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ABSTRACT 

Several herbivores feed on maize in field and storage setups making the development of multiple-

insect resistance a critical breeding target. In this study, an association mapping panel of 341 

tropical maize lines was evaluated in three field environments for resistance to FAW whilst bulked 

grains were subjected to MW bioassay, genotyped with Diversity Array Technologies single 

nucleotide polymorphisms (SNPs) markers. A multi-locus genome-wide association study 

(GWAS) revealed 62 quantitative trait nucleotides (QTNs) associated with FAW and MW 

resistance traits on all 10 maize chromosomes, of which, 47 and 31 were discovered at stringent 

Bonferroni genome-wide significance level of 0.05 and 0.01, respectively, and located within or 

close to multiple-insect resistance genomic regions (MIRGRs) concerning FAW, SB, and MW. 

Sixteen QTNs influenced multiple-traits of which six were associated with resistance to both FAW 

and MW suggesting a pleiotropic genetic control. Functional prioritization of candidate genes 

(CGs) located within 10-30kb of the QTNs revealed 64 putative GWAS-based CGs (GbCGs) 

showing evidence of involvement in plant defense mechanisms. Only one GbCG was associated 

with each of five of the six combined-resistance QTNs, thus, reinforcing the pleiotropy hypothesis. 

In addition, through In-silico co-functional network inferences, an additional 107 Network-based 

CGs (NbCGs), biologically connected to the 64 GbCGs, differentially expressed under biotic or 

abiotic stress were revealed within MIRGRs. The provided multiple-insect resistance physical map 

should contribute to the development of combined-insect resistance in maize. 

Keywords: combined insect-resistance; QTNs; functional prioritization; fall armyworm; 

maize weevil; stem borers 
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INTRODUCTION 

Despite the importance of maize (Zea mays L.) for food security, income, livestock feed, and 

biofuel products and its large production area, grain yield remains low in sub-Saharan African 

(SSA) countries, averaging less than 1.8 ton/ha due to a barrage of biotic and abiotic stresses (1). 

Maize faces several yield-limiting factors among which biotic stresses such as insect pest attacks 

(1–3) start in the field with a range of voracious phytophagous pests that include stem borers, leaf 

feeders, phloem feeders, and root feeders (4). In SSA, field and storage pests cause estimated yield 

losses ranging from 10 to 90% of the seasonal production (5,6). Recently, fall armyworm (FAW), 

Spodoptera frugiperda Smith (Lepidoptera, Noctuidae), migrated to Africa through West and 

Central African countries (7) and has since spread throughout the continent (8). The pest is now a 

threat to food security in Africa owing to its voracious and polyphagous nature resulting in 

substantial yield losses in maize production (1). Besides, storage pests (SP) such as the maize 

weevil (MW), Sitophilus zeamais Motsch (Coleoptera: Curculionidae), and the larger grain borer 

(LGB), Prostephanus truncatus Horn (Coleoptera: Bostrichidae), have a substantial share in these 

losses, especially in Africa where poor storage facilities expose stored grains (5,9). 

Chemical control measures are widely used to reduce maize yield losses incurred from attack by 

field insect pests, and MW and LGB on stored grains. However, insecticides, although efficient in 

reducing insect pressure, pose a significant health hazard to maize consumers and are harmful to 

the environment (1,10). Furthermore, pesticides are unaffordable to small scale farmers in Africa 

and may result in the development of chemical resistance in insects, and the emergence of 

secondary pests. Also, the application of insecticides in the field represents a threat to nontarget 

organisms including natural enemies of insect pests like FAW (1,10,11). Another control measure 

is host-plant resistance (HPR), which is the inherent plant ability to limit insect damage through 

various defense mechanisms provided by its genetic make-up (12,13) and is fully compatible with 

all other IPM. Host plant resistance at its highest level can be exclusively applied to thwart insect 

attacks without expensive and controversial interventions. Considering the plethora of insect 

species that either simultaneously or concurrently attack all maize parts, including leaves, stems, 

kernels (4), the development of HPR should target multiple-insect resistance (14).  

Understanding the genetic basis of multiple-insect resistance is critical to the control of 

combinatorial attacks from field and storage insect pests which are critical constraints to maize 

productivity and storability, especially in sub-Saharan Africa, causing both high yield and grain 
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quality losses through damage and mycotoxin contaminations. However, most genetic, 

biochemical, and genomics studies on plant resistance mechanisms were directed towards 

understanding maize resistance mechanisms to single-insect pests (15). Using the single-insect 

paradigm, several QTL for maize resistance to insects were discovered for FAW, stem borers (SB), 

and SP. These were meta-analyzed in a previous study to better understand the genetic basis of 

maize resistance to multiple-insect pests and explore avenues of multiple-insect resistance 

breeding (16). However, there was a paucity of African germplasm in these meta-analyses since 

very few quantitative trait loci (QTL) mapping studies were conducted for SB (17) and SP (18) 

and no study had been carried out for maize resistance to FAW. Therefore, the meta-QTL (MQTL) 

information resulting from these meta-analyses can not be confidently used in African breeding 

programs targeted at developing maize varieties resistant to multiple insect pests. The challenges 

encountered in the extrapolation of these results to African backgrounds also stem from the co-

evolutionary basis of maize-insect interaction characterized by a concomitant development and 

deployment of plant defense and insect counter attack mechanisms that could substantially vary 

from one background to another (19–21). 

Currently, genome-wide association studies (GWAS) constitute the most advanced strategy for 

mapping regions of the genome of a species that are associated with a phenotype or a set of traits 

of interest to plant and animal breeders and geneticists (22). Compared to biparental QTL analyses, 

they take advantage of the high diversity and multiple recombination history that is available in 

natural populations to narrow down QTL resolution to the nucleotide level (i.e. quantitative trait 

nucleotide (QTN)) and allow increased statistical power (23). In Maize, GWAS was used to map 

several complex traits including disease and insect resistance, for example, resistance to maize 

chlorotic mottle virus and maize lethal (24) and response to the Mediterranean corn borer (MCB) 

(25–27). However, to the best of our knowledge, no GWAS was reported on Africa-adapted maize 

germplasms for their response to locally occurring insect pests such as FAW and MW.  

