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ABSTRACT

Several herbivores feed on maize in field and storage setups making the development of multiple-
insect resistance a critical breeding target. In this study, an association mapping panel of 341
tropical maize lines was evaluated in three field environments for resistance to FAW whilst bulked
grains were subjected to MW bioassay, genotyped with Diversity Array Technologies single
nucleotide polymorphisms (SNPs) markers. A multi-locus genome-wide association study
(GWAS) revealed 62 quantitative trait nucleotides (QTNs) associated with FAW and MW
resistance traits on all 10 maize chromosomes, of which, 47 and 31 were discovered at stringent
Bonferroni genome-wide significance level of 0.05 and 0.01, respectively, and located within or
close to multiple-insect resistance genomic regions (MIRGRs) concerning FAW, SB, and MW.
Sixteen QTNSs influenced multiple-traits of which six were associated with resistance to both FAW
and MW suggesting a pleiotropic genetic control. Functional prioritization of candidate genes
(CGs) located within 10-30kb of the QTNs revealed 64 putative GWAS-based CGs (GbCGs)
showing evidence of involvement in plant defense mechanisms. Only one GbCG was associated
with each of five of the six combined-resistance QTNSs, thus, reinforcing the pleiotropy hypothesis.
In addition, through In-silico co-functional network inferences, an additional 107 Network-based
CGs (NbCGs), biologically connected to the 64 GbCGs, differentially expressed under biotic or
abiotic stress were revealed within MIRGRs. The provided multiple-insect resistance physical map
should contribute to the development of combined-insect resistance in maize.
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INTRODUCTION

Despite the importance of maize (Zea mays L.) for food security, income, livestock feed, and
biofuel products and its large production area, grain yield remains low in sub-Saharan African
(SSA) countries, averaging less than 1.8 ton/ha due to a barrage of biotic and abiotic stresses (1).
Maize faces several yield-limiting factors among which biotic stresses such as insect pest attacks
(1-3) start in the field with a range of voracious phytophagous pests that include stem borers, leaf
feeders, phloem feeders, and root feeders (4). In SSA, field and storage pests cause estimated yield
losses ranging from 10 to 90% of the seasonal production (5,6). Recently, fall armyworm (FAW),
Spodoptera frugiperda Smith (Lepidoptera, Noctuidae), migrated to Africa through West and
Central African countries (7) and has since spread throughout the continent (8). The pest is now a
threat to food security in Africa owing to its voracious and polyphagous nature resulting in
substantial yield losses in maize production (1). Besides, storage pests (SP) such as the maize
weevil (MW), Sitophilus zeamais Motsch (Coleoptera: Curculionidae), and the larger grain borer
(LGB), Prostephanus truncatus Horn (Coleoptera: Bostrichidae), have a substantial share in these
losses, especially in Africa where poor storage facilities expose stored grains (5,9).

Chemical control measures are widely used to reduce maize yield losses incurred from attack by
field insect pests, and MW and LGB on stored grains. However, insecticides, although efficient in
reducing insect pressure, pose a significant health hazard to maize consumers and are harmful to
the environment (1,10). Furthermore, pesticides are unaffordable to small scale farmers in Africa
and may result in the development of chemical resistance in insects, and the emergence of
secondary pests. Also, the application of insecticides in the field represents a threat to nontarget
organisms including natural enemies of insect pests like FAW (1,10,11). Another control measure
is host-plant resistance (HPR), which is the inherent plant ability to limit insect damage through
various defense mechanisms provided by its genetic make-up (12,13) and is fully compatible with
all other IPM. Host plant resistance at its highest level can be exclusively applied to thwart insect
attacks without expensive and controversial interventions. Considering the plethora of insect
species that either simultaneously or concurrently attack all maize parts, including leaves, stems,
kernels (4), the development of HPR should target multiple-insect resistance (14).

Understanding the genetic basis of multiple-insect resistance is critical to the control of
combinatorial attacks from field and storage insect pests which are critical constraints to maize

productivity and storability, especially in sub-Saharan Africa, causing both high yield and grain
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quality losses through damage and mycotoxin contaminations. However, most genetic,
biochemical, and genomics studies on plant resistance mechanisms were directed towards
understanding maize resistance mechanisms to single-insect pests (15). Using the single-insect
paradigm, several QTL for maize resistance to insects were discovered for FAW, stem borers (SB),
and SP. These were meta-analyzed in a previous study to better understand the genetic basis of
maize resistance to multiple-insect pests and explore avenues of multiple-insect resistance
breeding (16). However, there was a paucity of African germplasm in these meta-analyses since
very few quantitative trait loci (QTL) mapping studies were conducted for SB (17) and SP (18)
and no study had been carried out for maize resistance to FAW. Therefore, the meta-QTL (MQTL)
information resulting from these meta-analyses can not be confidently used in African breeding
programs targeted at developing maize varieties resistant to multiple insect pests. The challenges
encountered in the extrapolation of these results to African backgrounds also stem from the co-
evolutionary basis of maize-insect interaction characterized by a concomitant development and
deployment of plant defense and insect counter attack mechanisms that could substantially vary
from one background to another (19-21).

Currently, genome-wide association studies (GWAS) constitute the most advanced strategy for
mapping regions of the genome of a species that are associated with a phenotype or a set of traits
of interest to plant and animal breeders and geneticists (22). Compared to biparental QTL analyses,
they take advantage of the high diversity and multiple recombination history that is available in
natural populations to narrow down QTL resolution to the nucleotide level (i.e. quantitative trait
nucleotide (QTN)) and allow increased statistical power (23). In Maize, GWAS was used to map
several complex traits including disease and insect resistance, for example, resistance to maize
chlorotic mottle virus and maize lethal (24) and response to the Mediterranean corn borer (MCB)
(25-27). However, to the best of our knowledge, no GWAS was reported on Africa-adapted maize
germplasms for their response to locally occurring insect pests such as FAW and MW.

A logical follow up to mapping studies is the identification of promising candidate genes (CGs)
around the QTNs associated with the traits of interest to help interpret their biological significance
(28). However, not all genes neighboring a QTN are functionally associated with the regulation
of the traits in consideration, and often, the genes could be numerous, therefore, requiring filtering
to come up with a list of high confidence CGs (29). A prioritization of the CGs identified within a

defined window containing QTNSs is necessary to avoid expensive validation experiments of
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numerous potentially unfit genes (30). In maize, the prioritization of CGs based only on the
available genetic information related to the genes is limited, since only 1% of the maize genome
is annotated (31,32). Therefore, in prioritizing CGs, integrative approaches involving ontology-
based semantic data integration with expression profiling, comparative genomics, phylogenomics,
functional gene enrichment, and gene network inference analyses represent a promising alternative
(30,33,34). Such an approach would take advantage of the extensive genomic information
available in maize and its sister species such as rice (Oryza sativa) and its more extant relative
Arabidopsis thaliana (35-37).

Therefore, in this study, we conducted a GWAS to identify QTNs for resistance to either FAW or
MW or both insect pests in a diverse association mapping panel (AMP) composed of a genetically
diverse set of maize inbred and doubled haploid (DH) lines developed in a wide range of African
agro-ecologies. Such diverse populations are suitable for GWAS analyses on traits such as insect
resistance, owing to the high genetic diversity and rapid linkage disequilibrium (LD) decay that
characterizes tropical maize germplasm (38). Also, the GWAS results were compared with those
of the QTL-meta-analysis conducted earlier (16) to assess the consistencies of the positions of the
insect resistance-associated genomic regions. Furthermore, to establish a list of promising CGs for
insect resistance that could be incorporated in molecular breeding programs, a suite of functional
genomics approaches were used to identify, functionally characterize, and prioritize genes located

in the vicinity of markers and genomic regions associated with maize resistance to insect pests.

MATERIAL AND METHODS

Association mapping panel (AMP) establishment and field planting
The AMP used in this study consisted of 358 maize lines from a diverse genetic and geographic

background sourced from the National Crop Resources Research Institute (NaCRRI/Namulonge,
Uganda), the International Institute for Tropical Agriculture (IITA/Ibadan, Nigeria) and The
International Maize and Wheat Improvement Center (CIMMY T/Nairobi, Kenya). The AMP was
composed of 71 inbred lines developed for various purposes at NaCRRI, five stem-borer-resistant
inbred lines from 1ITA, 28 stem borer (SB)-resistant (39,40), 19 storage pest (SP)-resistant inbred
lines (41,42) and four doubled haploid (DH) populations of 235 lines developed from insect-
resistant parents at CIMMYT. The DH lines from CIMMYT were developed from six parents of

which three were stem borer-resistant and one was a storage pest-resistant inbred line (these were


https://doi.org/10.20944/preprints202005.0337.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 May 2020 doi:10.20944/preprints202005.0337.v1

also included in the AMP) and two were CML elite lines (one, CML132 was included in the AMP)
(Table S1).

The AMP was planted in an augmented design in three environments in Kasese (316 lines
including six replicated in 12 blocks) during the second rainy season (2017B) and at Namulonge
in 2018 (92 lines including two checks replicated in five blocks) and 2019 (252 lines including
four checks replicated in 10 blocks) both during the first rainy seasons (2018A and 2019A,
respectively). Each combination of location and season was considered an environment amounting

to three environments.

Genotyping and quality control and assurance of SNP markers

Maize leaves at the sixth-leaf stage of development were harvested from 5-10 plants per plot in
2017B and completed in 2018A (for lines not captured in 2017B), oven-dried overnight at 35
degrees Celsius and shipped to the Biosciences east and central Africa (BecA) of the International
Livestock Research Institute (ILRI, Kenya) for genotyping. Diversity Array Technology (DATrT)
genotyping facilities (43) were used to identify 34509 SNPs from 341 lines of the AMP. For quality
assurance of the genetic data prior to further genomic analyses, duplicate SNPs were first removed
using the R package DartR (44) to remain with 28919 unique SNPs (DRSNP). To reduce the
negative effect of GWAS multiple-testing on the association discovery statistical power, the 28919
DRSNPs were pruned based on linkage disequilibrium (LD) among SNPs (r>=0.2 and window
size=500,000 bp). This operation was performed using the R package SNPRelate (45) and allowed
to reduce the number of SNPs considered for GWAS to 3124 SNPs in LD (LDPSNPs) spanning
the whole maize genome with a fairly even marker distribution (Figure S1). The 3124 LDPSNPs
were then imputed in TASSEL 5 with the LD KNNi imputation method (46).

FAW damage scoring and MW bioassay

After germination, plants were left unprotected to allow sufficient natural pressure from FAW
population. FAW damage scoring in all three environments was carried out two months after
planting based on a visual assessment on a scale of 1 (no or minor leaf damage) to 9 (all leaves
highly damaged) as described by (47) and illustrated in Figure S2 (48).

Rearing and bioassay MW was performed as described in previous experiments carried out at
NaCRRI (49,50). Weevils were reared prior to the bioassay to obtain enough insects aged between

0 to 7 days for infestation. During rearing, standard conditions were provided to weevils to ensure
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proper acclimatization during the experiment. Rearing was carried out by creating a weevil-maize
grain culture of 300 to 400 unsexed insects and 1.5 Kg of grains contained in 3000 cm? plastic jars
incubated for 14 days in the laboratory at a temperature of 2842 <C and relative humidity of 7045%,
to enhance oviposition. The lids of the jars were perforated and a gauze-wire mesh of pore size
smaller than one mm was fitted in each of the lids to allow proper ventilation while preventing the
weevils from escaping.

