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Abstract

In this research work, we present a mathematical model for novel coronavirus -19 (NCOVID-19)

which is consisted on three different compartments susceptible, infected and recovered classes abbre-

viated as under convex incident rate involving and emigration rate. We first derive the formulation of

the model. Also, we give some qualitative aspects for the model including existence of equilibriums

and its stability results by using various tools of nonlinear analysis. Then by mean of nonstandard

finite difference scheme (NSFD), we simulate the results against the data of Wuhan city for the

sixty days. By means of simulation, we show how protection, exposure, emigration, death and cure

rates affect the susceptible, infected and recovered population with the passage of time involving

emigration. On the basis of simulation, we observe the dynamical behavior due to emigration of

susceptible and infected classes or one of these two.

Keywords: Mathematical model; Novel coronavirus -19; Nonstandard finite difference scheme;

Emigration rate.

1. Introduction

Novel coronavirus-19 is a new chain of corona group of virus that had not been identified in

humans history before December 2019. For the first time COVID-19 was found in Wuhan, China in

December 2019, and has spread to various urban areas in China as well as round about 196 different

countries of the world. It has since been declared as an outbreak by World Health Organization

(WHO). According to the data reported by “WHO (World Health Organization)”, by May 5, 2020,

the reported laboratory confirmed, affected humans reached more than 3.5 million including more

than 0.255 millions death cases has been recorded. Some researchers have also claimed that there
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are other sources of this corona virus including dogs, pangolin, etc. As per recoded data the death

rate is different in different countries. Currently the highest death rate has been observed in Europe,

USA and Iran. The number of confirmed cases growing on a very fast track on daily basis and has

been declared a worldwide pandemic disease.

On 31st of December 2019, the WHO reported a novel corona virus (2019-nCoV) in Wuhan

City, Hubei Province of China in humans, see [13, 14]. It was named as severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) by International Committee on Taxonomy of Viruses on

11th of February, 2020, for detail we refer [3, 5, 6, 7]. Firstly, this outbreak was identified in

Wuhan with most early cases being reported in the city and later spread to the other countries in

an alarming rate and became a lethal disease. There are different schools of thought behind the

origin of the COVID-19 - some says that it might be bat origin (see [9]), some says that it might

be related to a seafood market exposure (see [10]). If we observe International travel of any form

has been a potential reason for the fast spread of the COVID-19 [8, 10, 11, 13]. So, emigration has

a severe impact on the severity of spreading of the COVID-19. Recently, the whole world has been

suffering due to a novel coronavirus pandemic and it was named by ”Novel Coronavirus Infectious

Disease (NCOVID-19)” which was claimed to outbreak first in Wuhan, central China (see [1]). It

has been stated (fact) that the origin of NCOVID-19 is the transmission from animal to human as

many infected cases claimed that they had been to a local fish and wild animal market in Wuhan

in November (we refer [2]). Soon, some researchers confirmed that the transmission also happens

person to person (see [13]). In present situation this pandemic has been produced very harmful

effect on the health, economics and social life of the whole globe. In the whole world researchers,

policy makers and doctors are struggling how to control this serious pandemic so that the lives of

maximum people may be secured. They observed this disease from their own point of view. Also

it is fact that most people infected with NCOVID-19 will experience mild to moderate respiratory

illness. common symptoms: fever,tiredness,dry cough. Some peoples may experience: aches and

pains, nasal congestion, runny nose, sore throat and diarrhoea.

Since mathematical models are powerful tools to understand the dynamics of real world phe-

nomenon particulary the transmission of infectious disease. In literature large numbers of mathe-

matical models of infectious disease have been studied, we refer few as [12, 15, 16, 17, 18, 19, 22]. By

using mathematical models for understanding the transmission dynamics of a disease can help the

researchers to make future prediction and to adopt some precautionary measure to save maximum

papulation from lost. Also the mentioned tools help how to make strategies to control or eliminate

the disease from society. Same as the case of current NCOVID-19, has been studied from different

aspects in last few months, for detail see [23, 24, 25, 26]. Therefore motivated from the aforesaid

discussion we observed that emigration has major roles in spreading the current disease in our so-

ciety. It has been observed that due to emigration, this disease has been spread in the whole globe
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within two three months. Therefore in this work we construct a modified SIR type model involving

emigration rate to investigate the transmission dynamics of the aforementioned disease.