A logical follow up to mapping studies is the identification of promising candidate genes (CGs) 

around the QTNs associated with the traits of interest to help interpret their biological significance 

(28).  However, not all genes neighboring a QTN are functionally associated with the regulation 

of the traits in consideration, and often, the genes could be numerous, therefore, requiring filtering 

to come up with a list of high confidence CGs (29). A prioritization of the CGs identified within a 

defined window containing QTNs is necessary to avoid expensive validation experiments of 
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numerous potentially unfit genes (30). In maize, the prioritization of CGs based only on the 

available genetic information related to the genes is limited, since only 1% of the maize genome 

is annotated (31,32). Therefore, in prioritizing CGs, integrative approaches involving ontology-

based semantic data integration with expression profiling, comparative genomics, phylogenomics, 

functional gene enrichment, and gene network inference analyses represent a promising alternative 

(30,33,34). Such an approach would take advantage of the extensive genomic information 

available in maize and its sister species such as rice (Oryza sativa) and its more extant relative 

Arabidopsis thaliana (35–37). 

Therefore, in this study, we conducted a GWAS to identify QTNs for resistance to either FAW or 

MW or both insect pests in a diverse association mapping panel (AMP) composed of a genetically 

diverse set of maize inbred and doubled haploid (DH) lines developed in a wide range of African 

agro-ecologies. Such diverse populations are suitable for GWAS analyses on traits such as insect 

resistance, owing to the high genetic diversity and rapid linkage disequilibrium (LD) decay that 

characterizes tropical maize germplasm (38). Also, the GWAS results were compared with those 

of the QTL-meta-analysis conducted earlier (16) to assess the consistencies of the positions of the 

insect resistance-associated genomic regions. Furthermore, to establish a list of promising CGs for 

insect resistance that could be incorporated in molecular breeding programs, a suite of functional 

genomics approaches were used to identify, functionally characterize, and prioritize genes located 

in the vicinity of markers and genomic regions associated with maize resistance to insect pests. 

MATERIAL AND METHODS 

Association mapping panel (AMP) establishment and field planting 

The AMP used in this study consisted of 358 maize lines from a diverse genetic and geographic 

background sourced from the National Crop Resources Research Institute (NaCRRI/Namulonge, 

Uganda), the International Institute for Tropical Agriculture (IITA/Ibadan, Nigeria) and The 

International Maize and Wheat Improvement Center (CIMMYT/Nairobi, Kenya). The AMP was 

composed of 71 inbred lines developed for various purposes at NaCRRI, five stem-borer-resistant 

inbred lines from IITA, 28 stem borer (SB)-resistant (39,40), 19 storage pest (SP)-resistant inbred 

lines (41,42) and four doubled haploid (DH) populations of 235 lines developed from insect-

resistant parents at CIMMYT. The DH lines from CIMMYT were developed from six parents of 

which three were stem borer-resistant and one was a storage pest-resistant inbred line (these were 
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also included in the AMP) and two were CML elite lines (one, CML132 was included in the AMP) 

(Table S1). 

The AMP was planted in an augmented design in three environments in Kasese (316 lines 

including six replicated in 12 blocks) during the second rainy season (2017B) and at Namulonge 

in 2018 (92 lines including two checks replicated in five blocks) and 2019 (252 lines including 

four checks replicated in 10 blocks) both during the first rainy seasons (2018A and 2019A, 

respectively). Each combination of location and season was considered an environment amounting 

to three environments. 

Genotyping and quality control and assurance of SNP markers 

Maize leaves at the sixth-leaf stage of development were harvested from 5–10 plants per plot in 

2017B and completed in 2018A (for lines not captured in 2017B), oven-dried overnight at 35 

degrees Celsius and shipped to the Biosciences east and central Africa (BecA) of the International 

Livestock Research Institute (ILRI, Kenya) for genotyping. Diversity Array Technology (DArT) 

genotyping facilities (43) were used to identify 34509 SNPs from 341 lines of the AMP. For quality 

assurance of the genetic data prior to further genomic analyses, duplicate  SNPs were first removed 

using the R package DartR (44) to remain with 28919 unique SNPs (DRSNP). To reduce the 

negative effect of GWAS multiple-testing on the association discovery statistical power, the 28919 

DRSNPs were pruned based on linkage disequilibrium (LD) among SNPs (r2=0.2 and window 

size=500,000 bp). This operation was performed using the R package SNPRelate (45) and allowed 

to reduce the number of SNPs considered for GWAS to 3124 SNPs in LD (LDPSNPs) spanning 

the whole maize genome with a fairly even marker distribution (Figure S1). The 3124 LDPSNPs 

were then imputed in TASSEL 5 with the LD KNNi imputation method (46). 

FAW damage scoring and MW bioassay 

After germination, plants were left unprotected to allow sufficient natural pressure from FAW 

population. FAW damage scoring in all three environments was carried out two months after 

planting based on a visual assessment on a scale of 1 (no or minor leaf damage) to 9 (all leaves 

highly damaged) as described by (47) and illustrated in Figure S2 (48). 

Rearing and bioassay MW was performed as described in previous experiments carried out at 

NaCRRI (49,50).  Weevils were reared prior to the bioassay to obtain enough insects aged between 

0 to 7 days for infestation. During rearing, standard conditions were provided to weevils to ensure 
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proper acclimatization during the experiment. Rearing was carried out by creating a weevil-maize 

grain culture of 300 to 400 unsexed insects and 1.5 Kg of grains contained in 3000 cm3 plastic jars 

incubated for 14 days in the laboratory at a temperature of 28±2°C and relative humidity of 70±5%, 

to enhance oviposition. The lids of the jars were perforated and a gauze-wire mesh of pore size 

smaller than one mm was fitted in each of the lids to allow proper ventilation while preventing the 

weevils from escaping.  