After harvest and shelling, 30 grams of grains from each line of the AMP were weighed from a
bulk of all three environments with the aim of having three replicates per genotype. Due to the
limited seed quantities, 64 lines were replicated thrice, 123 lines were replicated twice and 132
once. Each of these samples was wrapped in polythene bags and kept at -20<C for 14 days to
eliminate any weevil infestation prior to the start of the experiment. After this disinfestation
process, samples were left to thaw and transferred into 250 cm?® glass jars and infested with 32
unsexed weevils. After 10-days incubation to allow oviposition, all dead and living adult insects
were removed. One month after infestation (MAI), each sample was removed from its jar, and the
grains and the flour were separated and their weights were recorded. The total number of holes
inflicted by the weevils on the grains were counted along with the number of holed grains. Also,
the number of dead and living weevils was recorded. After these measurements were collected,
the grains were returned to their respective jars and all the measurements were repeated at 2 and 3
MAI. The collected data were used to infer for each sample, the cumulative grain weight loss
(GWL), the cumulative number of emerged adult weevil progenies (AP), the cumulative number
of damage-affected kernels (AK), the cumulative number of holes on grains (NH), and the

cumulative weight of the flour produced (FP).

Statistical analyses of the phenotypic data

Analysis of variance (ANOVA) was performed using the package Ime4 (51) implemented in the
R environment (52) to determine genetic variability among the lines of the AMP for the MW and
FAW resistance traits. The linear model for MW traits (GWL, AP, AK, NH, and FP) was as follows:
Y = u+ Replication + Genotype + Error @Y
The models for FAW damage scores for FAW in single and across environments were as follows:
- FAW individual environments 2017B and 2019A: Y = u + Block + Genotype + Error (2)
- FAW individual environment 2018A:
Y = u + Replication + Block + Genotype + Error 3)

6
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The FAW across environments model was:

Y = u + Location + Block + Genotype + Location: Genotype + Error (4)
Where: u is the grand mean of the target trait.

The genotype-based heritabilities (H?) for MW and FAW resistance traits were calculated on a
genotype mean basis (53) using variance components obtained from a mixed model considering
the effects of all the factors present in models 1, 2, 3, and 4 as random using the following formulas:

Variance Genotypes

For MW resistance traits: H? =

Variance Genotypes+(Variance Error/NR)’

Variance Genotypes

For FAW damage scores in 2017B and 2019A: H? =

Variance Genotypes+Variance Error

Variance Genotypes
Variance Genotypes+(Variance Error/NR)’

For FAW damage in 2018A: H? =

For FAW damage scores across environments:

2 _ Variance Genotypes
Variance Genotypes+((Variance Genotypes:Enviroments+Variance Error)/NE)

Where: NE is the number of environments and NR is the number of replications

Then for the GWAS analyses of maize resistance to MW traits and FAW damage scores across
environments, mixed models 1 and 4 were used to extract best linear unbiased predictors (BLUPS)
using the package Ime4 (51). Pairwise Pearson correlations among BLUPs of MW and FAW
resistance traits were computed and visualized with the R package PerformanceAnalytics
(https://cran.rproject.org/web/packages/PerformanceAnalytics/index. html).

Linkage disequilibrium (LD), population structure and kinship matrix

The software TASSEL v5.2 (46) was used to calculate LD with the squared Pearson correlation
coefficient (r?) between pairs of SNPs, and principal components (PCs) and kinship matrix to infer
population structure and cryptic relatedness with the AMP. The LD decay graph, plotting the r?
between pairs of SNPs against their pairwise physical distance and showing the average pairwise
distances at which LD decayed at r? = 0.1 and 0.2, was generated as described earlier (27,54) based
on Remington et al.(55). The kinship matrix was generated using the centered-identity by state
(Centered-IBS) function. Also, 345 PCs accounting for 100% of the variance explained by the
3124 LDPSNPs were generated.
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Genome-wide association mapping

The BLUPs for all traits were transformed using the R package bestNormalize (56) that tests a
suite of normalizing transformation methods on the values of each trait and chooses the one that
fits best the data based on a goodness of fit statistic. A multi-locus genome-wide association study
(GWAS) was conducted for all MW and FAW traits using both transformed and untransformed
BLUPs with the 3124 LDPSNPs to allow comparing the results and choosing the best based on
the Manhattan and QQ-plots. The multi-locus GWAS was conducted using the Fixed and random
model Circulating Probability Unification (FarmCPU) package (57) implemented in R packages
Genome Association and Prediction Integrated Tool (GAPIT) (58) and Memory-Efficient,
Visualize-Enhanced, Parallel-Accelerated GWAS Tool (rMVP) (https://github.com/
XiaoleiLiuBio/rMVP ), to solve the mixed problem of false positive and false negative SNPs
usually encountered in the traditional mixed linear model (MLM) (59-61). For that, FarmCPU

uses a modified MLM, the multi loci mixed model (MLMM) to incorporate both kinship matrix
and PCs to account for the varying relatedness and the population stratification present among the
lines in the AMP (57). To control population structure which can differentially affect traits in an
AMP (30,62,63), the number of PCs included in the GWAS models for each trait was gradually
increased until achievement of an adequate control of the false positive and false negative rate
through inspection of the quantile-quantile plot of the observed against the predicted negative
log10 (P-values) of each of the 3124 LDPSNPs (30,64). The number of PCs included for the
analysis of each trait is presented in Figure S3.

Three Bonferroni genome-wide significance levels (BGSL): 1, 5, and 30% (for suggestive
associations) were used to identify SNPs significantly associated with resistance traits. Based on
the B73 maize genome reference (AGPv4) coordinates, the physical positions of the SNPs
significantly associated with any of the resistance traits were compared with those of the MQTL
identified in the previous study of Badji et al.(16). It should be noted that this map was earlier
enriched with additional QTL for maize resistance to spotted stem borer (SSB) and African maize
stalk borer (AMSB) (17), MW (18) in African backgrounds, the Asian corn borer (ACB) (65), and
FAW and southwestern corn borer (SWCB) (66-68) and QTLs for benzoxazinoids content(69—
71). Based on the AGPv4 coordinates of QTL and MQTLs, a physical map was generated and
visualized using MapChart V2.3 (72).
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Candidate gene (CG) designation
Pre-CGs (pre-CGs) identification around the QTNs for maize resistance to FAW and MW

Genes containing or located within a 10,000 base pairs (10Kb) window including the QTNs for
single or combined resistance to FAW and MW were recorded as pre-CGs on the B73 maize

reference genome (AGPv4) on the Ensembl Plant databases (http://plants.ensembl.org/Zea_mays).

This search window was extended to 30Kb when no gene was discovered within the immediate
10Kb containing the QTN. The genetic information related to these pre-CGs, namely: gene name,
description, and AGPv4 coordinates, was retrieved from the maize genome database

(https://www.maizegdb.org/) and their canonical protein sequences were downloaded from the

same database. The distance that separates each pre-CG from its respective QTN (DQTN) was
calculated based on their AGPv4 respective coordinates as the difference between the end position
(for genes upstream the QTNS) or start position (for genes downstream the QTNSs) and the position

of the QTN they were associated with.

Pre-CGs prioritization through a suite of functional characterizations

In-silico expression analyses of the pre-CGs
To determine whether the expression of any of the pre-CGs are up- or downregulated under certain

biotic and abiotic stress conditions, and to reveal in which maize organs and developmental stages
they were expressed, an In-silico differential gene expression analysis was carried out using the
condition search tools, ‘Perturbation’, ‘Anatomy’, and ‘Development’, respectively, of the
software GENEVESTIGATOR V7.4.0 (https://genevestigator.com/gv/doc/intro plant.jsp) (73).

For these analyses, the maize microarray platforms, mMRNA-seq Gene Level Zea mays (ref: AGPv4)

was used to evaluate the expression levels of the pre-CGs. From this platform, for the
‘Perturbation’, ‘Anatomy’, and ‘Development’ analyses, only maize experiments relevant to biotic
and abiotic stresses were selected and the In-silico experiments were performed separately for each
category of stress whilst including in the biotic stress category plant biochemicals reported to have
an influence in biotic stress resistance, for instance, jasmonates and jasmonate-like chemicals. The
In-silico pre-CG differential expression analyses were also conducted using the Gene Expression

Atlas (https://www.ebi.ac.uk/gxa/home) (74) and Zea mays for maize was chosen as a species.

Options “Treatment”, “Growth conditions”, “Biotic plant treatment”, “Stimulus”, “Infect”, and
“Environmental stress” were checked and experiments not concerned with biotic or abiotic stress

were filtered out.
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Identification of conserved domains within the protein sequences of the pre-CGs
A protein conserved domain search was performed for the pre-CGs on the national center for

biotechnology information (NCBI) conserved domain (CD) database (https://www.
ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) using the CDD\SPARCLE Batch Web CD-Search
Tool with default parameters (75).

Identification of pre-CG orthologs and co-expression analysis
For functional inferences, A. thaliana and rice (Oryza sativa) orthologs of the pre-CGs were

identified wusing the ortholog search tool of the web-based database g:Profiler

(https://biit.cs.ut.ee/gprofiler) and their gene ids and functional information were retrieved. The

protein sequences of the A. thaliana genes were downloaded from TAIR (https://www.

arabidopsis.org/tools/bulk/sequences/index.jsp). For the rice genes, the gene ids were converted

from the RAP to the MSU formats using the Id Converter tool from the Rice Annotation Database

(rap-db) (https://rapdb.dna.affrc.go.jp/tools/converter) and their protein sequences were retrieved

from the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/downloads_gad.

shtml). A whole-genome co-expression analysis between the pre-CGs and their rice and A.
thaliana orthologs was conducted using the gene protein sequences tool on the web-based server
OrthoVenn 2 (https://orthovenn2.bioinfotoolkits.net) (76).

Pre-CG prioritization

The functional information obtained either from the pre-CG (functional and conserved protein
domains information) or inferred from their co-expressed orthologs (gene functional information)
was searched in the scientific literature along with several plant biotic and abiotic stress-related
keywords to ascertain relation with plant defense mechanisms. This information along with the
results from the In-silico expression analyses were considered as evidence of involvement in plant
defense mechanisms. Then, pre-CGs were classified into three categories (CGC): A (more than
one evidence), B (only one evidence), and C (no evidence), and those falling within A and B

categories were considered as putative GWAS-based CGs (GbCGs).

Network-assisted CG discovery for multiple-insect resistance

The putative GbCGs were used to discover other functionally connected genes located within the
multiple-insect resistance genomic regions (MIRGRS) determined in a previous study (16). The

maize co-functional network database, MaizeNet (http://www.inetbio. org/maizenet/) (77) was

used to identify maize genes functionally connected to the GbCGs used as guide genes. The
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network-based CGs (NbCGs) with connectivity scores to the guide genes higher than 5 were
assessed for In-silico differential expression using the Gene Expression Atlas (GXE) (74) with the
same parameters as described earlier in this paper. The genes up- or downregulated were selected
and their genomic locations were checked within the IRGRs to designate them as NbCG for maize

resistance to insect pests.

Interactions among CGs

To investigate the possible interactions among the CGs (GbCGs and the NbCGs) as evidence of
their involvement in a network-like defense mechanism, protein-protein interaction analyses were
carried out by submitting protein sequences of both CG groups to the STRING v11 database

(http://string-db.org/) (78). Also, pathway functional enrichment analyses were conducted for the

CGs using the Ghost tool of the web-based platform g:Profiler Beta
(https://biit.cs.ut.ee/gprofiler/gost#) using a Bonferroni correction threshold of 0.05 (79). The

interaction network of the Gene Ontology Molecular function was visualized using the software
EnrichmentMap (80) implemented in the software Cytoscape V3.7.2 (79).

RESULTS
Trait variance, heritability, and correlations

There was a highly significant (P<0.001) genetic variation among the lines of the AMP for FAW
and all MW resistance traits collected and analyzed in this study, except FAW damage in 2017B
which was significant at P>0.01. For FAW resistance traits, the genotypic effect was highly
significant in 2018A, 2019A, Across environments (P<0.001) and in 2017B (P<0.01). All other
factors showed at least a 5% significant difference, except the block effect in 2019A (Table 1).

