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The acceleration of the universe is described as a con-
sequence of the extrinsic curvature of the space-time
embedded in a bulk space, defined by the Einstein-
Hilbert. Using the linear approximation of Nash-Green
theorem, we obtain the related perturbed equations in
which just the gravitational-tensor field equations con-
tribute to propagation of cosmological perturbations. In
accordance with Big Bang Nucleosynthesis and solar
constraints, we calculate numerically the effective New-
tonian function Ge f f to constrain the related parame-
ters of the model. We numerically solve the growth den-
sity equation for two possible family of solutions leading
to an interesting overdensity and, in some cases, a mild
damping of the growth profiles, with a top amplification
of the growth perturbations around 14% in compari-
son with ΛCDM model and quintessence. The effective
gravitational Φ and Newtonian curvature Ψ are also
analysed showing mild perturbations in early times in-
duced only by the extrinsic curvature differently from
the ΛCDM standards.

1 Introduction

In the last decades, the dark energy problem turns one of
the central debates on the contemporary physics. Follow-
ing Occam’s razor principle, the simplest explanation for
the observed accelerated expansion of the universe lies
within the ΛCDM paradigm that invariably leads to the
concept of dark energy: an exotic fluid with negative pres-
sure that drives the universe to speed up. The paradigm
reveals still unanswered questions about the underlying
physics or in the lack of a fundamental principle or a
definite observational evidence that justifies/proves the
existence of the Cold dark matter and the relevance of the
cosmological constant Λ. The nature of the cosmological
constant is also a problem of its own with the coincidence
problems (on the reason of why the matter distribution

and Λ-dark energy content are seen today as the same
order of magnitude) and fine-tuning issues. From the
semi-classical Einstein’s equations, quantum field theory
suggests that the vacuum states of quantum fields con-
tribute to a non-zero, constant energy density ρvac , which
produces an on going perturbation of the gravitational
field in cosmology or, equivalently, in the space-time met-
ric. References on these problems can be found in [1–7].
Notwithstanding theΛCDM model responds positively to
a vast observational evidences of accelerating expansion
of the universe [8–20], it does not explain the observed
dwarf galaxy populations in the Local group [21–23] and
the CDM simulations lead to a discrepancy of the size of
a dark matter halo core in comparison with the observed
scale length of the galactic disk due to sub-galactic central
cusp structures [24–28]. For a review at small scale prob-
lems within the ΛCDM paradigm, see Ref. [29]. We also
add the 2-σ tension in the σ8-contours of growth of r.m.s
fluctuations on the scale of 8h−1Mpc with a mismatch of
the data inferred from Planck Cosmic Microwave Back-
ground (CMB) radiation and Large Scale Structure (LSS)
observations withinΛCDM background, which might be
a result from systematics or due to deviations of gravity
[30]. The problem persists even if one does not consider
the Planck CMB data [31] and other evidences indicate
similar tensions in the matter distributions around 2-σ
[20, 32–34].

The lack of robust solutions from the aforementioned
problems led to alternative models to the standardΛCDM,
for instance, the dark energy models [35–37], the mod-
ified gravity models that change the standard General
Relativity (GR) such as F(R) and variants [38–47] and ref-
erences therein. In a different direction, we have inves-
tigated the embedding of geometries and their conse-
quences to a physical theory in a different approach as
compared with extra-dimensions models on superstrings
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or M theories inspired, such as Randall-Sundrum brane-
world cosmology and variants [48–50]. In particular, the
Randall-sundrum model uses the algebraic Israel- Lanc-
zos boundary condition as a relation between the extrinsic
curvature and the material sources. The theoretical conse-
quence is that the application of such condition does not
follow the evolution of the embedded geometry [51]. In
this paper, apart from the braneworld context, we study
the consequences when considering the universe as an
embedded space-time dynamically evolving by pertur-
bations of the Nash-Greene embedding theorem [52, 53].
Based on the model proposed in [54–57], we tested the
model at background level in a series of previous works
[58–62]. Specifically it passed through the cosmokinetics
diagnosis, as shown in Ref. [58, 61]. We follow this direc-
tion going further on the context of cosmological pertur-
bations. In this sense, we intend to propose a relevance
of a renewed concept of Riemmanian curvature with the
addition of the extrinsic curvature and the Nash-Greene
embedding theorem as an oriented mathematical ground.