After harvest and shelling, 30 grams of grains from each line of the AMP were weighed from a 

bulk of all three environments with the aim of having three replicates per genotype. Due to the 

limited seed quantities, 64 lines were replicated thrice, 123 lines were replicated twice and 132  

once. Each of these samples was wrapped in polythene bags and kept at -20°C for 14 days to 

eliminate any weevil infestation prior to the start of the experiment. After this disinfestation 

process, samples were left to thaw and transferred into 250 cm3 glass jars and infested with 32 

unsexed weevils. After 10-days incubation to allow oviposition, all dead and living adult insects 

were removed. One month after infestation (MAI), each sample was removed from its jar, and the 

grains and the flour were separated and their weights were recorded. The total number of holes 

inflicted by the weevils on the grains were counted along with the number of holed grains. Also, 

the number of dead and living weevils was recorded. After these measurements were collected, 

the grains were returned to their respective jars and all the measurements were repeated at 2 and 3 

MAI. The collected data were used to infer for each sample, the cumulative grain weight loss 

(GWL), the cumulative number of emerged adult weevil progenies (AP), the cumulative number 

of damage-affected kernels (AK), the cumulative number of holes on grains (NH), and the 

cumulative weight of the flour produced (FP). 

Statistical analyses of the phenotypic data 

Analysis of variance (ANOVA) was performed using the package lme4 (51) implemented in the 

R environment (52) to determine genetic variability among the lines of the AMP for the MW and 

FAW resistance traits. The linear model for MW traits (GWL, AP, AK, NH, and FP) was as follows: 

 𝑌 =  𝜇 +  𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝐸𝑟𝑟𝑜𝑟                                                                                    (1) 

The models for FAW damage scores for FAW in single and across environments were as follows: 

- FAW individual environments 2017B and 2019A:  𝑌 =  𝜇 +  𝐵𝑙𝑜𝑐𝑘 + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝐸𝑟𝑟𝑜𝑟   (2)                                                                                    

- FAW individual environment 2018A:  

𝑌 =  𝜇 + 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐵𝑙𝑜𝑐𝑘 + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝐸𝑟𝑟𝑜𝑟                                                                    (3) 
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The FAW across environments model was: 

𝑌 = 𝜇 + 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐵𝑙𝑜𝑐𝑘 + 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛: 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝐸𝑟𝑟𝑜𝑟                              (4) 

Where: 𝜇 is the grand mean of the target trait. 

The genotype-based heritabilities (H2) for MW and FAW resistance traits were calculated on a 

genotype mean basis (53) using variance components obtained from a mixed model considering 

the effects of all the factors present in models 1, 2, 3, and 4 as random using the following formulas: 

For MW resistance traits:  𝐻2 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠+(𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐸𝑟𝑟𝑜𝑟/𝑁𝑅 )
. 

For FAW damage scores in 2017B and 2019A:  𝐻2 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠+𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐸𝑟𝑟𝑜𝑟
 

For FAW damage in 2018A:  𝐻2 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠+(𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐸𝑟𝑟𝑜𝑟/𝑁𝑅)
. 

For FAW damage scores across environments: 

 𝐻2 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠+((𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑠:𝐸𝑛𝑣𝑖𝑟𝑜𝑚𝑒𝑛𝑡𝑠+𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐸𝑟𝑟𝑜𝑟)/𝑁𝐸)
 

Where: NE is the number of environments and NR is the number of replications 

Then for the GWAS analyses of maize resistance to MW traits and FAW damage scores across 

environments, mixed models 1 and 4 were used to extract best linear unbiased predictors (BLUPs) 

using the package lme4 (51). Pairwise Pearson correlations among BLUPs of MW and FAW 

resistance traits were computed and visualized with the R package PerformanceAnalytics 

(https://cran.rproject.org/web/packages/PerformanceAnalytics/index. html).  

Linkage disequilibrium (LD), population structure and kinship matrix 

The software TASSEL v5.2 (46) was used to calculate LD with the squared Pearson correlation 

coefficient (r2) between pairs of SNPs, and principal components (PCs) and kinship matrix to infer 

population structure and cryptic relatedness with the AMP. The LD decay graph, plotting the r2 

between pairs of SNPs against their pairwise physical distance and showing the average pairwise 

distances at which LD decayed at r2 = 0.1 and 0.2, was generated as described earlier (27,54) based 

on Remington et al.(55). The kinship matrix was generated using the centered-identity by state 

(Centered-IBS) function. Also, 345 PCs accounting for 100% of the variance explained by the 

3124 LDPSNPs were generated. 
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Genome-wide association mapping 

The BLUPs for all traits were transformed using the R package bestNormalize (56) that tests a 

suite of normalizing transformation methods on the values of each trait and chooses the one that 

fits best the data based on a goodness of fit statistic. A multi-locus genome-wide association study 

(GWAS) was conducted for all MW and FAW traits using both transformed and untransformed 

BLUPs with the 3124 LDPSNPs to allow comparing the results and choosing the best based on 

the Manhattan and QQ-plots. The multi-locus GWAS was conducted using the Fixed and random 

model Circulating Probability Unification (FarmCPU) package (57) implemented in R packages 

Genome Association and Prediction Integrated Tool (GAPIT) (58) and Memory-Efficient, 

Visualize-Enhanced, Parallel-Accelerated GWAS Tool (rMVP) (https://github.com/ 

XiaoleiLiuBio/rMVP ), to solve the mixed problem of false positive and false negative SNPs 

usually encountered in the traditional mixed linear model (MLM) (59–61). For that, FarmCPU 

uses a modified MLM, the multi loci mixed model (MLMM) to incorporate both kinship matrix 

and PCs to account for the varying relatedness and the population stratification present among the 

lines in the AMP (57). To control population structure which can differentially affect traits in an 

AMP (30,62,63), the number of PCs included in the GWAS models for each trait was gradually 

increased until achievement of an adequate control of the false positive and false negative rate 

through inspection of the quantile-quantile plot of the observed against the predicted negative 

log10 (P-values) of each of the 3124 LDPSNPs (30,64). The number of PCs included for the 

analysis of each trait is presented in Figure S3. 