Table 1. Analysis of variance for maize resistance to fall armyworm (FAW) damage in Kasese 2017B (2017B),
in Namulonge 2018A (2018A), and 2019A (2019A) and across environments (Across Env.)

Source of variation Df 2017B Df 2019A Df 2018A Df Across Env.
Genotype 315 1.51** 251  3.12*** 91 3.48*** 357 2.76%**
Block 11 3.75%** 9 1.59ns 4 7.17%** 11 2.41*
Replication 1 26.95%**

Environment 2 270.57***
Genotype*environment 300 2.14%**
Residuals 9 0.25 49 0.90 123 1.12 195 1.12

H? 0.80 0.72 0.67 0.25

Significance codes: 0.001 “***> (.01 “**’ 0.5 *

Df=degrees of freedom; H?=entry mean-based broad-sense heritability, ns=non significant.

2017B = Kasese 2017B; 2018A = Namulonge 2018A; 2019A = Namulonge 2019A; and Across Env = across
environments.
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For MW resistance traits, all genotype effect were highly significant (P<0.001) and the effect of
the replications was only significant (P<0.5) for adult progeny emergence (AP) and the number of

holes (NH) (Table 2). Heritability values for FAW damage scores were high in individual

Table 2. Results of the Analysis of variance for maize weevil (MW) resistance traits

Source of variation Df AK AP FP GWL NH
Genotype 131 4795.47*** 5947.91*** 256*** 19.11*** 13070.89***
Replication 2 3668.67ns 1215.68* 0.07ns 1.54ns 2660.36*
Residuals 200 1218.15 1383.90 0.16 2.83 3417.45
H? 0.79 0.79 0.95 0.87 0.78

Significance codes: 0.000 “****(0.001 “*** 0.1 <’

AK=number of affected kernels, NH=number grain holes, AP=number of emerged adult progenies, FP=total amount
of flour produced, and GWL=grain weight loss.

Df=degrees of freedom; H?=entry mean-based broad sense heritability.

environments varying from 0.67 in 2018A to 0.80 in 2017B (Table 1). However, the H? for FAW
damage scores across environments was relatively low (H?=0.25) as a result of high significance
(P<0.001) of environmental influence factors and their interaction with the genotypes (Table 1).
Traits related to MW resistance recorded high heritability (H?) values ranging from 0.78 for Grain
weight loss (GWL) to 0.95 for flour production (FP) (Table 2). Pearson correlations (R) among
MW resistance traits were highly significant whilst FAW damage was poorly and mostly

negatively correlated to MW resistance traits, and all nonsignificant (Figure 1). The R values for

® = as os 18 z2s s o s wm

15 a1 45 &0

e

0.89

e

0.79

e

0.565

e

ovz2 -

NH

Figure 1. Pairwise Pearson phenotypic correlation among FAW damage and MW traits.
AK=number of affected kernels, NH=number grain holes, AP=number of emerged adult progenies, FAW=Fall
armyworm, FP=total amount of flour produced, and GWL=grain weight loss.
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MW resistance traits ranged from 55% between FP and NH to 89% between AK and NH.
The R values were the lowest whenever FP was included in a pairwise correlation with other
MW resistance traits with R ranging from 55% (FP vs. NH) to 60% (FP vs. AP).

Association mapping for MW and FAW resistance traits

Linkage Disequilibrium and effective control of population structure and kinship
Whole-genome linkage disequilibrium (LD) was computed using the 3124 LD-pruned SNP

markers and the genome-wide LD decay plot was generated from the LD (r?) between adjacent

pair of markers in the y-axis and the distance in kb in the x-axis (Figure 2). A rapid LD decay

0.20
|

0.10
|

0.00
|

| | | | | |
0 200 400 600 800 1000

Distance (kb)

Figure 2: Linkage disequilibrium (LD) plot representing the average genome-wide LD decay in the
panels with genome-wide markers. The values on the y-axis represent the squared correlation

coefficient r? and the x-axis represents the physical distance in (kb)

characterized the AMP with the average physical distance increasing from 7.92 to 22.7
when the cut-off point decreased from r?> = 0.1 to 0.2, which was promising for GWAS
and CGs. The association mapping panel (AMP) used in this study was composed of
maize lines of diverse origins suggesting the existence of population structure as
highlighted in Figure 3. However, the relative clustering of these subpopulations was not
well defined (no group was clearly separated from the other ones) due to the complex
kinship relatedness shared by the majority of the lines. This population structure leads to
biased SNP-trait associations if not properly accounted for in this study. Therefore,
allocating an adequate number of PCs for each trait (Figure S2) and including a kinship
relationship matrix minimized the rate of false positives and negatives as evidenced in

Figure 4. The QQ-plot in Figure 4A shows that the population parameters (kinship and
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Figure 3. 3D and 2D Distribution of the maize lines composing the association mapping panel
according to the first three principal components (PC1, PC2, and PC3) generated from the
3124 LD-pruned markers
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Figure 4. Combined quantile-quantile (A) and Manhattan (B) plots derived from the genome-wide association
analysis for fall armyworm (FAW) damage and maize weevil (MW) traits. Bonferroni genome-wide
significance levels of 0.01 (upper line), 0.05 (middle lines), and 0.3 (lower line) on B.

population structure) were effectively controlled for all traits analyzed, hence, minimizing the rate
of both false positive and false negative associations. Besides, both original and transformed
BLUPs of all the FAW and MW resistance traits were tested in the GWAS analyses. Analysis with
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transformed BLUPs generated better-looking plots than those with the non-transformed BLUPs
for most traits except GWL and FP for which population parameters could only be successfully
controlled using the transformed BLUPs. Several SNP-trait associations or quantitative trait
nucleotides (QTNSs) were discovered at very stringent Bonferroni genome-wide significance levels
(BGSL) of 0.05 and even 0.01 for all the resistance traits analyzed (Figure 4B).

Single and multiple-trait associated traits
Sixty-two QTNs distributed on all the 10 maize chromosomes were significantly (at least below

0.3 BGSL) associated with either single or both MW and FAW resistance traits, of which, 47 and
31 were significant at 0.05 and 0.01, respectively (Table 3). Chromosomes 6 and 7 did not harbor
any QTN associated with FAW damage resistance whereas all 10 chromosomes were involved in
at least one QTN for maize resistance to MW. Of the 62 QTNs, 14 were found to influence
response to FAW (9 QTNs at 0.05) while many other QTNs were associated with resistance to
MW traits such as GWL (17 QTNs of which 14 at 0.05), FP (17 QTNs of which 7 at 0.05), AK
(13 QTNs of which 6 at 0.05), AP (10 QTNs of which 7 at 0.05), and NH (8 QTNSs of which 4 at
0.05). Sixteen QTNs were associated with resistance to multiple-traits of which six were associated

with resistance to both FAW and MW suggesting possible pleiotropic effects.

Table 3. List of the 62 QTNs associated with resistance to fall armyworm (FAW) damage and maize
weevil (MW) traits.

Chr.Bin Position SNP-Alleles? P.value Effect  Trait BGSL
1.02 18,282,139  2544389-10-G/C  8.49E-05 -0.61926 GWL 0.3
1.02 21,511,322 2399751-6-C/A  3.95E-06 0.397572 AP 0.05
1.04 69,429,238 5584129-55-C/T  1.20E-13 -1.34659 AK 0.01
1.04 69,747,754 4580363-8-A/G 1.79E-05 -0.45677 AK 0.3
1.08 238,892,103  4583673-29-G/C  6.29E-06 -0.45143 GWL 0.05

3.83E-07 -1.39669 GWL 0.01
6.36E-05 -0.56467 FAW 0.3
4.88E-05 -0.56303 NH 0.3
5.98E-05 -0.59983 AK 0.3
1.11 285,936,150  4580090-67-T/C  8.37E-07 0.796615 GWL  0.01
1.12 305,156,544  2382596-67-A/G  1.63E-10 -0.36002 FAW  0.01
2.02 6,741,658 2452223-17-AIG  6.79E-06 0.213179 FAW  0.05
2.04 30,341,425  4771831-60-G/T  2.22E-06 -0.61067 AK 0.01
2.04 35,377,279  4767220-53-G/A  1.64E-05 -0.52503 AK 0.3
1.01E-09 0.473004 FP 0.01
1.35E-09 0.752083 GWL 0.01
3.13E-06 -0.41627 AP 0.01
7.09E-05 0.289661 FP 0.3
2.06 154,630,564  2448649-48-G/A  5.41E-05 -0.18627 FAW 0.3

1.09 263,624,976 100024832-19-A/C

1.09 264,933,475  4583685-9-G/A

2.04 40,608,209 2388222-45-G/C

2.05 140,747,202  2435073-40-T/C
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Chr.Bin Position SNP-Alleles? P.value Effect Trait BGSL
2.08 213,714,960  4583437-30-G/C  3.16E-05 0.195599 FP 0.3
2.08 221,951,608  4765698-16-A/G  2.42E-05 -1.02779 AK 0.3
2.10 236,778,497 100130818-44-A/G 1.70E-05 0.391072 FP 0.3
2.10 236,789,029  4591349-29-A/G  5.73E-06 0.366018 GWL  0.05

1.74E-08 -0.52816 FAW 0.01
3.01 2,734,515 9714175-54-CIG 188E-05 0885829 NH 03
3.43E-07 -0.51944 FAW 0.01
3.02 4,141,348 4764930-10-C/T 114E-05 -103199 GWL 005
3.04 17,591,392 4772102-17-T/G  2.15E-05 0.305217 FP 0.3
2.15E-10 0.966386 GWL 0.01
3.04 71,004,409 4593663-22-G/A 2 55E-07  0.48656 Fp 0.01
3.06 179,391,224  2446859-65-C/G  9.98E-06 -0.30607 AP 0.05
3.07 201,766,146  4584446-12-G/C  1.08E-06 0.493102 NH 0.01
3.09 227,436,274  4583173-13-T/C  9.21E-06 -0.62512 GWL 0.05
4.03 19,181,255 2381322-13-C/G  5.34E-09 0.202627 FAW 0.01
4.04 24,984,097 4779016-24-C/T  5.56E-05 0.468163 NH 0.3
4.05 48,323,977 4577027-47-G/A 1.75E-05 0.551228 GWL 0.3
9.85E-06 0.184883 FAW  0.05
4.05 78,882,987 100220678-45-A/G 2 12E-05 0324198  EP 03
4.08 180,072,262  4771330-29-T/C  3.40E-07 -0.8024 NH 0.01
4.08 188,548,237  2619648-16-T/C  3.79E-06 -0.91698 GWL 0.05
5.02 8,372,190 4589321-22-G/A  7.07E-06 -0.67142 AK 0.05
5.03 32,460,125 7048960-37-T/G  1.22E-06 -0.75462 NH 0.01
5.04 134,168,179  7049219-26-T/C  5.10E-05 0.16596 FAW 0.3
5.04 155,012,378  4584182-35-C/G  2.64E-05 -0.16674 FAW 0.3
5.07 204,689,646  4774140-50-G/A  1.51E-05 0.372348 FP 0.05
2.68E-06 -0.65839 AK 0.01
6.01 9,188,598 4587005-7-C/G 838E05 041379 NH 03
6.01 77,513,355 4771590-67-A/T  4.69E-05 0.299541 FP 0.3
6.03 103,106,812  5586936-13-T/C  5.07E-05 0.312373 FP 0.3
6.06 157,597,555  4579331-18-T/C  1.90E-06 0.544151 AP 0.01
5.19E-06 -0.61458 FP 0.05
6.08 169,246,523 4764931-6-G/A BO2E05 066184 AP 03
7.01 5,750,453 4771072-39-A/G  6.80E-05 0.428352 GWL 0.3
7.03 152,580,067  5587204-51-A/C  2.45E-05 -1.30905 AK 0.3
4.84E-07 -0.57199 GWL 0.01
7.05 173,989,867  4580355-27-G/A S 08E07 0406797 AP 0.01
8.00 328,928 4773640-63-T/A  7.16E-08  0.34059 FP 0.01
8.02 16,558,612 4770550-8-G/C 6.47E-06 0.374068 GWL  0.05
8.03 99,111,439 2504966-32-A/G  9.62E-06 0.264805 FAW  0.05
6.26E-05 -0.15544 FAW 0.3
8.05 146,321,767  2559495-18-T/G 831E.05 054446 AK 03
3.08E-06 0.570008 GWL 0.01
8.08 170,354,517  2610943-54-T/C 953E05 037079 AP 03
8.09 176,518,972  2376195-62-T/G  7.58E-05 0.393732 FP 0.3
8.09 180,177,242  4579847-66-T/G  6.92E-05 0.277417 FP 0.3
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Chr.Bin Position SNP-Alleles? P.value Effect Trait BGSL
9.03 61,164,617 4771587-19-T/C  6.24E-07  -1.9427 AK 0.01
4.20E-05 -0.52317 AK 0.3
8.20E-05 0.288404 FP 0.3
5.68E-10 0.797225 FP 0.01
4.41E-06 -0.34413 FAW 0.05
9.05 133,252,665  4764675-42-C/G  2.69E-05 -0.52765 AP 0.3
9.06 141,396,844  2425091-21-G/A  4.50E-10 0.689575 NH 0.01
10.04 89,412,526 4582917-12-A/G  1.05E-07 0.571392 GWL 0.01
2.39E-10 0.767475 GWL 0.01
10.04 99,693,244 2539012-9-A/C 1.87E-06 0.363841 FP 0.01
3.21E-06 -0.44639 AP 0.05
10.04 106,804,143 100298755-56-T/C 2.20E-08 -0.31497 FAW 0.01
10.04 125,628,521  4776702-53-G/A  1.89E-07 1.750698 AK 0.01
10.05 136,798,456  7061499-37-A/G  1.29E-12 0.547738 AP 0.01