The outline of paper is as follows. In the section 2 we
present a summary of the embedding process present-
ing the field equations. Using the linear approximation
of Nash-Green theorem, it is shown the background cos-
mological equations in compliance with erstwhile pub-
lished results [57, 58, 61]. We also investigate the Fried-
mann equation modified by extrinsic curvature that de-
tains two possible signature Γ±-solutions and we study a
family of these solutions for allowed values of the param-
eters. In the section 3, we obtain the perturbed equations
in a conformal Newtonian frame and the related growth of
contrast matter. To solve the growth equation, we numeri-
cally study the effective Newtonian Gravitational constant
Ge f f to obtain a constraint on the parameters. Hence, a
numerical analysis is made on the growth equations in
comparison withΛCDM model and GR quintessence. The
effective gravitationalΦ and Newtonian curvatureΨ are
also analysed. Final remarks are made in the conclusion
section.

2 The universe as an embedded space

In this paper we use the same theoretical background
of a series of previous works [54–62] in which is possi-
ble the description of dynamical embedding without any
junction conditions unlike that of rigid embedding mod-
els [48, 49]. A common bottom line between braneworld
models and other embedding models (this works is an
example) is the embedding itself and how to define the
dynamics of extrinsic curvature once the embedding can

be made in several different forms (e.g., local or global,
isometric, analytic or differentiable etc.). It is important
to point out that the junction conditions are not unique
[63–67] leading to different physical results [68] and they
can be completely ignored depending on the related em-
bedding framework such as the seminal works of Arkani-
Hamed, Dimopoulos and Dvali, commonly known as
ADD model [69] or the DGP model, as an acronym for
Dvali, Gabadadze and Porrati’s model [50]. In this work,
we use the Nash-Greene differentiable embedding [52,53]
as a principle for dynamical embedding.

2.1 The Nash-Greene embedding process

The main result of the Nash-Greene embedding theo-
rem [52, 53] is applicable to an arbitrary number of di-
mensions. It shows that the evolution of any embed-
ded n-dimensional Riemannian geometry Vn in an N-
dimensional larger geometry (bulk) is possible by a se-
quence of infinitesimal perturbations of a non-perturbed
background metric g̃µν given by the non-perturbed ex-
trinsic curvature tensor k̃µνa . In the case of interest, in a
five dimensional bulk V5, the embedding of a four dimen-
sional space can be given by the map X : V4 → V5. The
fluctuations of V4 lead to a new (perturbed) geometry gµν

gµν = g̃µν+δy k̃µν+ (δy)2 gρσk̃µρ k̃νσ · · ·
and one can obtain linear Nash fluctuations as

δgµν =−2k̃µνδy , (1)

where δy denotes an infinitesimal displacement of the
extra dimension y in the bulk space and it is not consid-
ered in the line elements as in the case of rigid embedding
models [48, 49]. A similar expression of Eq.(1) was ob-
tained year latter after Nash’s seminal work in the ADM
quantization program [55]. Since the extension to Pseudo-
Riemannian manifolds was made by Greene [53], hereon
we refer as Nash-Green theorem. Concerning notation,
we adopt the Landau time-like convention (−−−+) for
the signature of the four dimensional embedded metric
and speed of light c = 1. Capital Latin indices run from 1
to n. Small case Latin indices refer to the only one extra
dimension considered. All Greek indices refer to the em-
bedded space-time counting from 1 to 4. Non-perturbed
quantities are denoted by the tilde symbol.

One can define the action S as

S =− 1

2κ2
5

∫ √
|G |5Rd 5x −

∫ √
|G |L ∗

md 5x , (2)

where κ2
5 is the energy scale on the embedded space, 5R

denotes the five dimensional Ricci scalar of the bulk and

2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 May 2020                   doi:10.20944/preprints202005.0249.v1

https://doi.org/10.20944/preprints202005.0249.v1


L ∗
m denotes the confined matter Lagrangian. Thus, the

variation of Einstein-Hilbert action in Eq.(2) with respect
to the bulk metric GAB leads to the Einstein equations for
the bulk

5RAB − 1

2
GAB =α?TAB , (3)

where α? is the energy scale parameter and TAB is the
energy-momentum tensor for the bulk [54–57].

This model can be regarded as a four-dimensional
hypersurface that evolves in a five-dimensional bulk with
constant curvature whose related Riemann tensor is

5RABC D = K∗ (GAC GBD −GADGBC ) , A..D = 1 · · ·5 ,

where GAB denotes the bulk metric components in ar-
bitrary coordinates. In five dimensions, we can write in
embedded vielbein {Z A

,µ,ηA} for the metric of the bulk in
the vicinity of V4

GAB =
(

g̃µν 0

0 1

)
. (4)

The perturbed coordinate Z A is given by the Lie transport
L such as

Z A
,µ = X A

,µ +δy LηX A
,µ
=X A

,µ +δy ηA
,µ , (5)

ηA = ηA +δy [η,η]A = ηA . (6)

and the normal vector is ηA unspoiled by perturbations
[54–56].