Three Bonferroni genome-wide significance levels (BGSL): 1, 5, and 30% (for suggestive 

associations) were used to identify SNPs significantly associated with resistance traits. Based on 

the B73 maize genome reference (AGPv4) coordinates, the physical positions of the SNPs 

significantly associated with any of the resistance traits were compared with those of the MQTL 

identified in the previous study of Badji et al.(16). It should be noted that this map was earlier 

enriched with additional QTL for maize resistance to spotted  stem borer (SSB) and African maize 

stalk borer (AMSB) (17), MW (18) in African backgrounds, the Asian corn borer (ACB) (65), and 

FAW and southwestern corn borer (SWCB) (66–68) and QTLs for benzoxazinoids content(69–

71). Based on the AGPv4 coordinates of QTL and MQTLs, a physical map was generated and 

visualized using MapChart V2.3 (72). 
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Candidate gene (CG) designation 

Pre-CGs (pre-CGs) identification around the QTNs for maize resistance to FAW and MW 

Genes containing or located within a 10,000 base pairs (10Kb) window including the QTNs for 

single or combined resistance to FAW and MW were recorded as pre-CGs on the B73 maize 

reference genome (AGPv4) on the Ensembl Plant databases (http://plants.ensembl.org/Zea_mays). 

This search window was extended to 30Kb when no gene was discovered within the immediate 

10Kb containing the QTN. The genetic information related to these pre-CGs, namely: gene name, 

description, and AGPv4 coordinates, was retrieved from the maize genome database 

(https://www.maizegdb.org/) and their canonical protein sequences were downloaded from the 

same database. The distance that separates each pre-CG from its respective QTN (DQTN) was 

calculated based on their AGPv4 respective coordinates as the difference between the end position 

(for genes upstream the QTNs) or start position (for genes downstream the QTNs) and the position 

of the QTN they were associated with. 

Pre-CGs prioritization through a suite of functional characterizations 

In-silico expression analyses of the pre-CGs 

To determine whether the expression of any of the pre-CGs are up- or downregulated under certain 

biotic and abiotic stress conditions, and to reveal in which maize organs and developmental stages 

they were expressed, an In-silico differential gene expression analysis was carried out using the 

condition search tools, ‘Perturbation’, ‘Anatomy’, and ‘Development’, respectively, of the 

software GENEVESTIGATOR V7.4.0 (https://genevestigator.com/gv/doc/intro plant.jsp) (73). 

For these analyses, the maize microarray platforms, mRNA-seq Gene Level Zea mays (ref: AGPv4) 

was used to evaluate the expression levels of the pre-CGs. From this platform, for the 

‘Perturbation’, ‘Anatomy’, and ‘Development’ analyses, only maize experiments relevant to biotic 

and abiotic stresses were selected and the In-silico experiments were performed separately for each 

category of stress whilst including in the biotic stress category plant biochemicals reported to have 

an influence in biotic stress resistance, for instance, jasmonates and jasmonate-like chemicals. The 

In-silico pre-CG differential expression analyses were also conducted using the Gene Expression 

Atlas (https://www.ebi.ac.uk/gxa/home) (74) and Zea mays for maize was chosen as a species. 

Options “Treatment”, “Growth conditions”, “Biotic plant treatment”, “Stimulus”, “Infect”, and 

“Environmental stress” were checked and experiments not concerned with biotic or abiotic stress 

were filtered out. 
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Identification of conserved domains within the protein sequences of the pre-CGs 

A protein conserved domain search was performed for the pre-CGs on the national center for 

biotechnology information (NCBI) conserved domain (CD) database (https://www. 

ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) using the CDD\SPARCLE Batch Web CD-Search 

Tool with default parameters (75). 

Identification of pre-CG orthologs and co-expression analysis 

For functional inferences, A. thaliana and rice (Oryza sativa) orthologs of the pre-CGs were 

identified using the ortholog search tool of the web-based database g:Profiler 

(https://biit.cs.ut.ee/gprofiler) and their gene ids and functional information were retrieved. The 

protein sequences of the A. thaliana genes were downloaded from TAIR (https://www. 

arabidopsis.org/tools/bulk/sequences/index.jsp). For the rice genes, the gene ids were converted 

from the RAP to the MSU formats using the Id Converter tool from the Rice Annotation Database 

(rap-db) (https://rapdb.dna.affrc.go.jp/tools/converter) and their protein sequences were retrieved 

from the Rice Genome Annotation Project  (http://rice.plantbiology.msu.edu/downloads_gad. 

shtml). A whole-genome co-expression analysis between the pre-CGs and their rice and A. 

thaliana orthologs was conducted using the gene protein sequences tool on the web-based server 

OrthoVenn 2 (https://orthovenn2.bioinfotoolkits.net) (76). 

Pre-CG prioritization 

The functional information obtained either from the pre-CG (functional and conserved protein 

domains information) or inferred from their co-expressed orthologs (gene functional information) 

was searched in the scientific literature along with several plant biotic and abiotic stress-related 

keywords to ascertain relation with plant defense mechanisms. This information along with the 

results from the In-silico expression analyses were considered as evidence of involvement in plant 

defense mechanisms. Then, pre-CGs were classified into three categories (CGC): A (more than 

one evidence), B (only one evidence), and C (no evidence), and those falling within A and B 

categories were considered as putative GWAS-based CGs (GbCGs). 

Network-assisted CG discovery for multiple-insect resistance 

The putative GbCGs were used to discover other functionally connected genes located within the 

multiple-insect resistance genomic regions (MIRGRs) determined in a previous study (16). The 

maize co-functional network database, MaizeNet (http://www.inetbio. org/maizenet/) (77) was 

used to identify maize genes functionally connected to the GbCGs used as guide genes. The 
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network-based CGs (NbCGs) with connectivity scores to the guide genes higher than 5 were 

assessed for In-silico differential expression using the Gene Expression Atlas (GXE) (74) with the 

same parameters as described earlier in this paper. The genes up- or downregulated were selected 

and their genomic locations were checked within the IRGRs to designate them as NbCG for maize 

resistance to insect pests.  