aThe allele before the slash (/) increases the trait and the allele after the slash decreases the trait. Bonferroni
genome-wide significance level (BGSL). AK=number of affected kernels, NH=number grain holes,
AP=number of emerged adult progenies, FP=total amount of flour produced, and GWL=grain weight loss.
QTNs in bold are associated with both FAW and MW resistance.

9.04 120,457,334 100023814-29-T/G

9.05 129,393,054  9682691-38-C/T

The QTNs for multiple-insect resistance are 100024832-19-A/C at position 263,624,976 on
chromosome 1 for GWL and FAW, 9714175-54-C/G at position 2,734,515 for FAW and NH and
4764930-10-C/T at position 4,141,348 for FAW and GWL both located on chromosome 3,
100220678-45-A/G at position 78,882,987 on chromosome 4 for FAW and FP, 2559495-18-T/G
at position 146,321,767 on chromosome 8 for FAW and AK, and 9682691-38-C/T at position
129,393,054 on chromosome 9 for FP and FAW.

Resistance-related QTN-QTL-MQTL co-localizations

The QTNs discovered in the current study were projected on a physical map along with MIRGRs
previously discovered through meta-analyses (16). The majority of the QTNs for resistance to
single or combined FAW and MW resistance fell within the single and multiple-insect resistance
MQTL concerning several field pests such as the European corn borer, the Mediterranean corn
borer, the sugarcane borer, and the southwestern corn borer and the storage pest MW along with
QTLs for several cell wall constituents. Further, the QTNs co-localize with several QTL for
resistance to other insect species such as the Asian corn borer (ACB), the Spotted stem borer (SSB),
the African maize stall borer (AMSB), FAW, and MW and QTL for maize benzoxazinoids content
on virtually all the 10 maize chromosomes. The co-localizations of maize biochemical and
resistance genetic factors to multiple-insect pests formed several clusters on most of the maize

chromosomes especially in the top and bottom chromosomal regions (Figure S4).
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Pre-CGs functionally associated with plant stress response mechanisms in the vicinity of
the QTNs

Seventy-eight pre-CGs were identified for 58 QTNs (Table S2). These pre-CGs include
transcription factors, protein kinases, disease resistance genes, leucine-rich-repeat, and basic
leucine zipper genes. Four QTNs did not have a gene located in a window of 30Kb, namely:
4593663-22-G/A on chromosome 3 at 71,004,409 bp for GWL and FP, 4587005-7-C/G on
chromosome 6 at 9,188,598 bp for AK and NH and 4579331-18-T/C at 157,597,555 bp for AP,
and 4776702-53-G/A on chromosome 10:125,628,521 bp for AK (Table S2). Most of the pre-CGs
(44 in total) contained the QTNs whilst others were very closely located with the farthest,
Zm00001d049175, being at 15,726 bp downstream the QTN 2381322-13-C/G associated with
resistance to FAW (Table S2). For the QTNs associated with combined resistance to FAW and
MW, five were associated with only one gene each suggesting the nature of the genetic control as
pleiotropy. Only 100024832-19-A/C on chromosome 1 presented two pre-CGs of which, one
(TATA-binding proteinl, Zm00001d033472) contains the QTN of interest while
Zm00001d033471, a putative DNA-binding protein was located 3,094 upstream (Table S2).
Several protein conserved domains were found within 62 of the pre-CGs. Twenty-three of these
62 pre-CGs presented protein conserved domains that are functionally associated with plant biotic
and abiotic stress defense mechanisms. These features include the WRKY, F-BOX, NAM, bZIP,
LRR, AUX_IAA, zf-C2H2, and GTP-binding protein domains (Table S2).

Pre-CGs differentially expressed under biotic and abiotic stress conditions.

The In-silico analyses revealed that 62 pre-CGs were differentially expressed under biotic and
abiotic stress conditions, suggesting a probable involvement in plant defense mechanisms. The In-
silico analyses conducted using the GENEVESTIGOR software showed that 58 of the 68 pre-CGs
that had expression data were differentially expressed at different plant developmental stages
(Figure S5). These were at seedling, inflorescence formation, and ear formation developmental
stages under biotic stress conditions (Figure S5A) and at germination, seedling, stem elongation,
and anthesis developmental stages under abiotic stress conditions (Figure S5B). The expression of
the pre-CGs was also modified in organs relevant to FAW feeding and at ear development stages
(Figure S6) under both biotic (Figure S6A) and abiotic stress conditions (Figure S6B). The 58 pre-
CGs were also differentially expressed in the “Perturbation” analyses when subjected to biotic

stressors like Colletotrichum graminicola, Cercospora zeina, Fusarium verticilloides,
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Rhopalosiphum maidis, and also jasmonates and jasmonate-like chemical (Figure S7A) and abiotic

stresses such as cold, dehydration, drought, heat, and submergence (Figure S7B). The gene

expression atlas (GXA) platform revealed 52 pre-CGs differentially expressed under stress

conditions (Figure 5). Thirty-five pre-CGs were induced by biotic stress (Figure 5A), 44 by abiotic

stress (Figure 5B), and of these two groups, 27 by both conditions. Most of the pre-CGs were

upregulated under biotic and downregulated under abiotic stress conditions. The biotic stressors
utilized in the GXA include those in the GENEVESTIGATOR (except Cercospora zeina) in

addition to Fusarium graminnearum, Meloidogyne incognita, Sporisorium reilianum, Ustilago

maydis, and the stem borer Ostrinia nubilalis (the European corn borer, ECB) and the two

platforms shared similar abiotic stress conditions.

DGE of pre-CGs under Biotic stress

A

DGE of pre-CGs under Abiotic stress
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Figure 5. Differential gene expression (DGE) of pre-CGs under (A) different biotic agents including Fusarium
graminearum and verticelloides, Meloidogyne incognita, Ostrinia nubilalis, Rhopalosiphum maidis and Ustilago
maydis and (B) abiotic stress conditions such as cold temperature, drought, heat, and submergence.
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Pre-CGs were co-expressed with their rice and Arabidopsis thaliana ortholog genes

The co-expression analysis between the pre-CGs and their rice and Arabidopsis thaliana orthologs
showed that all maize genes co-expressed with at least one ortholog from either or both rice and
Arabidopsis (Figure 6). Thirty-six co-expression clusters were common to all three species while
17 and 6 groups were common to maize and rice and maize and Arabidopsis, respectively. Three
clusters comprising 10 genes were unique to Arabidopsis alone and there was no cluster shared
uniquely between rice and Arabidopsis (Figure 6A). The functional gene ontology (GO) categories
enriched by the maize pre-GGs (Figure 6B) and their rice (Figure 6C) and Arabidopsis (Figure 6D)
orthologs were similar and pertained mostly to protein kinase and DNA-binding molecular
functions. Based on the co-expression and GO functional term similarities between maize pre-CGs
and their rice and Arabidopsis thaliana orthologs, 62 pre-CGs were classified as possibly

functionally involved in maize plant defense mechanisms (Table S2).

NbCGs were biologically connected to the GbCGs

Based on the CG prioritization criteria, 64 pre-CGs showed at least one evidence of involvement
in plant defense mechanisms, of which, 55 had two or more evidence (Table S2), and therefore,
were considered as GbCGs. These GbCGs (guide genes) were used to discover NbCGs within the
MIRGRs. In total, 3737 NbCGs biologically connected to the GbCGs were discovered of which,
730 had a connectivity score of more than 5. Of the 730 NbCGs, 242 were differentially expressed
under biotic and abiotic stress conditions (Figure S8) and most were upregulated when exposed to
abiotic agents (Figure S8 A) and downregulated when the plant faced abiotic stressors (Figure S8
B). Also, 107 of these differentially expressed NbCGs are located within the MIRGRs (Table S3).
More than half of these 107 NbCGs were enriched with Biological Process GO terms relevant to
plant defense mechanisms. The biological connections that exist among the two groups of CGs
were further illustrated by the GO terms for the Molecular Functions enriched within these CGs
(Figure 7). The functions displayed by the CGs include plant defense associated GO terms such as
protein Kinase activities, DNA, ATP, ion, and protein binding factors, oxydoreduction activities,
signaling transduction factors, calcium-dependent channels. These interactions were further
vindicated at the proteomic level by the existence of protein-protein interactions among the CGs
suggesting their involvement in the network-like defense mechanism against insect damages
(Figure S9).
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Figure 6. Co-expression between maize pre-CG and rice and Arabidopsis thaliana orthologs: Venn diagram showing the co-expression clusters and
overlaps between maize (Zea_mays) and their rice (O_sativa) and Arabidopsis (A_thaliana) orthologs (A). Distribution of the molecular functions enriched
within the pre-CG (B) and their A. thaliana (C) and rice (D) orthologs as revealed by the gene ontology mapping.
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Figure 7. Protein-protein interaction network (edges) linking the CGs (nodes).
Names of the proteins (dots) of the protein-protein interaction network are based on the STRING protein ids.