It is worth noting that the constant curvature K∗ is
either zero (flat bulk) or it can have positive (de Sit-
ter) or negative (anti-de Sitter) constant curvatures. We
chose a flat bulk with K∗ = 0. The confined tangent com-
ponents of the energy-momentum tensor for the bulk
TAB are proportional to the energy-momentum tensor:
α∗Tµν = 8πGN Tµν, where GN is the gravitational Newto-
nian constant. On the other hand, the vector Tµa and
scalar Tab components are confined in the sense that
Tµa = 0 and Tab = 0 prohibit any propagation of matter
fields to extra-dimension, but the gravitational field.

The field equations can be obtained by direct calcu-
lation of the tangent components of Eq.(3). As shown
in details in Refs.( [54–57]) one can write the induced
field equations in the embedded space-time from a five-
dimensional bulk

G̃µν+Q̃µν = 8πGN T̃µν , (7)

k̃µ[ν;ρ] = 0 , (8)

where the energy-momentum tensor of the confined per-
fect fluid is denoted by T̃µν. The quantity G̃µν denotes the

four dimensional non-perturbed Einstein tensor and Q̃µν

is the deformation tensor. This term is defined by

Q̃µν = g̃ρσk̃µρ k̃νσ− k̃µνh̃2 − 1

2

(
K̃ 2 − h̃2) g̃µν , (9)

where we denote h̃2 = h̃.h̃ by the mean Gaussian curva-
ture and K̃ 2 = k̃µνk̃µν denotes the Gaussian curvature. It
follows that Q̃µν is a conserved quantity in the sense that

Q̃µν
;ν = 0 . (10)

We point out that the trace of the Codazzi equation in
Eq.(8) is composed by the extrinsic curvature terms and
the appearance of the deformation tensor Q̃µν of Eq.(9)
are a novelty typically inherent to embedding models that
extend the curvature concept of a pseudo-Riemannian ge-
ometry. The brackets in Eq.(8) apply the covariant deriva-
tives to the adjoining indices.

To complete the set of dynamical equations, the ex-
trinsic curvature dynamics is completed by the analysis
of the spin of a linear massless spin-2 fields in Minkowski
space-time. Counting from Eq.(3), one obtains a total of
20 unknowns g̃µν and k̃µν, against 15 dynamical equa-
tions. Thus, the remaining equations must come from k̃µν
which is an independent symmetric rank-2 tensor. In 1954,
Suraj Gupta noted that the Fierz-Pauli equation has a re-
markable resemblance with the linear approximation of
Einstein’s equations for the gravitational field, suggesting
that such equation could be just the linear approximation
of a more general, non-linear equation for a massless spin-
two fields. Gupta found that any spin-2 field in Minkowski
space-time must satisfy an equation that has the same for-
mal structure as Einstein’s equations [70–73]. As a result,
a set of Einstein-like system of equations called the Gupta
equations that are defined as a Ricci-like equations in a
form

F̃µν = 0 , (11)

where they are defined as a copy of the usual Riemannian
geometry. Hence, once can define a “f-Riemann tensor”

F̃µναλ = ∂αΥµλν− ∂λΥµαν+ΥασµΥσλν−ΥλσµΥσαν
constructed from a “connection” associated with k̃µν. It is
worth noting that this is not a bimetric model likewise
Rosen Bimetric theory [74] since the true background
geometry of the embedded space-time is defined by the
metric tensor g̃µν. Thus, we define the tensors

f̃µν = 2

K̃
k̃µν, and f̃ µν = 2

K̃
k̃µν , (12)

so that the normalization condition f̃ µρ f̃ρν = δ
µ
ν is ap-

plied and K̃ =
√

k̃µνk̃µν. Accordingly, it is possible to
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define the “Levi-Civita connection” associated with f̃µν,
based on the analogy with the “metricity condition”
f̃µν||ρ = 0, where the double bars || denote the covariant
derivative with respect to fµν (while keeping the usual
semicolon sign for the covariant derivative with respect
to g̃µν). The “f-connection” is given by

Υµνσ = 1

2

(
∂µ f̃σν+∂ν f̃σµ−∂σ f̃µν

)
and also the contraction

Υµν
λ = f̃ λσ Υµνσ .

2.2 Background FLRW embedded universe

In order to describe the cosmological background, we use
Eqs.(7), (8) and (11), with the usual Friedman-Lemaître-
Robertson-Walker (FLRW) in coordinates (r,θ,φ, t )

d s2 = d t 2 −a2 [
dr 2 + f 2

κ (r )
(
dθ2 + sin2θdϕ2)] , (13)

where a = a(t ) is the scale expansion factor, f (r )κ = sinr ,
r,sinhr and κ corresponds to spatial curvature (1,0,−1).
For the present application, we consider a flat universe.