Interactions among CGs 

To investigate the possible interactions among the CGs (GbCGs and the NbCGs) as evidence of 

their involvement in a network-like defense mechanism, protein-protein interaction analyses were 

carried out by submitting protein sequences of both CG groups to the STRING v11 database 

(http://string-db.org/) (78). Also, pathway functional enrichment analyses were conducted for the 

CGs using the Ghost tool of the web-based platform g:Profiler Beta 

(https://biit.cs.ut.ee/gprofiler/gost#) using a Bonferroni correction threshold of 0.05 (79). The 

interaction network of the Gene Ontology Molecular function was visualized using the software 

EnrichmentMap (80) implemented in the software Cytoscape V3.7.2 (79). 

RESULTS 

Trait variance, heritability, and correlations 

There was a highly significant (P<0.001) genetic variation among the lines of the AMP for FAW 

and all MW resistance traits collected and analyzed in this study, except FAW damage in 2017B 

which was significant at P>0.01. For FAW resistance traits, the genotypic effect was highly 

significant in 2018A, 2019A, Across environments (P<0.001) and in 2017B (P<0.01). All other 

factors showed at least a 5% significant difference, except the block effect in 2019A (Table 1). 

Table 1. Analysis of variance for maize resistance to fall armyworm (FAW) damage in Kasese 2017B (2017B), 

in Namulonge 2018A (2018A), and 2019A (2019A) and across environments (Across Env.) 

Source of variation Df 2017B Df 2019A Df 2018A Df Across Env. 

Genotype 315 1.51** 251 3.12*** 91 3.48*** 357 2.76*** 

Block 11 3.75*** 9 1.59ns 4 7.17*** 11 2.41* 

Replication 
    

1 26.95*** 
  

Environment 
      

2 270.57*** 

Genotype*environment 
      

300 2.14*** 

Residuals 9 0.25 49 0.90 123 1.12 195 1.12 

H2 
 

0.80 
 

0.72 
 

0.67 
 

0.25 

 Significance codes:  0.001 ‘***’ 0.01 ‘**’ 0.5 ‘*’ 

Df=degrees of freedom; H2=entry mean-based broad-sense heritability, ns=non significant. 

2017B = Kasese 2017B; 2018A = Namulonge 2018A; 2019A = Namulonge 2019A; and Across Env = across 

environments. 
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For MW resistance traits, all genotype effect were highly significant (P<0.001) and the effect of 

the replications was only significant (P<0.5) for adult progeny emergence (AP) and the number of 

holes (NH) (Table 2). Heritability values for FAW damage scores were high in individual 

Table 2. Results of the Analysis of variance for maize weevil (MW) resistance traits  

Source of variation Df AK AP FP GWL NH 

Genotype 131 4795.47*** 5947.91*** 2.56*** 19.11*** 13070.89*** 

Replication 2 3668.67ns 1215.68* 0.07ns 1.54ns 2660.36* 

Residuals 200 1218.15 1383.90 0.16 2.83 3417.45 

H2 
 

0.79 0.79 0.95 0.87 0.78 

 Significance codes:  0.000 ‘***’ 0.001 ‘**’ 0.1 ‘ ’ 

AK=number of affected kernels, NH=number grain holes, AP=number of emerged adult progenies, FP=total amount 

of flour produced, and GWL=grain weight loss. 

Df=degrees of freedom; H2=entry mean-based broad sense heritability. 

environments varying from 0.67 in 2018A to 0.80 in 2017B (Table 1). However, the H2 for FAW 

damage scores across environments was relatively low (H2=0.25) as a result of high significance 

(P<0.001) of environmental influence factors and their interaction with the genotypes (Table 1). 

Traits related to MW resistance recorded high heritability (H2) values ranging from 0.78 for Grain 

weight loss (GWL) to 0.95 for flour production (FP) (Table 2). Pearson correlations (R) among 

MW resistance traits were highly significant whilst FAW damage was poorly and mostly 

negatively correlated to MW resistance traits, and all nonsignificant (Figure 1). The R values for  

 
Figure 1. Pairwise Pearson phenotypic correlation among FAW damage and MW traits. 
AK=number of affected kernels, NH=number grain holes, AP=number of emerged adult progenies, FAW=Fall 

armyworm, FP=total amount of flour produced, and GWL=grain weight loss. 
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MW resistance traits ranged from 55% between FP and NH to 89% between AK and NH. 

The R values were the lowest whenever FP was included in a pairwise correlation with other 

MW resistance traits with R ranging from 55% (FP vs. NH) to 60% (FP vs. AP). 

Association mapping for MW and FAW resistance traits 

Linkage Disequilibrium and effective control of population structure and kinship 

Whole-genome linkage disequilibrium (LD) was computed using the 3124 LD-pruned SNP 

markers and the genome-wide LD decay plot was generated from the LD (r2) between adjacent 

pair of markers in the y-axis and the distance in kb in the x-axis (Figure 2). A rapid LD decay  

 
Figure 2: Linkage disequilibrium (LD) plot representing the average genome-wide LD decay in the 

panels with genome-wide markers. The values on the y-axis represent the squared correlation 

coefficient r2 and the x-axis represents the physical distance in (kb) 

characterized the AMP with the average physical distance increasing from 7.92 to 22.7 

when the cut-off point decreased from r2 = 0.1 to 0.2, which was promising for GWAS 

and CGs. The association mapping panel (AMP) used in this study was composed of 

maize lines of diverse origins suggesting the existence of population structure as 

highlighted in Figure 3. However, the relative clustering of these subpopulations was not 

well defined (no group was clearly separated from the other ones) due to the complex 

kinship relatedness shared by the majority of the lines. This population structure leads to 

biased SNP-trait associations if not properly accounted for in this study. Therefore, 

allocating an adequate number of PCs for each trait (Figure S2) and including a kinship 

relationship matrix minimized the rate of false positives and negatives as evidenced in 

Figure 4. The QQ-plot in Figure 4A shows that the population parameters (kinship and 
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Figure 3. 3D and 2D Distribution of the maize lines composing the association mapping panel 

according to the first three principal components (PC1, PC2, and PC3) generated from the 