DISCUSSION AND CONCLUSIONS
Association mapping panel

In this study, a diverse association mapping panel (AMP) composed of maize lines adapted to
African environments was evaluated in three environments (in Kasese in season 2017B, and in
Namulonge in seasons 2018A and 2019A) for FAW damage resistance and the bulked grains from
each genotype were subjected to MW bioassay. The lines that composed the AMP were bred in
Uganda, Kenya, and Nigeria, and displayed a genetic and geographical diversity suitable not only
for association mapping but, also, would be of great use in ongoing maize breeding projects. The
majority of these lines were developed for resistance to either stem borers or storage pests by
CIMMYT of Nairobi (39-41) and IITA of Ibadan, or, in the case of DH lines from CIMMYT,
from crosses involving either a stem borer or a storage pest-resistant line. All the resistance traits
recorded were highly significantly varied among the lines of the AMP owing to the high genetic
diversity present in the AMP. The observed genetic variability was of paramount interest,
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especially for FAW since the lines in the AMP were not originally developed for resistance to this
insect pest. The observed genetic variability for FAW resistance could be a consequence of the
genetic correlations between maize resistance mechanisms to FAW and stem borers
(4,67,68,81,82). The moderate to high estimates of heritability and the high genetic variability
obtained in this study shows the suitability of the measured traits for improving both MW and
FAW resistance in maize and their potential for association mapping studies. The AMP could serve
as a base-population for multiple insect resistance breeding targeting FAW, stem borers, and
storage pests which are hazardous threats to food security in sub-Saharan Africa (1,5,83,84). Since
the environmental effect and the interactions between the environment and the genotypes were
significant for FAW damage resistance, the AMP needs to be evaluated in wider multi-
environment trials to assess the stability status of the lines in the panel for these target traits across
national and regions locations, seasons, and years so as to aid in making the best breeding decisions
(85,86). Secondary metabolites such as cell wall constituents and proteins are essential for
resistance to storage pests and their accumulation in the grain is affected by environmental
parameters (12,87—89). Therefore, it is necessary to evaluate the AMP for MW resistance traits in
several individual environments and increase the sample size so as to perform both single and

across-environments analyses to better inform future resistance breeding programs.

Linkage disequilibrium and control of false-positive and negative association

LD decayed rapidly in the AMP, at distances of 22.7 and 7.92 at cut-off r?> of 0.1 and 0.2, indicating
a high recombination rate and promising high resolution in GWAS (90) which is in line with the
faster LD decay characterizing tropical maize lines (90,91). Chaikam et al.(92) found on a maize
panel composed of lines adapted to tropical and subtropical ecologies that average LD decayed at
27.31and 9.48 kb at r? = 0.1 and 0.2, respectively, which is very similar to the results presented in
the current study.

The high genetic and geographic diversity in the AMP resulted in a pronounced population
structure that was necessary to account for in GWAS analyses for FAW and MW resistance traits
to avoid false-positive and negative association signals (30). Two strategies were used to limit the
chances of getting false positive and negative associations and to increase the statistical power of
QTN discovery. To reduce the multiple-testing burden, an LD-based pruning approach was used
(93). Since population structure may affect traits in a population differently, hence, accounting for

it is not straightforward (30,63), and it was not realistic to include a fixed number of PCs to analyze
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different traits with varying phenotypic correlations. Therefore, a different number of PCs was
fitted in the GWAS model for each trait, and the Manhattan and QQ-plots were investigated to
evaluate the level of control of false positives and negatives (30). As a result, several high-
confidence SNP-trait associations at BGSL of 5 % (47 QTNSs) and at the highest level of 1% (31

QTNSs) were discovered proving the worthiness of these quality control approaches used.

QTNs for both single and combined maize resistance to FAW and MW

This study is the first reported GWAS for maize resistance to FAW and MW as all previous reports
used bi-parental QTL mapping studies (18,66-68,94,95). Sixty-two QTNs significantly (BGSL >
30%) associated with maize resistance to MW and FAW were discovered across all the 10 maize
chromosomes. However, no QTN for maize resistance to FAW damage was discovered on
chromosomes 6 and 7. Fourteen QTNs were associated with resistance to FAW of which 9 were
discovered at BGSL of 5%. Bi-parental QTL analyses conducted previously for FAW resistance
identified less QTL than reported in this study (66-68). Seven QTL were discovered by Brooks et
al.(67,68) including on chromosomes 6 and 7 from populations derived from crosses
Mp708*Mo17 and A619*Mp708, respectively. Womack et al.(66) identified 6 QTL including one
on chromosome 7 on the same population as studied by Brooks et al.(67). Several FAW resistance
QTL discovered in these three studies [three in Brooks et al.(67), one in Brooks et al.(68), and
four in Womack et al.(66)] co-localize with 6 of the 14 QTNs for resistance to FAW identified in
this study in maize bins 1.09, 2.02, 5.04, 8.03, and 10.04 and some of these regions were also

reported to be associated with maize resistance to the southwestern corn borer (66-68).

Resistance across insect pest species and maize organs

The majority of FAW and MW resistance QTNs fell within or very close MIRGRS corroborating
the previous meta-analys results for commonality of resistance regions across maize organs,
namely, leaves, stems, and kernels, and across insect pest species (16). This is further vindicated
in this study with the discovery of six QTNs associated with resistance to both FAW leaf damage
and MW grain damage, of which four are located within the MIRGRs. The nature of the genetic
action of these multiple-insect resistance-associated QTNs could either be based on gene
pleiotropy or close linkage (96). Furthermore, a probable role of maize biochemical components
such as benzoxazinoids and cell wall constituents is further illustrated with the colocalization of

related QTLs with the MIRGRs previously presented by Badji et al.(16). These maize
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biochemicals were found to play essential roles in maize resistance to a range of insect species
including stem borers, FAW, and MW (97-99). Regardless of whether gene pleiotropy or close
linkage, these MIRGRs, once validated in diverse backgrounds, could be used in GAB to develop
combined resistance in maize varieties adapted to local environments and consumer needs. These
comparative mapping results are further supported by the outcome of CG identification and

prioritization analyses.

Promising CGs for maize resistance to multiple-insect pests

Identification and prioritization of CGs is an essential post-GWAS analysis to identify genes in
the vicinity of QTNs that have the highest likelihood of association with traits of interest. In species
like maize that present extensive genomic information stored in various databases and that share
common evolutionary signatures with closely or distantly related species with equal or even more
comprehensive functional characterization, integrative approaches hold tremendous promise for
the discovery and validation of meaningful causal genes for several traits of economic importance
(33,34,100). In that vein, the current study was also intended to discover and prioritize CGs
associated with traits for maize resistance to insect pests. In total, 78 pre-CGs were discovered
around the QTNs of which, 62 were given priority based on their functional information.

Five of the six QTNs identified for combined FAW and MW resistance were associated with one
gene each further suggesting possible pleiotropic genetic implication in the regulation of multiple-
insect resistance, and therefore, presenting great interest for multiple-insect resistance breeding.
Pleiotropy, where one gene regulates the expression of more than one phenotype, is pervasive in
the control of complex traits such as resistance to insect pests even when traits are not positively
correlated (101-104). Four QTNSs, 4593663-22-G/A on chromosome 3 for GWL and FP, 4587005-
7-C/G for AK-NH and 4579331-18-T/C for AP on chromosome 6, and 4776702-53-G/A on
chromosome 10 for AK, did not have any pre-CG within the 30kb window. Possibly, these QTNs
resulted from spurious associations that were not successfully controlled during GWAS analysis.
Furthermore, Network-based inferences are pivotal in studies aimed at finding functional pathways
regulating genes and are instrumental in discovering additional genes connected to predefined
genes associated with traits of interest through diverse analyses such as association mapping
experiments (28,105,106). Therefore, through a network-based inference approach, an additional
107 genes, subsetted from at total of 3737 genes biologically connected to the GbCGs, were
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differentially expressed under either biotic or abiotic stress conditions or both and located within
MIRGRs previously reported (16).

The genomic and functional information related to most of these CGs, the conserved domains
within their protein sequences, and genetic descriptions of their co-expressed rice and arabidopsis
orthologs suggest their possible involvement in plant defense mechanisms. Functional features
known for their involvement in both biotic and abiotic plant response such as WRKY, F-BOX,
NAM, bZIP, LRR, AUX_IAA, zf-C2H2, and DNA, ATP, ion, protein-binding protein domains,
MADS-box, C2C2-YABBY, MYB transcription factors, calcium-related transmembrane transport
elements, protein kinases, oxydoreduction activities, and several binding factors (107-112)
characterized most of the CGs, making them promising genetic factors for the regulation of plant
response to insect pests.

Most of the CGs had modified expressions under several biotic stress conditions including
infection with the European corn borer (Ostrinia nubilalis), and on maize organs and at
developmental stages relevant to FAW feeding. The expression of GWAS-based CGs in maize
ear-related organs and developmental stages indicated that these genes could have an influence on
the accumulation of assimilates in the grain among which were phenolic compounds critical for
resistance to storage pests such as MW (88,113,114). In agreement with the negative interaction
between plant biotic and abiotic stress responses resulting from negative cross-talk between absicic
acid (ABA) and jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) signaling pathways
(107-109,111,115,116), most of the CGs were upregulated and downregulated under biotic and
abiotic stress conditions, respectively. In-vivo expression analyses under local conditions would
help to confirm the role of these CGs in maize response to FAW, SB, and MW.

Evidence of involvement of the CGs in a network like defense mechanisms were provided by the
existence of protein-protein interactions among them. These interactions were expected since plant
defense mechanisms against insect herbivores is a complex mechanism that integrates signaling
molecules, hormones, and transcription factors, that collaborate as a network under the regulation
of signaling molecules such as ABA, JA, SA, ET, etc to modulate the production of secondary
metabolites for direct and indirect responses to insect damage (107-109,115,117-120). The GO
Molecular function network constituted of 47 GO terms interconnected by 759 edges enriched by
these CGs further illustrated the extent of interaction among these genes and support their

involvement in a network-like defense mechanisms against biotic and abiotic stresses. These GO
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terms were related to protein Kinase activities, binding factors, oxidoreduction activities, plant-
pathogen interaction further indicating that they may play crucial roles in maize resistance to insect
pests such as FAW, MW, and SB.

Research and breeding perspectives

Considering the high economic importance of multiple insect pest species including stem borers,
FAW, and MW in terms of fodder and grain yield loss and mycotoxin contamination (5,6), the
genetic resistance information revealed in this study would be of great use in genomics-aided
breeing activities targeting the selection of promising lines and the development of varieties with
good levels of resistance to either single or multiple-insect species.

The QTN/QTL information along with the putative CGs discovered in this study are worth going
through further validation steps in more diverse genetic and environmental backgrounds and
through In-vivo analyses involving differential gene expression, gene knock-out or silencing
techniques, or fine-mapping activities, gene editing, among others (121). Also, once validated
under local conditions, this resistance-related genetic information would further improve the
capabilities of molecular breeding and genetic engineering programs targeted at building insect
resistance in maize lines of agronomic importance in Africa.

The plethora of genomic regions and genes putatively involved in resistance not only corroborates
the complex architecture of resistance. The co-localization of genomic regions associated with
resistance to several insect pest species in different maize organs and biological and functional
connections among genes under these regions indicated the multiple-insect resistance could be a
result of pleiotropic effect characterized by complex pathway networks and involving biochemical
defenses such as benzoxazinoids and cell wall constituents (88,98,99,107). Studies allowing direct
investigations of the role of these biochemicals in maize resistance to multiple insect pests,
especially in reference to their possible pleiotropy, should be carried out along with validation
steps needed for the resistance genetic information presented in the current research.
Furthermore, the polygenic nature of the resistance traits studied here indicates that MAS alone
might not be efficient for resistance breeding (122,123). The efficiency of genomic selection, a
complementary approach to GWAS and MAS, which uses whole genome markers to achieve
selection on a collection of unphenotyped germplasm (124), is worth investigating in the AMP
owing to the fairly high LD of the genetic data and heritabilities to resistance traits (125,126).
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SUPPLEMENTARY: TABLES AND FIGURES

Table S1. Descriptions of parents and crosses that constituted the doubled-haploid population

Parents of the doubled-haploid population
Descriptions CKSBL10007 CKSBL10011 CKSBL10203 CKSPL10066
CKSBL10007  CIMMYT Stem borer-resistant line
CKSBL10011  CIMMYT Stem borer-resistant line
CKSBL10203 CIMMYT Stem borer-resistant line

CKSPL10066 CIMMYT Storage pest- resistant line X
CML312 CIMMYT elite line X X
CML485 CIMMYT elite line X

X=Crosses between lines

Table S2. Candidate genes located in the vicinity of the quantitative trait nucleotides (QTNs) along with their genetic information.