The stress energy tensor in a non-perturbed co-
moving fluid with a co-moving velocity uµ is given by

T̃µν =
(
ρ̃+ p̃

)
uµuν− p̃ g̃µν ; uµ = δ4

µ . (14)

The related conservation equation

ρ̃+3H
(
ρ̃+ p̃

)= 0 , (15)

where ρ̃ and p̃ denote non-perturbed matter density and
pressure, respectively.

The trace of the Codazzi equations given by Eq.(8) has
the general solution

k̃i j =− b

a2 g̃i j , i , j = 1,2,3, k̃44 =− 1

ȧ

d

d t

b

a
,

where the dot symbol denotes time derivative. The bend-
ing function b(t ) = k11 carries the arbitrariness from the
confinement of the gauge fields in a five dimensional bulk
leading to the homogeneity of the trace of the Codazzi
equations as shown in Eq.(8).

Taking the standard cosmological notation, we denote
the usual Hubble parameter defined by H(t) = ȧ/a and
analogously we define the extrinsic cosmic parameter as
B(t ) = ḃ/b. Thus, we summarize the results presented in

[56, 57] such as

k̃44 =− b

a2 (
B

H
−1), (16)

K̃ 2 = b2

a4

(
B 2

H 2 −2
B

H
+4

)
, h̃ = b

a2

(
B

H
+2

)
, (17)

Q̃i j = b2

a4

(
2

B

H
−1

)
g̃i j , Q̃44 =−3b2

a4 , (18)

Q̃ =−(K̃ 2 − h̃2) = 6b2

a4

B

H
, (19)

where in Eq.(18), we have denoted i , j = 1..3 with no sum
on indices.

The elimination of the arbitrariness of Eq.(8) is solved
by calculating the Gupta equations in Eq.(11) and the
conservation equation of the deformation tensor Q̃µ

;µ = 0.
Thus, one obtains

b(t ) = γ0aβ0 e
1
2Γ(t ) , (20)

where the Γ-exponent in the exponential function is de-
fined by

Γ(t ) =±
√
|4η0a4 −3|∓p

3arctan

(p
3

3

√
|4η0a4 −3|

)
,

(21)

where we adopt the referencingΓ(+) and Γ(−) for each solu-
tion with respect to the sign ±. In addition, the γ0 and β0

quantities denote integration constants in Eq.(20). The η0

parameter is originated from the Gupta equations. As cos-
mography tests indicate [58] the η0 parameter is related to
the magnitude of the width of the transition redshift from
a decelerating to accelerating universe and the β0 param-
eter affects the magnitude of the deceleration parameter
q = q(z) that is given by

q(z) = 1

H(z)

d H(z)

d z
(1+ z)−1 . (22)

Hence, we can write

q(z) = 3

2

[
Ωm(z)+γ∗Ω ext (z)

Ωm(z)+Ω ext (z)

]
−1 , (23)

where γ∗ = 1
3

[
4−2β0 ±2

√
| 4η0

(1+z)4 −3|
]

. The matter den-

sity parameter is denoted by Ωm(z) =Ω0
m(1+ z)3 and the

term Ωext (z) =Ω0
ext (1+ z)4−2β0γ0 stands for the density

parameter associated with the extrinsic curvature. The
upper script “0” denotes the present value of any quan-
tity. The relation of the redshift z with the scale expansion
factor a is given by a = 1

1+z . The current extrinsic contri-
bution Ω0

ext is given by the normalization condition for a

4 Copyright line will be provided by the publisher
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flat universe with redshift at z = 0 that results in

Ω0
ext =

1

γ0Γ(0)

(
1−Ω0

m

)
. (24)

In this work, we ignore the radiation contribution since it
can be dismissed at late times.

The related Friedmann equations for a flat universe in
terms of redshift are written as

H(z) = H0

√
Ωm(z)+Ωext (z)eΓ±(z) , (25)

where H (z) is the Hubble parameter in terms of redshift z
and H0 is the current value of the Hubble constant. Hence,
we can write the dimensionless Hubble parameter E (z) =
H(z)
H0

as

E 2(z) =Ω0
m(1+ z)3 + (

1−Ω0
m

)
(1+ z)4−2β0 eΓ

±(z) . (26)

Since the bending function b(t) has a positive and neg-
ative solutions (Γ±-solutions), one obtains a family of
such solutions for Eq.(26) that depend on the values of
(γ0,β0,η0).

3 Growth density and numerical results

3.1 Scalar perturbations in a conformal Newtonian
gauge

In longitudinal conformal Newtonian gauge, one can
write the FLRW metric as

d s2 = a2[(1+2Φ)dτ2 − ((1−2Ψ)δi j d xi d x j ] , (27)

where Φ=Φ(x,τ) and Ψ=Ψ(x,τ) denotes the Newtonian
potential and the Newtonian curvature in conformal time.
The expansion parameter in conformal time is denoted
as a = a(τ) from d t = a(τ)dτ.