3124 LD-pruned markers 

 

 

Figure 4. Combined quantile-quantile (A) and Manhattan (B) plots derived from the genome-wide association 

analysis for fall armyworm (FAW) damage and maize weevil (MW) traits. Bonferroni genome-wide 

significance levels of 0.01 (upper line), 0.05 (middle lines), and 0.3 (lower line) on B. 

population structure) were effectively controlled for all traits analyzed, hence, minimizing the rate 

of both false positive and false negative associations. Besides, both original and transformed 

BLUPs of all the FAW and MW resistance traits were tested in the GWAS analyses. Analysis with 

B 

A 
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transformed BLUPs generated better-looking plots than those with the non-transformed BLUPs 

for most traits except GWL and FP for which population parameters could only be successfully 

controlled using the transformed BLUPs. Several SNP-trait associations or quantitative trait 

nucleotides (QTNs) were discovered at very stringent Bonferroni genome-wide significance levels 

(BGSL) of 0.05 and even 0.01 for all the resistance traits analyzed (Figure 4B). 

Single and multiple-trait associated traits 

Sixty-two QTNs distributed on all the 10 maize chromosomes were significantly (at least below 

0.3 BGSL) associated with either single or both MW and FAW resistance traits, of which, 47 and 

31 were significant at 0.05 and 0.01, respectively (Table 3). Chromosomes 6 and 7 did not harbor 

any QTN associated with FAW damage resistance whereas all 10 chromosomes were involved in 

at least one QTN for maize resistance to MW.  Of the 62 QTNs, 14 were found to influence 

response to FAW (9 QTNs at 0.05) while many other QTNs were associated with resistance to 

MW traits such as GWL (17 QTNs of which 14 at 0.05), FP (17 QTNs of which 7 at 0.05), AK 

(13 QTNs of which 6 at 0.05), AP (10 QTNs of which 7 at 0.05), and NH (8 QTNs of which 4 at 

0.05). Sixteen QTNs were associated with resistance to multiple-traits of which six were associated 

with resistance to both FAW and MW suggesting possible pleiotropic effects. 

Table 3. List of the 62 QTNs associated with resistance to fall armyworm (FAW) damage and maize 

weevil (MW) traits. 

Chr.Bin Position SNP-Allelesa P.value Effect Trait BGSL 

1.02 18,282,139 2544389-10-G/C 8.49E-05 -0.61926 GWL 0.3 

1.02 21,511,322 2399751-6-C/A 3.95E-06 0.397572 AP 0.05 

1.04 69,429,238 5584129-55-C/T 1.20E-13 -1.34659 AK 0.01 

1.04 69,747,754 4580363-8-A/G 1.79E-05 -0.45677 AK 0.3 

1.08 238,892,103 4583673-29-G/C 6.29E-06 -0.45143 GWL 0.05 

1.09 263,624,976 100024832-19-A/C 
3.83E-07 -1.39669 GWL 0.01 

6.36E-05 -0.56467 FAW 0.3 

1.09 264,933,475 4583685-9-G/A 
4.88E-05 -0.56303 NH 0.3 

5.98E-05 -0.59983 AK 0.3 

1.11 285,936,150 4580090-67-T/C 8.37E-07 0.796615 GWL 0.01 

1.12 305,156,544 2382596-67-A/G 1.63E-10 -0.36002 FAW 0.01 

2.02 6,741,658 2452223-17-A/G 6.79E-06 0.213179 FAW 0.05 

2.04 30,341,425 4771831-60-G/T 2.22E-06 -0.61067 AK 0.01 

2.04 35,377,279 4767220-53-G/A 1.64E-05 -0.52503 AK 0.3 

2.04 40,608,209 2388222-45-G/C 
1.01E-09 0.473004 FP 0.01 

1.35E-09 0.752083 GWL 0.01 

2.05 140,747,202 2435073-40-T/C 
3.13E-06 -0.41627 AP 0.01 

7.09E-05 0.289661 FP 0.3 

2.06 154,630,564 2448649-48-G/A 5.41E-05 -0.18627 FAW 0.3 
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Chr.Bin Position SNP-Allelesa P.value Effect Trait BGSL 