Chr QTNs Trait Candidate Gene DQTN CGC Gene description Conserved protein domain
1 2544389-10-G/C GWL Zm00001d027955 IG A MADS-box transcription factor K-box superfamily
47
Zm00001d027954  -1,862 B Expressed protein TMEM131_like || Herpes_BLLF1
superfamily
2399751-6-C/A AP Zm00001d028046 2,523 A Putative pentatricopeptide PLN3218 superfamily
repeat-containing protein
Zm00001d028045 IG A Mannose-1-phosphate M1P_guanylylT_A_like N ||
guanylyltransferase 1 LbetaH superfamily
5584129-55-C/T AK Zm00001d029411  -1,217  NGI NA NA
Zm00001d029412 IG A Patatin-like protein 2 Patl7_isozyme_like
4580363-8-A/G AK Zm00001d029419 IG A Probable protein phosphatase 2C PP2Cc
12
Zm00001d029420 2,023 A Protein WEAK WEMBL
CHLOROPLAST MOVEMENT
UNDER BLUE LIGHT 1
4583673-29-G/C GWL Zm00001d032806 589 A Pectate lyase 12 Amb_all
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Zm00001d032807 4,404 A RNA-binding (RRM/RBD/RNP RRM1_SF3B4
motifs) family protein
100024832-19-A/C GWL-FAW  Zm00001d033471 -3,094 A Putative DNA-binding protein WRKY
Zm00001d033472 IG A TATA-binding proteinl PLN62
4583685-9-G/A NH-AK Zm00001d033508 IG A C2C2-YABBY-transcription YABBY
factor 12
4580090-67-T/C GWL Zm00001d034182  -4,182 B NA NA
Zm00001d034183 IG A clast3-related PAC2
2382596-67-A/G FAW Zm00001d034901  -219 A Receptor protein kinase-like SASA
protein
2 2452223-17-AIG FAW Zm00001d002145 IG B Formation of crista junctions Mitofilin superfamily
protein 1
4771831-60-G/T AK Zm00001d003048 IG A Disease resistance gene analog NB-ARC superfamily || LRR_8||
PIC17 LRR
Zm00001d003049 3,867 A Casein kinase 1-like protein 6 STKc_CK1 delta_epsilon
4767220-53-G/A AK Zm00001d003198 IG A elF-2-alpha kinase GCN2 STKc_EIF2AK4_GCN2_rpt2 ||
PLN2972 superfamily || RWD
2388222-45-G/C FP-GWL Zm00001d003335  -767 C OSINBaNANAB89K?21.8 protein zf-C2H2_6
2435073-40-T/C AP-FP Zm00001d004810 IG A FHA domain-containing protein PIN_Smg5-6-like || FHA
PS1
2448649-48-G/A FAW Zm00001d005028 IG A NAC domain-containing protein NAM
77
4583437-30-G/C FP Zm00001d006657 IG A Homogentisate PT_UbiA_HPT1
solanesyltransferase
chloroplastic
4765698-16-A/G AK Zm00001d007088  -3,974 C Retrovirus-related Pol NA
polyprotein LINE-1
Zm00001d007087  -4,180 C NA NA
Zm00001d007089 IG A Protein CHROMATIN PLN3142 superfamily ||
REMODELING 5 CD1_tandem || DUF428 || CD_CSD
superfamily
100130818-44-A/G FP Zm00001d007639 IG A GTP-binding family protein PRK93 || GTP_HfIX superfamily
4591349-29-A/G GWL Zm00001d007640  -2,040 A F-box/LRR-repeat protein 4 AMN1 superfamily
3 9714175-54-C/G FAW-NH Zm00001d039372 3,380 A Small nuclear Sm_E

ribonucleoprotein family
protein
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4764930-10-C/T FAW-GWL  Zm00001d039434 €] A Agamous-like MADS-box MADS_MEF2_like || K-box
protein AGL5
4772102-17-TIG FP Zm00001d039883 IG A Mitochondrial glycoprotein MAM33
family protein
4593663-22-G/A GWL-FP NA NA NCG NA NA
2446859-65-C/G AP Zm00001d042777 IG A Basic leucine zipper protein%3B DOG1
Liguleless2
4584446-12-G/C NH Zm00001d043494 IG A elongation factor family protein TypA_BipA superfamily| TypA
superfamily
4583173-13-T/C GWL Zm00001d044409 -1,195 A MY B-related transcription factor myb SHAQKYF
Zm00001d044410 IG A Cycloartenol synthase F-box-like
2381322-13-C/G FAW Zm00001d049175 15,726 B OSINBaNANA43A12.2NA NA
protein
4779016-24-C/T NH Zm00001d049295 IG A Auxin response factor 2 Auxin_resp || B3|| AUX_IAA
superfamily
4577027-47-G/A GWL Zm00001d049854 -672 A 3'-5"-exoribonuclease family RNase_PH superfamily
protein
100220678-45-A/G FAW-FP Zm00001d050286 789 C Sphingolipid delta(4)- PLN2579 superfamily
desaturase DES1-like
4771330-29-T/C NH Zm00001d052111 IG A DENN (AEX-3) domain- DENN || uDENN
containing protein
2619648-16-T/C GWL Zm00001d052377 IG A Pentatricopeptide repeat protein PLN381 superfamily
PPR868-14 isoform 1%3B
4589321-22-G/A AK Zm00001d013314 IG A Vps51/Vps67 family Vps51 || COG2 superfamily
(components of vesicular
transport) protein
7048960-37-T/G NH Zm00001d014099 IG A Disease resistance protein RPM1 NB-ARC superfamily || RX-
CC_like superfamily || LRR ||
HHH_5 superfamily
7049219-26-T/C FAW Zm00001d015956 IG A NAD(P)-binding Rossmann-fold PLN2662
superfamily protein
4584182-35-C/G FAW Zm00001d016271 IG B NA DUF761
Zm00001d016272 2,578 NGI NA NA
4774140-50-G/A FP Zm00001d017703  -2,370 B survival motor neuron protein NA
Zm00001d017704 IG A Target of Myb protein 1 VHS || GAT_GGA like_plant
4587005-7-C/G AK-NH NA NA NCG NA NA
4771590-67-AIT FP Zm00001d036215 IG A MAP kinase7 PKc_like superfamily
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5586936-13-T/C FP Zm00001d036830 IG A Putative calcium-dependent C2_ArfGAP || ArfGapM-associated
lipid-binding (CaLB domain) superfamily || ArfGap superfamily]|
family protein DUF48 superfamily
4579331-18-T/C AP NA NA NCG NA NA
4764931-6-G/A FP-AP Zm00001d039049 IG A Putative homeodomain-like SANT
transcription factor superfamily
protein%3B SANT/MYB protein
Zm00001d039050 1,571 A DNA-3-methyladenine AlkA
glycosylase 1
Zm00001d039048 -2,212 NGl NA NA
4771072-39-A/G GWL Zm00001d018807 81 A Leucine-rich repeat receptor-like PLN113 superfamily
serine/threonine-protein kinase
5587204-51-A/C AK Zm00001d001255  -253 B NA NA
4580355-27-G/A GWL-AP Zm00001d022267 IG A chromatin remodeling factor18 DEXHc_HARP_SMARCALL1 ||
HepA
4773640-63-T/A FP Zm00001d008175 -1,289 C S-adenosylmethionine synthase 1 PLN2243 superfamily
Zm00001d008176 IG A Squamosa promoter-binding SBP
protein-like (SBP domain)
transcription factor family
protein
4770550-8-G/C GWL Zm00001d008669 -96 A Histone H4 PLN35
2504966-32-A/G FAW Zm00001d010095 3,287 NGl NA NA
Zm00001d010094 IG B Dehydrin family protein Dehydrin
expressed || Embryogenic-cell
protein 4NA (Ecp4NA)
2559495-18-T/G FAW-AK Zm00001d011308 €] A Ubiquitin-like superfamily Ubl_SUMO_like
protein
2610943-54-T/C GWL-AP Zm00001d012218 -1,236 NGl NA NA
Zm00001d012219 1,885 A NA F-box-like
2376195-62-T/G FP Zm00001d012553 IG A octopine synthase binding DOG1|| bZIP_HBP1b-like
factor4
4579847-66-T/G FP Zm00001d012761 IG A Protein kinase family protein STKc_CK1
4771587-19-T/C AK Zm00001d046069  -5,859 B NA FANCI_S4 superfamily
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Zm00001d027105 IG C NA NA
Zm00001d046070 -10,149 NGl NA NA
100023814-29-T/G AK-FP Zm00001d047162 IG A UDP-Glycosyltransferase NA
superfamily protein
9682691-38-C/T FP-FAW Zm00001d047412 [€] A Protein phosphatase 2C 32 PP2Cc
4764675-42-C/G AP Zm00001d047518 IG A Nardilysin-like Ptr superfamily
10 4582917-12-AIG GWL Zm00001d024816 IG A chromatin complex subunit A PLN3142 superfamily
2539012-9-A/C GWL-FP-AP  Zm00001d025013 IG NGI NA NA
Zm00001d025014 2,385 NGl NA NA
100298755-56-T/C FAW Zm00001d025153 IG A Phospholipid-transporting HAD_like superfamily ||
ATPase 2 PhoLip_ATPase C
4776702-53-G/A AK NA NA NGC NA NA
7061499-37-A/G AP Zm00001d026042 971 A Probable purine permease 11 PUNUT superfamily

Chr=Chromosome; DQTN=Distance from QTN, a negative (-) distance means the CG is upstream the QTN and a positive value indicates the CG located downstream
the QTN; IG=Inside gene; NA=Not available; NCG=No candidate gene; NGI=No genetic information. In bold are QTNs and CGs for combined fall armyworm (FAW)
and maize weevil (MW) traits such as Grain weight loss (GWL), emerged Adult progenies (AP), Flour produced (FP), number of Affected kernels (AK), and Number
of grain holes (NH).

Table S3. 107 Network-CGs with their chromosome (Chr), start and end position based on the AGPv4 maize genome reference genome and descriptions.

Gene stable ID Chr Start (bp) End (bp) Gene name Gene description
Zm00001d027760 1 13,023,613 13,024,482 NA Histone H2A
Zm00001d029075 1 57,258,183 57,259,499 NA CBL-interacting serine/threonine-protein kinase 10
Zm00001d029263 1 64,042,656 64,045,687 NA Chaperonin
Zm00001d033746 1 272,697,870 272,704,606  phosphoglucomutasel phosphoglucomutasel
Zm00001d033822 1 274,809,375 274,810,292 NA Probable histone H2AXa
Zm00001d034089 1 283,693,163 283,695,688 NA Probable receptor-like protein kinase
Zm00001d034372 1 291,107,391 291,111,360 NA Calcium-dependent protein kinase 1
Zm00001d034562 1 296,437,168 296,441,398 NA Calcium-dependent protein kinase 2
Zm00001d034663 1 299,194,181 299,196,764 alpha-expansin4 alpha-expansin4
Zm00001d034671 1 299,442,286 299,444,334 NA Lectin-like receptor kinase 7
Zm00001d002172 2 7,110,526 7,119,435 NA G-type lectin S-receptor-like serine/threonine-protein kinase B120
Zm00001d002172 2 7,110,526 7,119,435 NA G-type lectin S-receptor-like serine/threonine-protein kinase B120
Zm00001d002253 2 8,988,852 8,989,265 NA 60S ribosomal protein L27
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Zm00001d003019 2 29,627,526 29,635,338 NA Protein kinase superfamily protein
Zm00001d003673 2 53,484,601 53,488,150 NA Protein kinase superfamily protein
Zm00001d003725 2 56,544,752 56,545,162 H3C2 Histone H3.2