We can write the perturbed field equations as

δGµ
ν = 8πGNδT µ

ν −δQµ
ν , (28)

δkµν;ρ = δkµρ;ν , (29)

δFµ
ν = 0 . (30)

When considering cosmological perturbations, differ-
ently from the background framework, we need to under-
stand how the extrinsic curvature evolves. The answer is
given by Nash-Greene fluctuations of Eq.(1) to obtain the
linear perturbations for five-dimensions for the perturbed
extrinsic curvature

kµν = k̃µν−2δy g̃σρ k̃µσk̃νρ , (31)

where δkµν = g̃σρ k̃µσk̃νρ . From Eq.(1), we obtain

δkµν = g̃σρ k̃µσδgνρ . (32)

Immediately, we obtain the perturbation of the deforma-
tion tensor Qµν from its background form in Eq.(9) and
from Eq.(32) such as

δQµν =−3

2
(K̃ 2 − h̃2)δgµν . (33)

A direct consequence of Eq.(32) is that the Codazzi equa-
tions in Eq.(29) do not propagate perturbations and are
confined to the background. A similar result is obtained
to the perturbed Gupta equations in Eq.(30) once we have
δ fµν = 0. Thus, Eqs.(29) and (30) maintain the same back-
ground form as in Eqs.(8) and (11), and they not provide
additional information to cosmological perturbations in
which are only provided by the gravitational tensor equa-
tion of Eq.(28). Then using the background relations in
Eqs.(16), (17), (18), and (19), we can determine the com-
ponents of δQµν

δQ i
j = γ0a2β0−2Ψδi

j , (34)

δQ i
4 = 0 , (35)

δQ4
4 = γ0a2β0−2Φδ4

4 . (36)

For a perturbed fluid with pressure p and density ρ,
one can write the perturbed components of the related
stress-tensor

δT 4
4 = δρ , (37)

δT 4
i = 1

a
(ρ0 +p0)δu∥i , (38)

δT i
j = −δp δi

j , (39)

where δu∥i denotes the tangent velocity potential and ρ0

and p0 denote the non-perturbed components of den-
sity and pressure, respectively. Hence, we obtain the per-
turbed equations in the Fourier k-space wave modes in a
form

k2Ψk +3H
(
Ψ

′
k +ΦkH

)
=−4πGN a2δρk +γ0a2α0Φk ,(40)

Ψ
′
k +HΦk =−4πGN a2(ρ0 +p0)θ ,(41)

Ψ
′′
k +H (2Ψk +Φk )′+ (H 2 +2H ′)Φk +

1

2
k2(Ψk −Φk )(42)

= 1

2
k̂ i · k̂i (Ψk −Φk )+4πGN a2δp +γ0a2α0Ψk .

where θ = i k jδu∥ j denotes the divergence of fluid velocity
in k-space.
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3.2 Matter density evolution under sub-horizon regime

In the following we do not consider any anisotropic stress
effect and pressure from the matter contribution in order
to analyse the gravitational signal from the contribution of
the extrinsic curvature, and we focus on the fluctuations
of the Bardeen fieldsΦ andΨ. It is important to notice that
when γ0 → 0 in set of Eqs.(40), (41) and (43), the standard
GR equations are obtained. It means we can recover the
sub-horizon approximation with k2 ÀH 2 or k2 À a2H 2

which meansΦ′′
k ,HΦ′

k ,HΦ′
k ∼ 0, then Eq.(40) turns the

expected Newtonian formulaΦk ∼ δρk
k2 . Thus, we obtain

the relevant equations at sub-horizon scales

k2Ψk −γ0a2β0Φk =−4πGN a2δρk , (43)

k2(Ψk −Φk ) =−2γ0a2β0Ψk . (44)

For the present application, even with the dismissal of the
matter anisotropic stress, Eq.(44) shows that the extrinsic
curvature contributes with anisotropic effect by the field
frictions. In this sense, we define the following anisotropic
parameters

η(a) = Φ−Ψ
Ψ

, (45)

and also the slip

γ(a) = Ψ

Φ
. (46)

Calculating the components δT µ
µ;4 and δT µ

µ;i , and per-

forming the definition of the “contrast” matter density

δm ≡ δρ
ρ0

in terms of the expansion factor a(t ), we obtain
the equation

d 2δm(a)

d a2 +
(

3

a
+ 1

H(a)

d H(a

d a

)
dδm(a)

d a
(47)

−3

2
Ωm0

Ge f f /G

(H 2(a)/H 2
0 )
δm(a) = 0 , .

which solutions are possible only numerically. For in-
stance, in the context of GR, where Ge f f =GN that turns
δm(a) independent of the scale k, in terms of the fluid
parameter w = p0

