper cited the experimental literatures in each case. Overall, the agreements are good.

First, Figure 7 shows the entire depictions of T, T", and To on doping because of analytical
calculations. Generally, the agreements with the experiments are good [e.g., 32]. Moreover, in Figure
8, the result of theoretical calculations of the Hall coefficient RH is indicated. As shown, the lower
doping, the higher RH, and the RH behave as non-linear on temperatures.

6.00E+02
5.00E+02
4.00E+02
3.00E+02

2.00E+02

[M] a4njesadwa]

1.00E+02

0.00E+00
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

—Tc ——T* 70

doping

Figure 7. The complete depiction from theoretical calculations of T, T*, and To vs. doping. Note that
the horizontal axis is :7” For the previous figure of Tc graph, T* and To are added. Note that T* is

depicted on the understanding that it is smaller than To. Moreover, T* has the gradual and easy
minimum point on touching Te- dome at the doping 0.21. Thus, it does not exist in the Tc-dome. As
mentioned, no numerical calculations and fitting methods are employed. To begins with about 500 K
and vanishes almost at the same doping at which T disappears. As mentioned in the main body, this
transition temperature is important when considering the anomaly metal phase.
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Figure 8. Hall-effect coefficient RH on both temperature and doping. As reported in many
experimental papers, lowering the doping dose arises the RH. The calculated values generally agree
with experiments (See Ref [33] of the experiment as a reference) .

Because of the statistic equation for the many-body interactions, Figure 10 shows
superconductivity state up to a critical temperature ~140 K. In this figure, the state that relative
distance ¢; between two spherical shells (i.e., two macroscopic Bosons) is under 0 indicates the
superconductivity state. From the further temperatures higher than this critical temperature, the
relative distance ¢; becomes much larger as a change of non-continuity. Obviously, a transition
occurs at ~140 K. This result accurately agrees with the experiments such as [34]. Importantly, in
Figure 10, the macroscopic Boson energy Us (i.e., the magnetic field interaction Equation (29)), at
optimum doping, is substituted in our statistic equation. Thus, the many-body interactions in terms
of macroscopic Bosons are the reasons why high-T. cuprates exhibit a considerably higher critical
temperature.

Furthermore, Figure 9 shows a result of theoretical calculation for the electron specific heat
coefficient. According to the experiments [35,36], the calculation values are valid; moreover, it takes
a maximum at a higher doping.
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Figure 9. A theoretical result of electron specific heat coefficient on doping. At the relatively high
doping, the curve takes the maximum, which agrees with the experiments. In other words, to both
lower doping or higher doping from this the maximum, electron specific heat coefficient decreases.
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Figure 10. Relative distance between two macroscopic Bosons versus temperature. Because, up to
about 140 K, relative distances &g is not defined according to our statistic equation to handle the
many-body interactions, the net coherence of two holes is defined as about 1 nm, ie,
superconductivity state is maintained. However, at higher temperatures, relative distances &g
suddenly becomes 10~7m order. Obviously, a transition occurs at around 140 K. As an important
notation, the macroscopic Boson energy Us is substituted at the optimum doping of 0.16. Thus, the
many-body interaction in terms of macroscopic Bosons (not holes) is one of the reasons why high-T.
cuprates exhibit extremely high critical temperatures.

5. Discussion
5.1. Macroscopic Boson and high-T. Cuprates

We propose a particle describing high-T. cuprates is not a normal hole but a macroscopic Boson,
which is formed by the conservation of angular momentum in 2D and by rotational motion of a hole
itself. The concept of a macroscopic Boson, as mentioned, provided a unique partition function; this
partition function can explain every property in the anomaly metal phase. Moreover, the presence of
this Boson gives substantial reason why high-T. cuprates have significantly high critical temperature
when considered with many-body interactions.

Let us consider how Figure 7 relations each transition to the existence of a macroscopic Boson:
In the equation of T, considering that the coherence & is essentially equal to the radius 1 of a

macroscopic Boson does relation the critical temperature T. to the macroscopic Boson. Furthermore,

2
to the Equation (38) (T = — li—llel g\, A)), substituting the energy of a macroscopic Boson results in the
B ‘cln (—
ng

UBe
kT

the transition temperature To (i.e., Equation (75)), which implies a creation of macroscopic Boson at
that transition temperature.

temperature T". Additionally, considering Equation (63) (n = n, exp (— )), the value of e provides
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5.2. Anomaly Metal Phase and Transition Temperature To

Thus far, to understand the mechanism of a high-T. cuprate, it was important to study the source
of pseudo-gap energy. Although this is true, another important factor that should be understood is
the source of the transition temperature To, which defines the anomaly metal phase appearance. As
mentioned, all equations that describe the anomaly metal phase have the parameter To and T-.