2. Model Formulation

This part of the paper is devoted to construct the mathematical model for our purposed problem.

We take here three compartments; susceptible S(t), infected I(t), and recovered R(t). Sine we

construct the required model under convex incidence rate which is assumed to be a convex function

with respect to the infective class due to host population. The benefit of using convex incidence rate is

that it corresponds to an increased rate of infection because of two exposures over a small time period.

Because a single contact tends catch infection at the rate CIS, while the new infective individuals

arise from double exposures with CI2S. It produce further chance that the recovered individual

again may catch infection. Here we remark that the function Φ(S, I) = CI(t)S(t)(1 + γI(t)), where

both C, γ are positive constants. This is an interesting example for nonlinear incidence rate already

used by some authors [15, 20, 21]. The Flow chart of the model is given as

α

β

a

b

CSI(1+�I)
RIS

µ
µ

µ
δ

Flow chart 

The dynamics of the population are describe by the following differential equations:

dS(t)

dt
= a− CI(t)S(t)(1 + γI(t))− µS(t) + αR(t),

dI(t)

dt
= CI(t)S(t)(1 + γI(t))− (β + µ+ δ − b)I(t),

dR(t)

dt
= βI(t)− (α + µ)R(t).

(1)

The parameters involved in model (1) are described as in Table 2.
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Parameters The physical interpretation

S(t) Susceptible compartment

I(t) Infected compartment

R(t) Recovered compartment

a The recruitment rate

µ Natural death

δ Death due to corona

b The emigration rate of infected individuals

β Corona infection recovery rate

C infection rate

γ Rate at which recovered individuals lose immunity

α rate of recovery from infection

Table 1: The physical interpretation of the parameter.

First, for the equilibrium of the model (1), we consider it’s existence. Corresponding to some

values of parameters there exists a disease-free equilibrium for system (1) denoted by E0 = (a/µ, 0, 0).

To compute the non-negative equilibrium, we have

a− CI(t)S(t)(1 + γI(t))− µS(t) + αR(t) = 0,

CI(t)S(t)(1 + γI(t))− (β + µ+ δ − b)I(t) = 0,

βI(t)− (α+ µ)R(t) = 0.

To find the Basic Reproduction Number R0, let x = (S(t), I(t)), in model(1). Then

dx

dt
= F − V ,

where

F =





CI(t)S(t)(1 + γI(t))

0





and

V =





(µ− a)S(t)

(β + µ+ δ − b)I(t)





for the disease-free equilibrium Jacobian of F is

F =





0 CS0

0 0





and Jacobian of V to deduce the disease-free equilibrium is given by

V =





µ− a 0

0 β + µ+ δ − b



 .

4

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2020                   



Hence, for the model (1), by simple calculation, we have

FV −1 =





0 CS0(µ−a)
β+µ+δ−b

0 0



 .

Hence the Basic Reproduction Number (reproductive rate) R0 is

R0 =
ac

µ(β + µ+ δ − b)
. (2)

From (2), we clearly observe that

(i) There is no positive equilibria of model (6), if R0 ≤ 1;

(ii) A unique positive equilibrium also known as endemic equilibrium E∗(t) = (S∗(t), I∗(t), R∗(t))

exists under R0 > 1.

The endemic equilibrium is given by

S∗(t) =

(

αβ

CI∗(1 + γI∗) + µ− a

)

I∗

I∗(t) =
−(µ− a)(β + µ+ δ − b) + Cβγα+

√
Ω

2Cγ(β + µ+ δ − b)

R∗(t) =
β

α+ µ
I(t)∗.

The value of Ω is given as

Ω = (µ− a) ((δ + β − b+ d) + Cβγα)
2 − 4αβc2(µ− a)(δ + β − b+ µ). (3)

Next, we will elaborate the characteristics of these equilibria and a global mathematical analysis of

system (1).