ρ0
, one has the following solution

δm(a) = a.2F1

(
− 1

3w
,

1

2
− 1

2w
;1− 5

6w
; a−3w (1−Ω−1

m )

)
(48)

where 2F1(a,b;c; z) is a hypergeometric function.
And from Eqs.(43) and (44), we obtain the effective

field

Φk (k, a) =−4πGN

k2

Ge f f

GN
a2ρmδm , . (49)

where Ge f f /GN is given by

Ge f f (k, a)

GN
= 1(

1− γ0

k2 a2β0

) − 2γ0Qe f f (k, a)a2β0

k2
(
k2 −γ0a2β0

) . (50)

and also

Ψk (k, a) =−4π

k2 GN Qe f f a2ρmδm , (51)

where Qe f f = 1

1− γ0
k2 a2β0+2

γ2
0

k4 a4β0

.

The form of the effective Newtonian constant Ge f f

is given by Eq.(50) as a result from Nash-Green fluctu-
ations of the background. In order to obtain some con-
straints on the parameters, namely, (η0,γ0,β0), we anal-
yse numerically the Eq.(50). Firstly, we adopt a minimum
value of expansion parameter ami n = 0.001 to guaran-
tee that the analysis is restricted to the matter domi-
nation scale such as for sub-horizon scales we fix the
value of k = 300 H0 ∼ 0.1hMpc−1 which was rescaled in
a sense k̃ = Hr e f k. The tilde symbol refers to the physi-
cal k, Hr e f denotes the Hubble expansion as a reference

and the bare new dimensionless k is set as k = 300 H0
Hr e f

.

The same criteria was applied to other relevant quantities
such as, the Hubble constant H̃0 = Hr e f H0, ρ̃m = H 2

r e f ρm ,

k̃ = kr e f k, and also the fields Φ̃=Φr e f Φ and Ψ̃=Ψr e f Ψ

with
Φr e f

Ψr e f
= 1. The overall form of the related equations

are kept intact.
After these considerations, we are able to analyse the

evolution of Ge f f function. It obeys Big Bang Nucleosyn-
thesis and solar experiment constraints in such a way
Ge f f ca=0 = 1, Ge f f ca=1 = 1 and by the ordinary time-

derivative
dGe f f

d t ca=1 = 0 [43]. The latter relation is satis-
fied when the extrinsic curvature vanishes γ0 → 0, which
means that the extrinsic curvature is closer to zero at solar
scale as expected and the bare gravitational Newtonian
constant GN is recovered. It is understood that only at
scales larger than the Newtonian solar scale the extrinsic
curvature imprints more a dynamical influence and may
drive topological changes of the universe [54,56,57,59,60].

Since Eq.(25) provides a family of solutions with the
parameters (η0,γ0,β0), we can constrain the model by
the fact that the simplest cosmological solution relies on
ΛCDM at background level, whereas we naturally expect
a rather different situation at perturbation level. The sim-
ilarity of Hubble function H(a) ofΛCDM background is
only obtained at first order when expanding the Hubble
function around a = 0 and fixing β = 2,η0 = 0. Hence, it
is reasonable that values around β0 = 2 induce different
results at background level departing from the ΛCDM
standards.
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Figure 1 The panel shows the plot of Ge f f function with
curves defined by numerical values of (γ0,β0). The dotted
blue line shows datapoints numerically calculated in the range
a = [ami n ,1].

3.3 Numerical analysis on Ge f f and effective
Newtonian fields

We adopt for both cases of Γ±(a) the initial values of
γ0 → 0.001 and β0 → 2. The numerical results of the Ge f f

function is shown in the plot of Fig.(1). The related nu-
merical datapoints were calculated within matter dom-
inated era in the range a = [ami n ,1] with the priors on
(γ0,β0) parameters. We observed that only the curves con-
structed in the range β0 = [1.9,3] are well accommodated
to datapoints and obey the constraints on Ge f f with low-
values of γ0 ≤ 0.001. On the other hand, higher values of
γ0 > 0.001 and values of β0 < 1.9 and β0 > 3 gradually
break down the Ge f f constraints with Ge f f (a = 1) 6= 1 as
shown by the dashed blue line in Fig.(1).

From the numerical results of the analysis of Eq.(50)
with a constraints on (η0,γ0,β0) allow us to solve numeri-
cally the density growth equation in Eq.(47). To facilitate
referencing, we refer to our model as β-model when nec-
essary. Looking for a well behaved solutions for positive
and negative Γ, we adopt the values (γ0 = 0.001,β0 = 2.3)
for the first model, (γ0 = 0.0001,β0 = 2.5) for the second
one, and (γ0 = 0.0001,β0 = 3) for the third one. The ini-
tial conditions for Eq.(47) are set by δm(ami n) = ami n and
the related derivative with respect to expansion factor
δ′m(ami n) = 1. The results are presented in Fig.(2) with
plots of numerical solutions for ΛCDM (black line), GR
quintessence (blue dashed line) and the β-model fam-
ily with the values β0 = 2.3 (dotted blue line), β0 = 2.5
(dashed magenta line) and β0 = 3 (dotted magenta line).