5.3. Highlights of the Process for the Materials to Undergo Superconductivity

Let us review the process, which describes the mechanism from forming a macroscopic Bosons
to undergoing BE condensation. First, high-T. cuprate reaches the transition temperature Towith a
lower or no refrigeration. At this stage, because the wavelength of a hole along c-axis becomes longer
than the width of a 2D CuO: surface, the net 3D disappears and the conservation of angular
momentum forms a macroscopic Boson, which indicates the rotation of a hole producing a magnetic
field energy. Thus, this magnetic field energy gives a mass of macroscopic Boson.

By further refrigeration, our established statistic equation results in the following:

1. Many-body interactions, including the magnetic field energy of macroscopic Bosons and
Coulomb interactions, result in very short relative distance of two holes (i.e., the net coherence of ~1
nm) as a result of two the sphere shells being superposed. Note that, at this stage, the paring of two
macroscopic Bosons indicates the pairing of two holes.

2. Simultaneously, considering the short relative distance, two holes gain a strong combination
of the Lorentz force when the relative kinetic energy among two holes becomes 0; note that all Cooper
pairs take the identical energy and thus BE condensation is produced, which is the source of the
Meissner effect.

Although the derivation of a macroscopic wave function inevitably results in the London
equation using the GL equation [37]; herein, let us review the reason why the Meissner effect is
derived by another approach, thus stressing the converged and constant phase 8,.

Under an applied magnetic field B (i.e., vector potential A), we can derive the Aharonov—Bohm
(AB) effect [38] from the initial macroscopic wave function.

Ya = liplexp[(6 + 22 [ Ads) j}, (89)

where g, j, and 6, denote the hole charge, imaginary unit and converged phase of the macroscopic
wave function, respectively.
From Equation (89), it is derived that

(60 +21 [ Ads) = 2nm, (90)
where 7 is the integer, and considering center-of-mass motion,
90 = Zkox, (91)
Substituting Equation (91) in Equation (90) and differentiating both sides of Equation (90), we obtain
S—T
2k =~ A. (92)
The probability density flow is then defined as follows:
. hik
Js=aqlpl?—2 (93-1)
[lypl2dv = 1. (93-2)

Substituting Equation (92) in Equation (93-1), we derive the following London equation:
js = —q2lpI ~ A, (94)

This is the identical result from approaches by the GL equation.
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5.4. The Reason Why High-T. Cuprates Have Significantly High Critical Temperature

As mentioned, an attractive force is the Lorentz force when two charged particles have no
relative kinetic energy. However, as shown in Figure 11, this concept can be satisfied in s-wave pair
and d-wave pair. Considering this schematic, the pair symmetry of high-T. cuprates is not very
important. Rather, it is crucial to focus on an irregular many-body interactions in high-T. cuprates for
an explanation of the significantly high critical temperature.

v [m/s]

f f

\' Vv

[m/s] [m/s]
v [m/s]

Paring of s-wave Paring of d-wave picture

picture

Figure 11. Schematic of paring symmetries. The principle to generate an attractive force between two
charged particles is that relative momentum must be equal. That is, when this principle is satisfied
and if outer macroscopic heat energy does not disturb, the two charged particles between a long
distance are combined by the generated attractive force, which stems from the Lorentz force. The
above figure illustrates this principle, i.e., s-wave and d-wave symmetries. This is why there is another
irrelevant particle among force-experiencing two particles. This irrelevant charged particle with
different momentum does not experience this attractive force. However, the Coulomb interactions
does not have this characteristic.

As per the model employed to handle many-body interactions in terms of charged particles, it
is normally impossible for two particles to take their relative distance shorter than ~107 m. In this
case, however, our employed equation in many-body interactions has magnetic field interaction Ug
in Equation (34) because of the presence of macroscopic Bosons (i.e., pseudo-gap energy) ad Coulomb
interactions. Therefore, this fact renders relative distance between two macroscopic Bosons to be
almost 0 up to a high temperature, which makes the net coherence of two holes become the order on
the cell of a CuO: surface (i.e., ~1 nm). This fact indicates that the combination energy becomes very
strong.