Zm00001d003730 2 56,683,255 56,683,907 H3C2 Histone H3.2

Zm00001d005808 2 189,439,983 189,444,202 NA Probable ethanolamine kinase
Zmoo01doosge4 2 1OH0S7808 194,000,798 - bHLEtranseription Transcription factor bHLH76
Zm00001d006008 2 195,179,025 195,182,945 NA Heat shock protein 90-2
Zm00001d006536 2 210,665,909 210,668,852 NA Cysteine-rich receptor-like protein kinase 10
Zm00001d038708 2 163,090,769 163,092,715 NA Proline-rich receptor-like protein kinase PERK15
Zm00001d007192 2 224,425,013 224,429,818 NA T-complex protein 1 subunit zeta
Zm00001d007166 2 223,634,679 223,635,971 NA CBL-interacting serine/threonine-protein kinase 4
Zm00001d007167 2 223,667,838 223,669,229 NA CBL-interacting serine/threonine-protein kinase 15
Zm00001d041215 3 105,826,354 105,830,061 NA ATP binding protein
Zm00001d040996 3 89,082,044 89,084,928 NA Calcium-dependent protein kinase 1
Zm00001d045359 3 19,532,789 19,536,828 NA Mitogen-activated protein kinase kinase 2
Zm00001d042475 3 168,871,221 168,878,750 NA Probable thimet oligopeptidase
Zm00001d043480 3 201,473,205 201,476,633 NA Proline-rich receptor-like protein kinase PERK15
Zm00001d043841 3 211,598,479 211,613,691 NA Katanin p60 ATPase-containing subunit Al
Zm00001d043955 3 214,775,698 214,777,826 NA Eukaryotic translation initiation factor 3 subunit D
Zm00001d043923 3 213,970,968 213,973,403 NA PAN domain-containing protein
Zm00001d044246 3 222,967,858 222,968,792 NA Histone H2A

Zmo0001do4azor 3 224983950 224,589,560 pmti'grﬁgﬁ;p{‘;tase Protein phosphatase 2C ABI2
Zm00001d044639 3 233,811,186 233,813,372 NA L-type lectin-domain containing receptor kinase 1X.1
Zm00001d049286 4 24,420,976 24,426,546 NA LRR receptor-like serine/threonine-protein kinase EFR
Zm00001d052340 4 187,401,028 187,402,359 NA CBL-interacting serine/threonine-protein kinase 10
Zm00001d000110 4 187,964 193,349 tranggp?;;ﬁ'?;‘z%r o1 SWI/SNF complex subunit SWI3C
Zm00001d053087 4 213,023,215 213,025,176 NA G-type lectin S-receptor-like serine/threonine-protein kinase SD2-5
Zm00001d053135 4 215,474,432 215,476,369 NA D-mannose binding lectin family protein
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Zm00001d013428 5 11,195,010 11,201,017 phosphoglucomutase2 phosphoglucomutase2
Zm00001d014152 5 34,251,816 34,258,225 NA Cationic amino acid transporter 4 vacuolar
Zm00001d014291 5 39,715,418 39,722,456 NA Probable protein phosphatase 2C 71
Zm00001d016381 5 160,203,687 160,206,309 NA Histone deacetylase
Zm00001d017069 5 184,380,955 184,383,871 NA Inorganic phosphate transporter 2-1 chloroplastic
Zm00001d035476 6 28,516,750 28,525,006 NA L-type lectin-domain containing receptor kinase VII1.1
Zm00001d035588 6 35,148,537 35,151,188 NA Serine/threonine-protein kinase
Zm00001d035747 6 44,780,803 44,789,355 argonautela argonautela
Zm00001d036097 6 72,141,933 72,145,178 NA Putative DUF26-domain receptor-like protein kinase family protein
Zm00001d036322 6 84,112,004 84,117,155 NA Ribonucleoside-diphosphate reductase
Zm00001d036879 6 105,515,248 105,521,341 NA Putative CBL-interacting protein kinase family protein
Zm00001d036917 6 106,360,618 106,367,670 argonauteINAb argonaute10b
Zm00001d036986 6 108,327,528 108,338,061 NA ABC transporter G family member 29

153,243,817 153,250,372 Putative LSTK-1-like/NimA-related protein kinase family protein isoform;
Zm00001d038282 6 NA 3B Putative LSTK-1-like/NimA-related protein kinase family protein

isoform 2

Zm00001d038409 6 156,603,002 156,614,078 NA Calcium-dependent protein kinase 13
Zm00001d038708 2 163,090,769 163,092,715 NA Proline-rich receptor-like protein kinase PERK15
Zm00001d019042 7 13,942,239 13,944,164 NA Actin-related protein 2/3 complex subunit 3
Zm00001d019045 7 14,093,201 14,093,758 NA Histone H2A
Zm00001d019084 7 15,693,408 15,695,533 NA RNA-binding (RRM/RBD/RNP motifs) family protein
Zm00001d020134 7 94,949,585 94,962,130 NA ABC transporter G family member 40
Zm00001d020138 7 95,424,853 95,428,598 NA L-type lectin-domain containing receptor kinase 1X.1
Zm00001d020396 7 111,240,634 111,244,556 trehal:;g;ﬁ;gsfgphate trehalose-6-phosphate synthase13
Zm00001d020496 7 119,111,856 119,113,250 NA CBL-interacting serine/threonine-protein kinase 5
Zm00001d020497 7 119,140,649 119,141,980 NA CBL-interacting serine/threonine-protein kinase 6
Zm00001d020584 7 123,703,834 123,704,145 H4C7 Histone H4
Zm00001d020585 7 123,712,201 123,712,512 H4C7 Histone H4
Zm00001d021139 7 143,856,218 143,860,073 NA Calcium-dependent protein kinase 24
Zm00001d021255 7 147,034,121 147,042,045 NA NA
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Zm00001d021300 7 148,227,448 148,227,942 NA Histone H2A

Zm00001d021434 7 152,277,267 152,279,488 NA G-type lectin S-receptor-like serine/threonine-protein kinase B120

Zm00001d021434 7 152,277,267 152,279,488 NA G-type lectin S-receptor-like serine/threonine-protein kinase B120

Zm00001d021477 7 153,335,991 153,336,302 H4C7 Histone H4

Zm00001d022307 7 174,845,532 174,847,522 NA 10 kDa chaperonin

Zm00001d022547 7 179,784,948 179,788,293 NA CBL-interacting serine/threonine-protein kinase 3

Zm00001d008468 8 9,622,565 9,639,429 NA PR5-like receptor kinase

Zm00001d008477 8 9,807,195 9,830,853 receptor-like kinase4 receptor-like kinase4

Zm00001d008581 8 13,548,214 13,555,561 NA LEAF RUST 10 DIS%?{%ETEIENSEJ\IAA%ICEI_E"LKSEZTS RECEPTOR-LIKE

Zm00001d010459 8 116,264,102 116,265,454 NA Putative CBL-interacting protein kinase family protein

Zm00001d010529 8 119,419,987 119,423,027 NA Probable mediator of RNA polymerase 11 transcription subunit 37¢

Zm00001d010461 8 116,331,820 116,334,299 NA Sm-like protein LSM5

Zm00001d010575 8 120,733,570 120,733,881 H4C7 Histone H4

Zm00001d010659 8 123,186,799 123,189,450 NA Putative calcium-dependent protein kinase family protein

Zm00001d010743 8 126,502,112 126,503,641 NA Putative CBL-interacting protein kinase family protein
149,387,614 149,392,198 Calcium-dependent protein kinase%2C isoform 2%3B Putative calcium-

Zm00001d011392 8 NA dependent protein kinase family protein isoform 1%3B Putative calcium-

dependent protein kinase family protein isoform 2

Zm00001d011628 8 156,686,200 156,694,580 NA PR5-like receptor kinase

Zm00001d045190 9 15,650,398 15,654,451 NA Putative WAK family receptor-like protein kinase

Zm00001d045192 9 15,720,802 15,728,927 hybrigr%:g::]nle-rich Ribonucleoside-diphosphate reductase large subunit

Zm00001d045359 3 19,532,789 19,536,828 NA Mitogen-activated protein kinase kinase 2

Zm00001d045839 9 42,917,485 42,919,506 NA Putative lectin-like receptor protein kinase family protein

Zm00001d045838 9 42,913,838 42,915,841 NA Putative lectin-like receptor protein kinase family protein

Zm00001d046438 9 89,734,202 89,740,800 argonauteINA1 argonaute101

Zm00001d048460 9 156,719,295 156,724,276 NA CBL-interacting serine/threonine-protein kinase 9
134,014,122 134,018,935 Putative AGC-like protein kinase family protein isoform; 3B Putative AGC-

Zm00001d047531 9 NA like protein kinase family protein isoform; 3B Putative AGC-like protein

kinase family protein isoform; 3B Serine/threonine-protein kinase AtPK19
Zm00001d047758 9 141,026,557 141,029,745 MAP kinasel MAP kinasel
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Zm00001d047858 9 143,631,572 143,633,228 NA Protein STRICTOSIDINE SYNTHASE-LIKE 13
Zm00001d047909 9 144,963,925 144,969,440 NA transcription act|v§tors;DNA_ blndlng;RNA p_o_lyr_nerase 11 transcription
factors;catalytics;transcription initiation factors
Zm00001d048203 9 152,377,111 152,382,143 NA Probable protein phosphatase 2C BIPP2C1
Zm00001d024591 10 79,578,452 79,580,065 NA SNRNP core Sm protein Sm-X5-like protein
Zm00001d024637 10 81,459,381 81,466,000 NA L-type lectin-domain containing receptor kinase V.9
Zm00001d024637 10 81,459,381 81,466,000 NA L-type lectin-domain containing receptor kinase V.9
Zm00001d024903 10 93,908,317 93,911,235 heat ;rlllo;\kkgl)jr:tem, heat shock protein 90 kDa
Zm00001d025406 10  117,441376 117,441,837 H3C2 Histone H3.2
Zm00001d025913 10 133,665,354 133,665,806 NA Histone H2B
Zm00001d025920 10 133,768,161 133,770,170 NA Putative lectin-like receptor protein kinase family protein
Zm00001d025997 10 135,684,027 135,687,837 NA Protein kinase superfamily protein
Zm00001d026489 10 146,944,932 146,946,110 NA OSJNBb0022F16.11 protein; protein
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Figure S1. Distribution of the 3124 LDPSNPs across the 10 maize chromosomes.
Chrl11 groups SNPs which were not mapped in any chromosomes.

Figure S2. Rating of maize plants based on foliar damage by FAW (45).