The top right and left panels show the results for the mat-
ter growth δm(a) for Γ(+) and Γ(−). For Γ(+) solution, it
shows a close compatibility at early times between the
models and higher values of matter density growth of the
model β0 = 3 (dotted magenta line) at late times as com-
pared to δmΛC DM (solid black line) and GR quintessence
(dashed blue line). For Γ(−) solution in the top left panel,
just as the previous case, it shows a close compatibility
at early times between the models and more higher val-
ues of matter density for the same set of values of the
β-model at late times as compared to δmΛC DM and δm

for GR quintessence.
In the bottom panels, we can identify more clearly the

differences of the rate of the growth by the ratio δi /δΛC DM

with the label i denoting each model in comparison with
ΛCDM and GR quintessence. Just as in the previous case
(top panels), at early times the models are indistinguish-
able. On the other hand, at late times they are dramatically
different. For both Γ(±) solutions, they depart fromΛCDM
pattern around a = 0.2. As compared with ΛCDM, the
maximum amplification of overdensities occur with the
model for β0 = 3 for both Γ-solutions. It reaches around
6% for Γ(+) (bottom right panel) and 14% for Γ(−). In con-
trast with Γ(−) solution, the Γ(+) for β0 = 2.3 presents a
mild damping of the growth of structures with a transi-
tion around a ∼ 0.9 getting closer to GR quintessence
pattern. This is interesting fact since it might be taken
into consideration into the dark matter debate on the ob-
served underdensities on local Universe [75]. In summary,
β-model shows that the perturbations from extrinsic cur-
vature provide the necessary gravitational power at least
in sub-Hubble scale allowing room for an overall amplifi-
cation up to 14% that may leave a trace in the CMB angu-
lar power spectrum. Moreover, we analyse the percentage
relative difference %diff(H −H j ) between the β-models
H , H1 and H2 for the values β0 = 2.3,2.5,3, respectively.
Specifically, we show the difference with HΛC DM for both
Γ-solutions as shown in Fig.(3). In those cases, we ob-
tained at least a 10% difference for the lowest value of the
model β0 = 2.3 and will be larger for higher values of β0.
This corroborates that the β-model dynamics is rather
different in comparison withΛCDM (or GR quintessence)
due to the presence of the Ge f f function.

In order to study the evolution of the Newtonian fields
in Eqs.(49) and (51) they can be written in a more appro-
priated form

Φk (k, a) =− 3

2k2Ω0H 2
0

Ge f f

GN
a2ρmδm , . (52)

and also

Ψk (k, a) =− 3

2k2Ω0H 2
0 Qe f f a2ρmδm , . (53)
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Figure 2 Numerical solution of Matter density perturbations. The top panels show the comparisons of ΛCDM, GR quintessence
and β-model values for Γ(±) solutions. The bottom panels show the comparison with these models by the ratio δi /δmΛC DM .
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Figure 3 The percentage relative difference %diff(H −H j ) between the β-models for Γ(±)-solutions. The blue line shows a
comparison with HΛC DM with a minimum of 10% percentage difference.

Moreover, we use the conservation equation that of
Eq.(15) with the initial value ρm(ami n) = a−3

mi n and the
numerical results from δm for each study case of β0 val-
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Figure 4 The decaying pattern (Logarithm scale) of the effec-
tive Newtonian potentials Φ and Ψ from early to later times.
The (Φ,Ψ) refers to the β-model for β0 = 2.3. The other mod-
els are denoted by (Φ1,Ψ1) for β0 = 2.5 and (Φ2,Ψ2) for
β0 = 3.

ues in different Γ-solutions. The initial field values are
denoted byΦi ni =Φi ni (ami n) andΨi ni =Ψi ni (ami n) are
calculated at ami n . The results of the behaviour of the
effective Newtonian potentialsΦ andΨ are presented in
Fig.(4). It is interesting to note that at early times the po-
tentials present higher values that rapidly (but smoothly)
decay into lower values with a difference of 40 decimal
places in logarithm scale, but are closer to 1 in linear scale
calculated at a = a0 = 1. This reinforces the physical ro-
bustness of our numerical analysis since the convergence
of those potential are expected in Newtonian solar scale.
This pattern happens to both Γ-solutions. The observed
“mild steps” in the curves are due to the change of signs
of Eqs.(52) and (53) that induce mild fluctuations at that
range but not capable of change the form of the curves
into amplified oscillations. It may be possible that such
amplifications may occur in a larger scale which is dif-
ferent from the dark energy perturbations or modified
gravity models such F(R) and variants, that are mostly neg-
ligible at larger scales [76]. In each model, the presented
curves ofΦ andΨ are indistinguishable.