This is demonstrated as shown in Figure 10, which results in a critical temperature of ~140 K.
Considering Up in Equation (34) in our model equation to handle many-body interactions is pseudo-
gap energy, Equation (24), which is essentially equal to the mass of a macroscopic Boson, the
parameter 1) [m] (i.e., radius of a Boson and order on a CuO:cell) determines the critical temperature.
As per our derived statistic equation, the larger Usis, the higher a critical temperature T, and actual
high-T. indicates that Us is sufficiently large, which is caused by the fact that the parameter 1 [m] is
sufficiently small, in addition to optimum doping.

In Equation (34), given the value of 0 for {;, immediately the doping variable becomes fixed and
the representative critical temperature Tt rep is derived;

2
kBTc,rep = 3 UB,O/ (95)

where Up, indicates the pseudo-gap of Equation (24) for maximum doping. Thus, T. implies the
representative critical temperature.

The calculation of quantities by Equation (95) is shown in Figure 12. In this figure, the horizontal
axis implies 1 of the radius of a macroscopic Boson. This parameter indicates the unit cell order of the
CuO: surface. An important point is that, considering the parameter 7 is proportional to the lattice
constant and although every high-Te cuprate has macroscopic Bosons, differences in lattice constants
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render their critical temperature to be variable. Thus, if the type of material among the high-T.
cuprates differs, then the critical temperature is different.

To conclude, the existence of a macroscopic Boson indicates that:

1) It causes the anomaly metal phase in high-T. cuprates.
2) Irregular many-body interactions are caused by it, which results in a high critical temperature
higher than LNo.

Note that, if we consider electron-doping in a Mott insulator, carrier concentration dominates
over the lattice concentration ni considering local electrons at each lattice in the Mott insulator; thus,
the sign of the function In in Equation (24) of pseudo-gap energy (i.e., Us in Equation (34)) is altered.
Hence, the sign of Us in Equation (24) becomes the opposite, which makes electron-doping unable to
have a high critical temperature because, on the contrary, Us would prevent the enhancement of
critical temperatures T.
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Radius of macroscopic Boson nj [m]

Figure 12. The representative Tcrep for optimum doping vs. the radius of a macroscopic Boson 1. Of
note, the parameter n depends on a lattice constant. As shown, Terep is very sensitive for parameters
7. This indicates that, among high- Tc cuprates, varying substances renders their critical temperatures
to be variable.

5.5. Image of Cooper Paring of Two Holes When T < T,

Figure 13 is an image that a hole on 2D of CuQO: cell takes a circle, which implies a macroscopic
Boson. When two macroscopic Bosons are close to each other and when the relative velocity between
the two holes is zero, these two holes take the identical and rotational velocity and take the identical
angular frequency as shown in Figure 14. Therefore, when the attractive force principle is satisfied,
in which the fact that relative velocity is zero is the source of an attractive force between them, the
two holes take rotations, keeping the constant relative distance. This fact is represented in Figure 15.
That is, these holes take parallel motions. This corresponds to the d-wave pairing.

e+
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Figure 13. Schematic of a macroscopic Boson.

Figure 14. Schematic of paring of two macroscopic Bosons (i.e., the two holes).

Figure 15. Translation of the aforementioned Figure 14.

5.6. Consideration of Significances in This Paper

We believe that this study is significant because:

1) It clarified why high-T. cuprates have actual high critical temperature higher than LN2.

2) It demonstrated that almost puzzles, including the properties of anomaly metal phase reported
in previous articles, have been attributed to the presence of a macroscopic Boson.

To date, multiple theoretical investigations were reported to explain the mechanism of high-T-
cuprates but most of them used numerical computing or fitting methods; however, a general
understanding of how the mechanism worked was largely unclear. Therefore, we proposed a
detailed explanation of the mechanism that has been proposed for a comprehensive understanding
of high-T. cuprates.

Anticipated results and spillover effects:

1) The analytical and physical understanding of high-T. cuprates described in this study will
promote the search for and synthesis of new materials exhibiting higher critical temperature
near room temperature than standard materials at any given pressure.

2) Allfields of condensed matter physics rely on statistical methods. Therefore, pure analytical (not
numerical) approaches can be applied to many-body interactions. Our model that handles
many-body interactions will provide new results to unsolved problems in condensed matter
physics. For example, the analysis of many-body interactions of magnetic quanta would solve
the primary problems of physics and superconducting technologies such as analytical
formulation of critical current density.

6. Conclusion

This study described theoretically high-T. cuprate properties such as the transition temperatures
on doping, Hall effect or electron specific heat coefficient on doping. Moreover, it established a novel
model to handle general many-body interactions, which explained why the high-T. cuprates exhibit
a significantly high critical temperature.