152
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Supplmentary Figure 3. Number of principal components (PC) included in the GWAS model for fall
armyworm (FAW) damage, and for the different maize weevil (MW) resistance traits: number of affected
kernels (AK), number grain holes (NH), number of emerger adult progenies (AP), total amount of flour
produced (FP), and grain weight loss (GWL).
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Figure S4. Physical map based on the AGPv4 maize reference genome showing on the chromosomes the single (in green) and multiple (in blue) insect
resistance genomic regions (IRGR) and on the side their colocalizations with QTL for Asian corn borer (ACB), southwestern corn borer (SWCB), Fall
armyworm (FAW), Maize weevil (MW), African maize stalk borer (AMSB), spotted SB (SSB) resistance, and maize benzoxazinoids (Benzox) content.
Start and end positions of the chromosomes (P1 to 224) and the location of the GWAS-CGs (in blue) and Network-CGs (in red) associated with maize resistance
to FAW and MW were placed on the chromosomal bars. TL=Tunnel length, rTL=Relative TL, LFR=leaf feeding rate, EH=EXit holes.
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Dataset: 5 developmental stages from data selection: ZM_mRNASeq_MAIZE_GL-0
Showing 68 measure(s) of 68 gene(s) on selection: ZM-1

Dataset: 3 developmental stages from data selection’ ZM_mRNASeq_MAIZE_GL-0
Showing 68 measure(s) of 68 gene(s) on selection: ZM-1
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Figure S5. In-silico expression profile of the CG at different maize developmental stages relevant to FAW
and MW damage under different biotic (A) and abiotic (B) stress conditions.
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Figure S6. In-silico expression profile of the CG in different maize organs relevant to FAW and MW
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Dataset: 36 perturbations from data selection: ZM_mRNASeq_MAIZE_GL-0
Showing 68 measure(s) of 8 gene(s) on selection: ZM-1
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el i BBl B BB B e e BB B BB i e e Bl B BB - e B no fiter no fiter

Zea mays (29) Slcoocbbobobooooocobobbbbobooboobobobo0bboboobob00b000b0bo0000000000000800800850858
g|8888888888¢8¢828¢88888838¢88E88832888888¢88888838888888888¢:88888888838882¢88288838
HEE R R R R R R R R R R R R R R R R R R R R R R R R R R R R R s R R R R R R R R R R
R R R R R R R R R R R R R R R R R R R R R A A A R R A R A A A A R R S Loglsalio  FoldChange  pvalue

NANNANNNNNNRNANNNNNNNNRAFNRANRNNNANNNNNANRARNANNNNNANENANRANNNNNNNNNNRNNNNNNNNRNRNRNRNAMNNNNN
 Biotic | ]

ZW-00077 C. graminicola study 3 (B73; 24hpi)/ C. graminicola study 3 (B73; Ohpi) il 1.08 0.47 139 0.008
ZM-00077 C. graminicola study 3 (B73; 48hpi)/ C. graminicola study 3 (B73; Ohpi 017 0.13 1.15 0.129
ZI-00077 C. graminicola study 3 (B73; 120hpi)/ C. graminicola study 3 (B73; Ohp 0.62 0.34 127 0.015
ZI-00077 C. graminicola study 3 (Golden Jubilee; 24hpi) i C. graminicola study 3 0.05 0.13 1.08 0.430
ZM-00077 C. graminicola study 3 (Golden Jubilee; 48hpi)/ C. graminicola study 3 0.71 0.44 133 0024

ZM-00077 C. graminicola study 3 (Golden Jubilee; 120hpi)/ C. graminicala study 0.05 018 -1.10 0.449
ZM-00147 C.zeina study 1 (late stage GLS disease)/ C. zeina study 1 (early sta 008 Q.15 -1.10 0.287
ZM-00127 F.verticillioides study 2 (CO354)/ unireated caryopsis samples (C0O354 0.00 0.02 1.01 0.725
ZW-00127 F.vericillioides study 2 (CO441)/ untreated caryopsis samples (CO44 1] 0.84 058 147 0.037
ZM-00144 R. maidis study 1 (2h)/ mock treated leaf samples (96h) 002 .08 105 0.458
ZWM-00144 R. maidis study 1 (2h)/ mock treated |eaf samples (96h+4h) 073 0.28 122 0.002
ZM-00144 R. maidis study 1 (4h)/ mack treated leaf samples (96h) 033 0 1.15 0.028
ZM-00144 R. maidis study 1 (4h)/ mock treated leaf samples (96h+4h) 0.00 €002 -1.01 0.791
ZI1-00144 R. maidis study 1 (8h)/ mock treated leaf samples (96h) 0.04 008 1.04 0.274
ZW-00144 R. maidis study 1 (8h)/ mock treated leaf samples (96h+4h) 0.28 £0.15 112 0.019
ZW-00144 R. maidis study 1 (24h) / mock treated leaf samples (96h) 100 033 1.25 <0.001
ZM-00144 R. maidis study 1 (24h)/ mock treated leaf samples (96h+4h) 0.11 0.10 107 0.091
Z1-00144 R. maidis study 1 (48h) / mock treated leaf samples (96h) 0.03 0.07 1.04 0.339
ZM-00144 R. maidis study 1 (48h) i mock treated leaf samples (96h+4h) 024 Q.18 -1.12 0.030
ZI-00144 R. maidis study 1 (96h) / mock treated |eaf samples (96h) 0.22 0.18 1.1 0.045
ZW-00144 R. maidis study 1 (96h) / mock treated |eaf samples (96h+4h) 003 .08 -1.05 0.303
¥ Chemical
¥ jasmonate-like metabolites
ZM-00065 10-OPEA study 1 (3h)/ mock treated leaf samples (3h) 003 0.10 -1.12 0.533
¥ Hormone
¥ jasmonates
ZW-00065 12-OPDA study 1 (3h)/ mock treated leaf samples (3h) 0.01 0.08 108 0888
¥ Genotype
Y B73
ZI-00077 B73/ Golden Jubilee € 107 0.58 1.48 0018
ZW-00077 B73/Golden Jubilee & 0.09 014 -1.09 0.222
ZW-00077 B73/ Golden Jubilee & 0.81 0.45 1.37 0.018
ZM-00077 B73/Golden Jubilee € 004 011 108 0422
ZM-00127 CO441/C0O354 & 052 £0.37 127 0.040
ZW-00127 CO441/C0354 & 0.29 0.23 147 0,082
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Dataset: 75 perturbations from data selection: ZM_mRNASeq_MAIZE_GL-0
Showing 68 measure(s) of 68 gene(s) on selection: ZM-1

Log2-ratio
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73 of 73 perturbations fuffilled the filter oriteria
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SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE ] o fiter no fiter
Zeamays (73) 5|55555500000000000000000000000000000000000000000000000000000000555585858
8|88588885588888558888585888855888855888855888885888885888885858888838888
v Stress
ZM-00082 cold study 1 (B73)/ untreated shoot samples (B73) .. 0.58 029 1.23 0.013
ZM-00082 cold study 1 (Mo17)/untreated shoot samples (M017) 1.56 0.52 -1.44 <0.001
ZM-00082 cold study 1 (Oh43)/ untreated shoot samples (Oh43) 0.45 0.41 1.36 0.081
ZM-00049 dehydration study 1 (1x2h)/ mock treated leaf samples 027 0.38 -1.30 0.187
ZM-00049 dehydration study 1 (3x2h) / mock treated leaf samples 0.38 0.44 1.35 0.153
ZM-00049 y study 1 (3x2h)/ study 1 (1x2h) 1.09 0.81 1.78 0.046
ZM-00050 drought study 3 (caryopsis)/ untreated caryopsis samples 025 0.35 126 0.198
ZM-00050 drought study 3 (leaf base)/ untreated leaf basal meristematic tissue sa 0.00 0.01 1.01 0.929
ZM-00076 drought study 5 (ear; R1)/ untreated ear samples (R1) 6.79 175 318 <0.001
ZM-00076 drought study 5 (ear; V12) / untreated ear samples (V12) 017 0.21 EREI 0.168
ZM-00076 drought study 5 (ear; V14) / untreated ear samples (V14) 156 0.70 152 0.008
ZM-00076 drought study 5 (ear; V16)/untreated ear samples (V16) 0.59 0.70 1.25 0.142
ZM-00076 drought study 5 (leaf, R1)/ untreated leaf samples (R1) 6.28 157 2589 <0.001
ZM-00076 drought study 5 (leaf, V12)/ untreated leaf samples (V12) 0.38 029 1.21 0.057
ZM-00076 drought study 5 (leaf, V14) / untreated leaf samples (V14) 0.19 0.18 1.14 0.084
ZM-00076 drought study 5 (leaf, V16) / untreated leaf samples (V16) 270 0.79 1.68 <0.001
ZM-00076 drought study 5 (tassel; R1) / untreated tassel samples (R1) 0.08 0.09 1.08 0.110
ZM-00076 drought study 5 (tassel; V12)/ untreated tassel samples (V12) 1.38 042 1.35 <0.001
ZM-00076 drought study 5 (tassel; V14) / untreated tassel samples (V14) 1.48 0.45 1.35 <0.001
ZM-00076 drought study 5 (tassel; V16) / untreated tassel samples (V16) 0.18 013 1.10 0.041
ZM-00124 drought study 6 (10d) / untreated shoot samples (10d) 0.15 0.21 -1.16 0.186
ZM-00082 heat study 1 (B73)/ untreated shoot samples (B73) HE 0.16 026 114 0238
ZM-00082 heat study 1 (Mo17)/ untreated shoot samples (M017) 287 0.85 -1.80 <0.001
ZM-00082 heat study 1 (Oh43)/ untreated shoot samples (Oh43) . 0.49 0.32 -1.24 0.020
ZM-00078 simulated drought study 1 (cortex of radicle maturation zone) / mock tre: ... 0.08 2013 1.10 0.230
ZM-00078 simulated drought study 1 (radicle elongation zone) / mock treated radig ... 0.00 0.02 1.02 0.763
ZM-00078 simulated drought study 1 (radicle tip) / mock treated radicle samples (ti .. 0.02 0.05 1.03 0.396
ZM-00078 simulated drought study 1 (stele of radicle maturation zone) / mock treaff .. 0.14 0.1 1.09 0.058
ZM-00086 simulated drought study 2 (-0.2MPa; 6h) / mock treated radicle samples [ ] 0.18 0.35 1.37 0.303

ZM-00086 simulated drought study 2 (-0.2MPa; 24h) / mock treated radicle sample}
ZM-00086 simulated drought study 2 (-0.8MPa; 6h) / simulated drought study 2 (-0

22
b o
gg
58
23
2%
o
is
g3

ZM-00086 simulated drought study 2 (-0.8MPa; 6h) / mock treated radicle samples] 0.07 023 1.32 0513
ZM-00086 simulated drought study 2 (-0.8MPa; 24h) / simulated drought study 2 (- . 0.42 043 1.22 0.107
ZM-00086 simulated drought study 2 (-0.8MPa; 24h) / mock treated radicle sample} 0.00 0.04 1.14 0.868
ZM-00053 submergence study 1 (B73; 24h)/ untreated shoot samples (B73; 24h) 268 1.28 250 0.008
ZM-00053 submergence study 1 (B73; 72h)/ submergence study 1 (B73; 24h) . 0.08 0.20 1.18 0522
ZM-00053 submergence study 1 (B73; 72h) / untreated shoot samples (B73; 24h) . 173 1.09 21 0.025
ZM-00053 submergence study 1 (B97; 24h) / untreated shoot samples (B97; 24h) 0.80 072 -1.61 0.078
ZM-00053 submergence study 1 (B97; 72h) / submergence study 1 (B97; 24h) 0.05 0.19 114 0.580
ZM-00053 submergence study 1 (B97; 72h)/ untreated shoot samples (B97; 24h) . 0.42 0.53 -1.41 0.150

ZM-00053 submergence study 1 (M162W; 24h) / untreated shoot samples (M 162V 022 0.44 1.23 0.312
ZM-00053 submergence study 1 (M162W; 72h) / submergence study 1 (M162W; 2 0.1 0.37 1.15 0.375
ZM-00053 submergence study 1 (M 162W; 72h) / untreated shoot samples (M 162 0.01 0.07 -1.07 0.772
ZM-00053 submergence study 1 (Mo18W; 24h) / untreated shoot samples (Mo 18V . 052 0.70 1.92 0.177
ZM-00053 submergence study 1 (Mo18W; 72h) / submergence study 1 (Mo18W,; 2 282 1.16 224 0.004

|
5
5
3

ZM-00053 submergence study 1 (Mo18W; 72h) / untreated shoot samples (Mo 18 0.243

» Genotype
created with GENEVESTIGATOR

Figure S7. In-silico expression profile of the CG under different biotic stress, jamonates and jasmonate-like treatments (A) and abiotic (B) stress conditions.
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Figure S8. Network-based candidate genes differentially expressed under different biotic agents (A) including Fusarium graminearum and verticelloides,
Meloidogyne incognita, Ostrinia nubilalis, Rhopalosiphum maidis and Ustilago maydis, and under different abiotic stress conditions (B) such as cold
temperature, drought, heat, and submergence.
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Figure S9. Molecular function networks enriched within the candidate genes showing interactions (edges)
among the Gene ontology terms (nodes) enriched by the CGs.
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