The anisotropy parameters in Eqs.(45) and (46) show
better the difference between the fields indicating a phys-
ical beyond GR. The η(a) parameter measures the rela-
tive change between Φ and Ψ, in a meanwhile the γ(a)
indicates the absolute rate of change between them. In
terms of these parameters, the variation of the Γ-solutions
are practically indistinguishable and we present the re-
sults in Fig.(5) and Fig.(6) valid for both solutions. In what
concerns Fig.(5), higher values of β0 lead to lower values
in early times. Interestingly, lower values of β parameter
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Figure 5 The decaying pattern (Logarithm scale) of the
anisotropy parameter η(a) from early to later times. The bare
(η) refers to the β-model for β0 = 2.3. The other models are
denoted by (η1) for β0 = 2.5 and (η2) for β0 = 3.
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Figure 6 The decaying pattern (Logarithm scale) of the
anisotropy parameter γ(a) from early to later times. The bare
(γ) refers to the β-model for β0 = 2.3. The other models are
denoted by γ1 for β0 = 2.5 and γ2 for β0 = 3.

tends to provoke a higher difference between the poten-
tials at early times. For instance, this is not expected in
GR-ΛCDM in which the anisotropy parameter η is invari-
antly zero and γ is equal 1 for any period. Moreover, all the
values converge at late times with mild fluctuations (mild
spikes in Fig.(5)), which is corroborate by the anisotropic
γ(a) showing a mild difference in early times and a conver-

gence for late times. It reinforces our priors that of
Φa0
Ψa0

= 1.

We stress that the analysis was taken just considering the
fluctuations originated by the extrinsic curvature eventu-
ally, as we can see in Eq.(44) and a more explicit difference
is expected by adding the matter anisotropic stresses.
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4 Summary

In this paper, we have analyzed the evolution of matter
growth perturbations in the context of an embedding
model in five dimensions to complement the concept
of curvature in GR with the natural appearance of the ex-
trinsic curvature. Our first results are related to the obtain-
ment of the perturbed equations. Using the linear Nash-
Green fluctuations, we have shown that only the gravita-
tional tensor equation in Eq.(28) propagates cosmolog-
ical perturbations, but the trace of Codazzi equation in
Eq.(29) and Gupta equations in Eq.(30) remain confined
to their background form. In the sub-horizon regime, we
obtained a closed form of the effective Newtonian gravi-
tational fieldΦ and the effective Newtonian curvatureΨ
modified by the presence of extrinsic. The related effec-
tive Newtonian function Ge f f was calculated numerically
to constrain the parameters (γ0,β0) of the model since
Ge f f constrains Ge f f ca=0 = 1 and Ge f f ca=1 = 1 must be
in compliance of both Big Bang Nucleosynthesis and solar
constraints. To guarantee aΛCDM background as an ini-
tial reference for comparison, the η0 parameter was fixed
to zero and was used to analyze the two Γ-solutions that
appear in the bending function b(t ) as shown in Eqs.(20)
and (21). It is important to note that the obtained Ge f f

function does not depend on the Γ-solution and rein-
forces its use to constrain the values for the parameters.
Moreover, we obtained a tight range for allowed values
for β0 = [1.9,3] and γ0 < 0.001. The resulting numerical
analysis of growth equations leads to both scenarios of
overdensities and a mild damping the growth of struc-
tures (for a specific case with β0 = 2.3) as compared with
ΛCDM and GR quintessence. This results pinpoint an in-
teresting direction to discussion of local voids within the
dark matter halos debate. It was also shown the relative
comparison of the β-model with GR Lambda in which
we obtain a range of 10% up to 14% of amplification of
the matter fluctuations. This shows an indication of the
extrinsic curvature dynamics may provide the necessary
gravitational power to explain the growth of matter at
large scale and the accelerated regime in the expansion
of the universe and may imprint signatures on the CMB
power spectrum.

In addition, we also have studied the evolution of the
effective Newtonian potentialsΦ andΨ. We have found
a robust numerical compatibility between the initial pri-
ors and related results that indicate a mild difference of
those effective fields at early times and a convergence
at late times to a lower values close to 1 that indicate a
new physics different from GR. Those mild differences
and fluctuations can be amplified with a consideration
of the anisotropic stress from matter. Finally, we intend

to investigate further the implications of the obtained
growth equation within a larger approach considering
anisotropic matter stress and the level of sensibility the
viscosity parameter within this framework. Also, the inte-
grated Sachs-Wolfe effect to analyse an signature on CMB
power spectrum will be a subject of future research.
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