In general, the derived resultant equations’ values accurately agree with data from experimental
studies with no numerical calculations and fitting methods.
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As discussed in the Discussion, consider the summary of significances in the present study.

1) It has uncovered the source of mysteries in high-T. cuprates, i.e., the presence of a macroscopic
Boson.

2) Ithas succeeded in describing the anomaly metal phase with a pure theory, which has no fitting
or numerical calculations and which agrees with experiments.

3) Ithas established a new model to handle general many-body interactions; using this model, this
study has clarified why high-T. cuprates have considerably high critical temperatures.

The resistivity on lower doping in the anomaly metal phase is not discussed in this study.
However, an equation for conductivity, which takes linearly temperature dependence (i.e., non-
linearly resistivity), was obtained in the theoretical section of this study because the carrier
concentration in Equation (62), which lineally depends on temperatures, indicates the conductivity.
However, this equation employs the critical temperature Tc and thus, over the lower doping, in which
the resistivity appears, this equation is not available because, over the lower doping, critical
temperatures are not defined. Thus, this will be a natural follow-up.

Moreover, the theory this paper presented seems not to describe electron doping cuprates.
Furthermore, very recently, 2-dimentional CDW phases dependent on doping were measured. Thus,
it is necessary to research these facts as follow-ups. However, in Appendix B of this paper, a
preliminary calculation of the 2-dimensional CDW will be presented.
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publishing this study as a preprint in Preprints in MDPI: Ishiguri, S. Analytical Descriptions of High-Tc Cuprates
by Introducing Rotating Holes and a New Model to Handle Many-Body Interactions. Preprints 2020, 2020050105.
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Appendix A

Analytical calculations of Curie temperatures considering many-body interactions

Appendix A.1. Introduction

The purpose of this appendix A is to confirm the proposed new model to handle many-body
interactions described in the main text by applying another physical phenomenon. For example, we
now introduce transitions of ferromagnetic material, i.e., Curie temperature.

Before conducting an actual calculation, we will briefly discuss certain background information
to understand the significance of this appendix. Concerning transition phenomena, many studies
have been reported. In particular, the Ising model is the most famous and basic. According to our
literature review, however, few studies exist, which accurately predicted that the transition
temperatures agreed with the experimental data. Moreover, many statistic physics textbooks claim
that the Ising model in 2D provides an equation of transition temperature but there is no known
model in 3D. If we follow the existing theory, a calculation of transition temperature indicates the
evaluation of exchange interaction. However, this interaction is quite abstract and thus it difficult to
evaluate in every ferromagnetic material. A general formula to determine a transition temperature
has not been obtained because the partition function considering many-body interactions cannot be
mathematically calculated.

In this Appendix A, using our established model for many-body interactions, we predict the
actual values of transition temperatures, which sufficiently agree with experimental values. These
calculations do not involve any numerical calculation or fitting method. Here, we provide a new
model for statistical physics considering many-body interactions.

Appendix A.2. Predictions of Curie Temperature Using Our Employed Model to Handle Many-Body
Interactions

As shown in Figure Al, a magnetic moment f is located in the center of a sphere shell dN at
which the temperature is Ti. Similar to that of the main text, the following balanced relation holds:
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(magnetic field interaction from magnetic moments) = ;kB T;dN (A-1)
In this equation, the left-hand side is given as follows:
—fi-B
As every basic text describes, a magnetic field B is represented as follows:
B = _ ok _3@nr ;
B = 4 [r3 rs 1 (A-2)

where r is radius of the sphere shell dN.

Figure Al. A schematic of our model to apply a ferromagnetic material. Basically, the concept to
handle many-body interactions is the same as the case presented in the main text. That is, force of
expansion from the central magnetic moment g~ is balanced to force of compression from the
immediately outer locations, which are equal to kinetic energies in the differential number dN. Note
that this case does not include the magnetic field interaction using macroscopic Bosons. Calculating
the balanced equation results in a statistic equation that involves many-body interactions.