3. Dynamical Behavior of the Model

To elaborate the dynamic of system (1), we have the following lemma.

Lemma 3.1. The system (1) has invariant manifold of plane S(t) + I(t) + R(t) = a/µ, which is

fascinating in the 1st octant.

Proof. Adding up all the equations of system (1) and let N(t) = S(t) + I(t) +R(t). Then

dS(t)

dt
+

dI(t)

dt
+

dR(t)

dt
= a− µS(t)− µI(t)− µR(t) + bI(t)− δI(t)

d

dt
(S(t) + I(t) +R(t)) = a− (δ − b)I(t)− µ(S(t) + E(t) + I(t) +R(t))

(4)

(4) implies that
dN(t)

dt
= a− (δ − b)I(t)− µN(t). (5)
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Hence for (5) we present the general solution as

N(t) =
1

µ

[

a− (δ − b)I(t)− dN(t0)e
(t0−t)

]

.

Which complete our conclusion.

Now furthermore we reduced the system (1), because obviously the limit set of (1) on plane

S(t) + I(t) +R(t) = a
µ
has limit set.

dI(t)

dt
= C

(

a

µ
− I(t)−R(t)

)

(1 + γI(t))− (β + µ+ δ − b)
∆
= ω, (I(t), R(t))

dR(t)

dt
= βI(t) − (µ+ α)R(t)

∆
= ξ(I(t), R(t)).

(6)

We have the following theorem with regards to the none existence of cyclical shells in system (6),

which show the none existence of cyclical shells of system (1) by Lemma (3.1).

Theorem 3.2. There does not exist nontrivial periodic orbits corresponding to System (6).

Proof. Consider a “Dulac function” and consider system(6) for I(t) > 0 and R(t) > 0.

D(I(t), R(t)) =
1 + γI(t)

CI(t)
.

Then, we have

Dω =

(

a

µ
− I(t)−R(t)

)

(1 + γI(t))− (β + µ+ δ − b)(1 + γI(t))

C

Dξ =
βI(t)

C
(1 + γI(t))− (µ+ α)(1 + γI(t))R(t)

CI(t)

∂(Dω)

∂I(t)
= −(1 + γI(t))

[

1 + 2γR(t) + 3γI(t)− 2γa

µ

]

− γ

C
[β + µD − b]

∂(Dξ)

∂R(t)
= − (µ+ α)(1 + γI(t))

CI(t)
. (7)

By adding all equations of (7), we have

∂(Dω)

∂I(t)
+

∂(Dξ)

∂R(t)
= −(1 + γI(t))

[

1 + 2γR(t) + 3γI(t)− 2γa

µ

]

.

Hence

− γ

C
[β + µδ − b]− (µ+ α)(1 + γI(t))

CI(t)
< 0.

Thus (8) proved the conclusion of the theorem.

To study S0 disease-free equilibrium and its properties, and also the endemic equilibrium S∗, we

rascal (6) with

x =
C

µ+ α
I(t),
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y =
C

µ+ α
R(t),

τ = (µ+ α)t.

One can obtain from (6) as

dx

dτ
=

x

1 + qx
(B − x− y)− nx,

dy

dτ
= px− y,

(8)

with

p =
β

µ+ α

n =
β + µ+ δ − b

µ+ α

B =
aC

µ(µ+ α)

q =
γ(µ+ α)2

C2
.

Note: Keep in mind that (0, 0) may be obtained from system (8) infact the “disease-free equilibrium”

S0 of system(1) and (x∗, y∗) of system (8) is the unique positive equilibrium is infact the endemic

equilibrium S∗ of system (1) under the condition n− B < 0 with x∗ = B−n
q−1 and y∗ = px∗. In first

glance, we investigate for (0, 0), the stability and topological type trivial equilibrium. At the point

(0, 0), the Jacobian matrix of system (8) is given by

M0 =





B − n 0

p −1



 . (9)

The dynamic of system (8) is equivalent to (10). If B−n = 0, then there exists a small neighborhood

N0 of (0, 0).

dx

dτ
= −x− 2y +O((x, y)3)

dy

dτ
= px− y.