2.08 213,714,960 4583437-30-G/C 3.16E-05 0.195599 FP 0.3 

2.08 221,951,608 4765698-16-A/G 2.42E-05 -1.02779 AK 0.3 

2.10 236,778,497 100130818-44-A/G 1.70E-05 0.391072 FP 0.3 

2.10 236,789,029 4591349-29-A/G 5.73E-06 0.366018 GWL 0.05 

3.01 2,734,515 9714175-54-C/G 
1.74E-08 -0.52816 FAW 0.01 

1.88E-05 0.885829 NH 0.3 

3.02 4,141,348 4764930-10-C/T 
3.43E-07 -0.51944 FAW 0.01 

1.14E-05 -1.03199 GWL 0.05 

3.04 17,591,392 4772102-17-T/G 2.15E-05 0.305217 FP 0.3 

3.04 71,004,409 4593663-22-G/A 
2.15E-10 0.966386 GWL 0.01 

2.55E-07 0.48656 FP 0.01 

3.06 179,391,224 2446859-65-C/G 9.98E-06 -0.30607 AP 0.05 

3.07 201,766,146 4584446-12-G/C 1.08E-06 0.493102 NH 0.01 

3.09 227,436,274 4583173-13-T/C 9.21E-06 -0.62512 GWL 0.05 

4.03 19,181,255 2381322-13-C/G 5.34E-09 0.202627 FAW 0.01 

4.04 24,984,097 4779016-24-C/T 5.56E-05 0.468163 NH 0.3 

4.05 48,323,977 4577027-47-G/A 1.75E-05 0.551228 GWL 0.3 

4.05 78,882,987 100220678-45-A/G 
9.85E-06 0.184883 FAW 0.05 

7.12E-05 0.324198 FP 0.3 

4.08 180,072,262 4771330-29-T/C 3.40E-07 -0.8024 NH 0.01 

4.08 188,548,237 2619648-16-T/C 3.79E-06 -0.91698 GWL 0.05 

5.02 8,372,190 4589321-22-G/A 7.07E-06 -0.67142 AK 0.05 

5.03 32,460,125 7048960-37-T/G 1.22E-06 -0.75462 NH 0.01 

5.04 134,168,179 7049219-26-T/C 5.10E-05 0.16596 FAW 0.3 

5.04 155,012,378 4584182-35-C/G 2.64E-05 -0.16674 FAW 0.3 

5.07 204,689,646 4774140-50-G/A 1.51E-05 0.372348 FP 0.05 

6.01 9,188,598 4587005-7-C/G 
2.68E-06 -0.65839 AK 0.01 

8.38E-05 -0.41379 NH 0.3 

6.01 77,513,355 4771590-67-A/T 4.69E-05 0.299541 FP 0.3 

6.03 103,106,812 5586936-13-T/C 5.07E-05 0.312373 FP 0.3 

6.06 157,597,555 4579331-18-T/C 1.90E-06 0.544151 AP 0.01 

6.08 169,246,523 4764931-6-G/A 
5.19E-06 -0.61458 FP 0.05 

8.92E-05 -0.66184 AP 0.3 

7.01 5,750,453 4771072-39-A/G 6.80E-05 0.428352 GWL 0.3 

7.03 152,580,067 5587204-51-A/C 2.45E-05 -1.30905 AK 0.3 

7.05 173,989,867 4580355-27-G/A 
4.84E-07 -0.57199 GWL 0.01 

5.08E-07 0.406797 AP 0.01 

8.00 328,928 4773640-63-T/A 7.16E-08 0.34059 FP 0.01 

8.02 16,558,612 4770550-8-G/C 6.47E-06 0.374068 GWL 0.05 

8.03 99,111,439 2504966-32-A/G 9.62E-06 0.264805 FAW 0.05 

8.05 146,321,767 2559495-18-T/G 
6.26E-05 -0.15544 FAW 0.3 

8.31E-05 -0.54446 AK 0.3 

8.08 170,354,517 2610943-54-T/C 
3.08E-06 0.570008 GWL 0.01 

9.53E-05 -0.37079 AP 0.3 

8.09 176,518,972 2376195-62-T/G 7.58E-05 0.393732 FP 0.3 

8.09 180,177,242 4579847-66-T/G 6.92E-05 0.277417 FP 0.3 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 May 2020                   doi:10.20944/preprints202005.0337.v1

https://doi.org/10.20944/preprints202005.0337.v1


17 
 

Chr.Bin Position SNP-Allelesa P.value Effect Trait BGSL 

9.03 61,164,617 4771587-19-T/C 6.24E-07 -1.9427 AK 0.01 

9.04 120,457,334 100023814-29-T/G 
4.20E-05 -0.52317 AK 0.3 

8.20E-05 0.288404 FP 0.3 

9.05 129,393,054 9682691-38-C/T 
5.68E-10 0.797225 FP 0.01 

4.41E-06 -0.34413 FAW 0.05 

9.05 133,252,665 4764675-42-C/G 2.69E-05 -0.52765 AP 0.3 

9.06 141,396,844 2425091-21-G/A 4.50E-10 0.689575 NH 0.01 

10.04 89,412,526 4582917-12-A/G 1.05E-07 0.571392 GWL 0.01 

10.04 99,693,244 2539012-9-A/C 

2.39E-10 0.767475 GWL 0.01 

1.87E-06 0.363841 FP 0.01 

3.21E-06 -0.44639 AP 0.05 

10.04 106,804,143 100298755-56-T/C 2.20E-08 -0.31497 FAW 0.01 

10.04 125,628,521 4776702-53-G/A 1.89E-07 1.750698 AK 0.01 

10.05 136,798,456 7061499-37-A/G 1.29E-12 0.547738 AP 0.01 
aThe allele before the slash (/) increases the trait and the allele after the slash decreases the trait. Bonferroni 

genome-wide significance level (BGSL). AK=number of affected kernels, NH=number grain holes, 

AP=number of emerged adult progenies, FP=total amount of flour produced, and GWL=grain weight loss. 

QTNs in bold are associated with both FAW and MW resistance. 

The QTNs for multiple-insect resistance are 100024832-19-A/C at position 263,624,976 on 

chromosome 1 for GWL and FAW, 9714175-54-C/G at position 2,734,515 for FAW and NH and 

4764930-10-C/T at position 4,141,348 for FAW and GWL both located on chromosome 3, 

100220678-45-A/G at position 78,882,987 on chromosome 4 for FAW and FP, 2559495-18-T/G 

at position 146,321,767 on chromosome 8 for FAW and AK, and 9682691-38-C/T at position 

129,393,054 on chromosome 9 for FP and FAW. 

Resistance-related QTN-QTL-MQTL co-localizations 

The QTNs discovered in the current study were projected on a physical map along with MIRGRs 

previously discovered through meta-analyses (16). The majority of the QTNs for resistance to 

single or combined FAW and MW resistance fell within the single and multiple-insect resistance 

MQTL concerning several field pests such as the European corn borer, the Mediterranean corn 

borer, the sugarcane borer, and the southwestern corn borer and the storage pest MW along with 

QTLs for several cell wall constituents. Further, the QTNs co-localize with several QTL for 

resistance to other insect species such as the Asian corn borer (ACB), the Spotted stem borer (SSB), 

the African maize stall borer (AMSB), FAW, and MW and QTL for maize benzoxazinoids content 

on virtually all the 10 maize chromosomes. The co-localizations of maize biochemical and 

resistance genetic factors to multiple-insect pests formed several clusters on most of the maize 

chromosomes especially in the top and bottom chromosomal regions (Figure S4). 
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Pre-CGs functionally associated with plant stress response mechanisms in the vicinity of 

the QTNs 

Seventy-eight pre-CGs were identified for 58 QTNs (Table S2). These pre-CGs include 

transcription factors, protein kinases, disease resistance genes, leucine-rich-repeat, and basic 

leucine zipper genes.  Four QTNs did not have a gene located in a window of 30Kb, namely: 