In this equation, the first term indicates ferromagnetism, while the second term indicates
antiferromagnetism. Because the present case is to handle a ferromagnetic material, we employ the
first term. Moreover, the directions of two magnetic moments i are assumed to be parallel, i.e., the
scalar product between two i is positive. Accordingly, the above equation becomes

- s 3
—i- [~ 42 5] = SkaTia. (A3)
Moreover, as mentioned, dN is expressed as follows considering the volume element of the integral:
- 1 3 3 -
B 132 % = kg TudN = ks i x gf ok, (A-4-1)
- _ i _ 1
dle=2= s (A-4-2)

Thus, an important equation is derived as follows:

2 _ 9 af =2 I S
Holil® =S kgTigf =S kgTig o ) (A-5)

kpT;

In this Bose statistic equation, Eidenotes the zero-point energy of phonon, i.e., the Debye temperature
and Er is a chemical potential, which is equal to the Gibbs free energy, but especially in this case
implies only an internal energy. Therefore, this chemical potential is derived from electron specific
heat coefficient y as follows:

T

512 _2
Hold|* = kgg - (A-6)

p _kB+T(%kBgD+yT2)]_1‘
In this case, a transition temperature of T. is assumed to be obtained by considering the extremum
from this equation. Hence, to calculate differentials, Ti is considered to be a variable continuous
temperature T because there are now no dependent parameters on the index i except Ti. Therefore,
the following equation is calculated.
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% oldl> =0 A7
—rHolil* =0 . (A7)
Consequently, the following equation is obtained:
2 2
Y17 —3kB0p _ -1, (A-8-1)
kpT

T=T,=-%4 /%z /% (A-8-2)
2y 2y 2y

Table Al lists the physical constants of a ferromagnetic metal Fe.

Table Al. Fe physical constants.

Debye temperature 6 470 K
Electron specific heat coefficient y 8.4 x 10727 J/K2
Employing these physical constants, the transition temperature T. for the metal Fe is calculated
as follows:
T, ~ 1.08 x 103 K. (A-9)

Because measurements of the transition report 1043 K, the agreement is sufficient.

Then, we consider the transition temperature of the ferromagnetic Ni. The material Ni has much
less thermal conductivity, unlike the metal Fe. This indicates that a chemical energy, i.e., the internal
thermal energy is allowed to be ignored. Thus, from Equation (A-8-1), the Teequation is simply
expressed as follows:

“kpbp ~ kpT,. (A-10)
Because the Debye temperature of Ni is reported as 450 K, T« is calculated as follows:
T, =~ 675 K. (A-11)

Compared with a measured transition value 627 K, the agreement can be considered to be sufficient.

Appendix B
A study of 2-dimensional CDW

Appendix B.1. Introduction

Very recently, in the phase diagram in the cuprates, a 2-dimentional Charge Density wave
(CDW) transition was found [39]. Although some are mentioning that the recent phase diagram has
been more complex, considering the existence of the macroscopic Boson will result relatively easily
in the CDW transition. For example, this CDW appears for a parallel magnetic field for the c-axis
[40,41], which indirectly implies the existence of a macroscopic Boson. Because of the existence of the
macroscopic Boson, now we consider only 2-dimentional CDW. This appendix B would like to derive
this CDW transition.

Appendix B.2. Calculations

The CDW is, in short, a stational wave, and thus we employ Figure 3 and its equations in the
main body.
The eigenvalue of the stational wave in Figure 3 is again

1  hmi
Ei = (o). (B-1)

2a;

Using equation, the following assumption is provided.
Mc? = kpT*, (B-2)
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where M is the mass of a macroscopic Boson and c is the seed of light.
In this appendix, the parameter ai is assumed to be
a; = 1.6 X 10~°m. (B-3)
The above Eiis a merely energy level, different from two energy levels. Thus, as mentioned in

the main body, the fine structure constant « is used to derive a gap of the CDW.

1 hi kpT" -
ksTeow = aB; = a3 GO* o)™ (B4)
In the above equation,
i = N,, (B-5)
where
N = Noﬁ

Thus,

Teow = a 7= {22 N[-In (3]} x ). (B-6)

2kp (2q; c?

In this paper, the phase of the CDW is defined as total macroscopic Bosons are condensed on the

condition that Equation (B-2) is formed. Thus, N=1 is assumed.

In Figure A2, the result is shown, which well agrees with the experiments [39]. Note that the
doping of the maximum is 0.12 (i.e., 1/8), which is also agreed [42,43]. Note that, for the method to
create this figure, refer to Method section in the main body. Moreover, the result is not a numerical

or fitting calculation.
Note that, importantly, in the superconductivity, the total macroscopic Bosons are condensed

but the difference in the CDW is the condensation having the condition Equation (B2). This implies
that the macroscopic Bosons are condensed in the CDW phase but they do not take a Cooper pair.
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Figure A2. The phase diagram including the 2-dimentional CDW phase. The yellow curve is the

transition. This figure was created on the basis of Figure 7 in the man body.
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