(10)

From (10) (0, 0) is a saddle-node. The next results is important.

Theorem 3.3. The trivial equilibrium point of the system (1) possess the following properties.

(i) As a result the system has a hyperbolic saddle, If n < B.

(ii) As a result the system has a saddle node, If n = B.

(iii) As a result the system has a stable hyperbolic node, If n > B.
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Proof. When n−B < 0, we study the topological type of endemic equilibrium (x∗, y∗) and stability.

From (8) at (x∗, y∗), we have the Jacobian matrix

M1 =





B−2(1+p)x∗

−n

1+q
−x∗

1+q

p −1



 ,

where

det(M1) =
2(1 + p)x∗ + n−B

1 + q
+

px∗

1 + q

=
(1 + p)x∗ + n−B + px∗

1 + q
.

Thus det(M1) has not a unique sign due to

S1
∆
= (1 + p)x∗ + n−B + pX∗. (11)

The relation (11) tells that S1 > 0 yields det(M1) > 0 and (x∗, y∗) is a node (focus or a center).

Also, for the stability of (x∗, y∗), one can find the given results.

Theorem 3.4. The equilibrium (x∗, y∗) of system (8) is locally stable in unique way and also it has

a stable node if n− B < 0.

Proof. From tr(M1) we examine (x∗, y∗) for stability as:

tr(M1) =
B − 2(1 + p)x∗ − n

1 + q
− 1

=
B − 2(1 + p)x∗ − n− 1− q

1 + q
.

To determine tr(M1) in sign, we take

S2 = −(2(1 + p)x∗ + q + 1 + n−B).

Let S2 = 0. Then n− B < 0. Therefore S2 6= 0, which follows that tr(M1) 6= 0. Therefore for any

positive values of parameters and n−B < 0 does not change the stability of (x∗, y∗). Let p = 1, q = 1

and B = 1. Which implies that tr(M1) = −1 < 0. Due to the continuity of tr(M1) corresponding

to parameters, as tr(M1) < 0 for n−B < 0.

The following theorem summarized the results for the stability of the original system (1), in

terms of the Basic Reproduction Number.

Theorem 3.5. “From (2) we define R0.

(i) If R0 < 1, the model (1) has a unique disease-free equilibrium E0 = ( a
µ
, 0, 0), which is a global

attractor in the 1st octant.
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(ii) If R0 = 1, then model (1) has a unique disease-free equilibrium E0 = ( a
µ
, 0, 0) which is a

attracts of all orbits in the interior of the 1st octant.

(iii) If R0 > 1, then model (1) has two equilibria, a disease-free equilibrium E0 = ( a
µ
, 0, 0) and an

endemic equilibrium E∗(t) = (S∗(t), I∗(t), R∗(t)). The endemic equilibrium E∗(t) is a global

attractor in the interior of the 1st octant.

”

4. Numerical Results and Discussion

We present numerical simulation for system (6) with the used values. We take different initial

values corresponding to different classes involved in the model (6) for the month of March in four

different localities in Pakistan. Here it is remarkable that for the numerical simulation, we have used

the nonstandard finite difference scheme as already used in [15].

We use nonstandard finite difference (NSFD) scheme [28] to write the model in difference form as:

consider first equation of model (6)

dS(t)

dt
= a− CI(t)S(t)(1 + γI(t))− µS(t) + αR(t) (12)

which is decomposed in NSFD scheme as

Sj+1 − Sj

h
= a− CIj(t)Sj(t)(1 + γIj(t))− µSj(t) + αRj(t) (13)

Like 13, we can decomposed the model (6) in NSFD scheme and write the whole system as

Sj+1 = Sj + h

(

a− CIj(t)Sj(t)(1 + γIj(t))− µSj(t) + αRj(t)

)

Ij+1 = Ij + h

(

CIj(t)Sj(t)(1 + γIj(t)) + (µ+ β + δ)Ij(t)

)

(14)

Rj+1 = Rj + h

(

βIj(t)− (α+ µ)Rj(t)

)

.

Using the scheme developed in (14), we present the numerical simulation of the model cor-

responding to the given values as In the presence of given rate of emigrant(s) in the Case I as

[0.098, 0.067, 0.0205, 0.0184], we present by graph according to the given data in Figure 1-3 to inves-

tigate the transmission dynamics of the various compartments of the considered model.

During the first thirty days in the presence of excessive rate of emigration the susceptible pop-

ulation is decreasing as shown in Figure 1. When the emigration rate is high, the decline in the

papulation of uninfected (susceptible) people is deceasing, because they are exposing to infection and

hence higher the emigration rate faster the growth rate of infected papulation and vice versa. As a

results more death will occurs along with the recovery from the disease. Therefore the growth in the

9

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2020                   



Parameters physical description Numerical value Reference

S(t) Initial Susceptible compartment 12.6millions [23]

I(t) Initial infected compartment 0.84millions [23]

R(t) Initial recovered compartment 0millions [23]

a The birth rate of infection 0.1243 [25]

µ Natural death 0.002 [25]

δ Death due to corona 0.05 [25]

b The emigration rate rate 0.0205 [26]

β Corona infection recovery rate 0.09871 [24]

C Infection rate 0.580 [25]

γ Rate at which recovered individuals lose immunity 0.0003 [26]

α Rate of recovery 0.854302 [24]

Table 2: The physical interpretation of the parameters and numerical values.
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Figure 1: Dynamical behavior of susceptible class in the presence of given rate of emigrant(s) as Case I from 10

February to 10 March (2020).
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Figure 2: Dynamical behavior of infected class in the presence of given rate of emigrant(s) as Case I from 10 February

to 10 March (2020).
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Figure 3: Dynamical behavior of recovered class in the presence of given rate of emigrant(s) as Case I from 10 February

to 10 March (2020).
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Figure 4: Dynamical behavior of susceptible class in the presence of given rate of emigrant(s) as Case II from 10

march to 10 April (2020).

recovery class is also different against different emigration. The concerned dynamics are presented

by Figures 2 and 3 respectively.

Further we present by graphs in Figures 4-5 the dynamical behavior of the transmission dynamics

corresponding to the second set of values of emigration rate assumed as [0.0099, 0.0064, 0.0042, 0.0011]

as Case II.

We see that as the emigration was slightly reduced during the thirty days from 10the March

to 10the April. The decline in susceptible papulation at different rate is shown by Figure 4, while

the corresponding dynamics of infectious and recovered class are presented via Figure 5 and 6

respectively. As the emigration rate is decreasing the susceptibility is deceases with slight rapid

speed and consequently the infection rate is going on downing. The recovered papulation is also

growing with faster speed when emigration rate is low. Because the chance of catching infection is

deceasing.
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Figure 5: Dynamical behavior of infected class in the presence of given rate of emigrant(s) as Case II from 10 March

to 10 April (2020).
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Figure 6: Dynamical behavior of recovered class in the presence of given rate of emigrant(s) as Case II from 10 March

to 10 April (2020).
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5. Conclusion

A mathematical model addresses the current novel coronavirus -19 under three compartments

susceptible, infected and recovered has been studied. By nonlinear analysis the existence of global

and local stability analysis has been demonstrated. On using nonstandard finite difference numerical

method, we have simulated the results by using the real data of Wuhan city during the last sixty

days from 10the February 2020 to 10the April 2020. Our model has been simulated for the fixed

values of the parameters except emigration rate. In fist set of data we have simulated the model

against highest values of emigration rate, we observed that due to this the infectious has rapidly

transmitted from person to person during the first thirty days in the mentioned place. During this

time more death have been occurred and recoded rate was also increased properly. After reducing the

concerned emigration rate properly the dynamics greatly affected and the infection rate started on

decreasing and the recovery rate also increased with different rate. Because the rate of emigration

was different. On smaller emigration rate the rate of spread of infection is slow as compared at

higher order and vice versa. We concluded that minimizing the emigration during this out break

can cause the increase in protection rate. In other words avoiding unnecessary emigration of people

will greatly helped in reducing or controlling this disease.
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