4593663-22-G/A on chromosome 3 at 71,004,409 bp for GWL and FP, 4587005-7-C/G on 

chromosome 6 at 9,188,598 bp for AK and NH and 4579331-18-T/C at 157,597,555 bp for AP, 

and 4776702-53-G/A on chromosome 10:125,628,521 bp for AK (Table S2). Most of the pre-CGs 

(44 in total) contained the QTNs whilst others were very closely located with the farthest, 

Zm00001d049175, being at 15,726 bp downstream the QTN 2381322-13-C/G associated with 

resistance to FAW (Table S2). For the QTNs associated with combined resistance to FAW and 

MW, five were associated with only one gene each suggesting the nature of the genetic control as 

pleiotropy. Only 100024832-19-A/C on chromosome 1 presented two pre-CGs of which, one 

(TATA-binding protein1, Zm00001d033472) contains the QTN of interest while 

Zm00001d033471, a putative DNA-binding protein was located 3,094 upstream (Table S2). 

Several protein conserved domains were found within 62 of the pre-CGs. Twenty-three of these 

62 pre-CGs presented protein conserved domains that are functionally associated with plant biotic 

and abiotic stress defense mechanisms. These features include the WRKY, F-BOX, NAM, bZIP, 

LRR, AUX_IAA, zf-C2H2, and GTP-binding protein domains (Table S2). 

Pre-CGs differentially expressed under biotic and abiotic stress conditions. 

The In-silico analyses revealed that 62 pre-CGs were differentially expressed under biotic and 

abiotic stress conditions, suggesting a probable involvement in plant defense mechanisms. The In-

silico analyses conducted using the GENEVESTIGOR software showed that 58 of the 68 pre-CGs 

that had expression data were differentially expressed at different plant developmental stages 

(Figure S5). These were at seedling, inflorescence formation, and ear formation developmental 

stages under biotic stress conditions (Figure S5A) and at germination, seedling, stem elongation, 

and anthesis developmental stages under abiotic stress conditions (Figure S5B). The expression of 

the pre-CGs was also modified in organs relevant to FAW feeding and at ear development stages 

(Figure S6) under both biotic (Figure S6A) and abiotic stress conditions (Figure S6B). The 58 pre-

CGs were also differentially expressed in the “Perturbation” analyses when subjected to biotic 

stressors like Colletotrichum graminicola, Cercospora zeina, Fusarium verticilloides, 
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Rhopalosiphum maidis, and also jasmonates and jasmonate-like chemical (Figure S7A) and abiotic 

stresses such as cold, dehydration, drought, heat, and submergence (Figure S7B). The gene 

expression atlas (GXA) platform revealed 52 pre-CGs differentially expressed under stress 

conditions (Figure 5). Thirty-five pre-CGs were induced by biotic stress (Figure 5A), 44 by abiotic 

stress (Figure 5B), and of these two groups, 27 by both conditions. Most of the pre-CGs were 

upregulated under biotic and downregulated under abiotic stress conditions. The biotic stressors 

utilized in the GXA include those in the GENEVESTIGATOR (except Cercospora zeina) in 

addition to Fusarium graminnearum, Meloidogyne incognita, Sporisorium reilianum, Ustilago 

maydis, and the stem borer Ostrinia nubilalis (the European corn borer, ECB) and the two 

platforms shared similar abiotic stress conditions. 

 

Figure 5. Differential gene expression (DGE) of pre-CGs under (A) different biotic agents including Fusarium 

graminearum and verticelloides, Meloidogyne incognita, Ostrinia nubilalis, Rhopalosiphum maidis and Ustilago 

maydis and (B) abiotic stress conditions such as cold temperature, drought, heat, and submergence. 

A

g 

B 
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Pre-CGs were co-expressed with their rice and Arabidopsis thaliana ortholog genes 

The co-expression analysis between the pre-CGs and their rice and Arabidopsis thaliana orthologs 

showed that all maize genes co-expressed with at least one ortholog from either or both rice and 

Arabidopsis (Figure 6). Thirty-six co-expression clusters were common to all three species while 

17 and 6 groups were common to maize and rice and maize and Arabidopsis, respectively. Three 

clusters comprising 10 genes were unique to Arabidopsis alone and there was no cluster shared 

uniquely between rice and Arabidopsis (Figure 6A). The functional gene ontology (GO) categories 

enriched by the maize pre-GGs (Figure 6B) and their rice (Figure 6C) and Arabidopsis (Figure 6D) 

orthologs were similar and pertained mostly to protein kinase and DNA-binding molecular 

functions. Based on the co-expression and GO functional term similarities between maize pre-CGs 

and their rice and Arabidopsis thaliana orthologs, 62 pre-CGs were classified as possibly 

functionally involved in maize plant defense mechanisms (Table S2). 

NbCGs were biologically connected to the GbCGs 

Based on the CG prioritization criteria, 64 pre-CGs showed at least one evidence of involvement 

in plant defense mechanisms, of which, 55 had two or more evidence (Table S2), and therefore, 

were considered as GbCGs. These GbCGs (guide genes) were used to discover NbCGs within the 

MIRGRs. In total, 3737 NbCGs biologically connected to the GbCGs were discovered of which, 

730 had a connectivity score of more than 5. Of the 730 NbCGs, 242 were differentially expressed 

under biotic and abiotic stress conditions (Figure S8) and most were upregulated when exposed to 

abiotic agents (Figure S8 A) and downregulated when the plant faced abiotic stressors (Figure S8 

B). Also, 107 of these differentially expressed NbCGs are located within the MIRGRs (Table S3). 

More than half of these 107 NbCGs were enriched with Biological Process GO terms relevant to 

plant defense mechanisms. The biological connections that exist among the two groups of CGs 

were further illustrated by the GO terms for the Molecular Functions enriched within these CGs 

(Figure 7). The functions displayed by the CGs include plant defense associated GO terms such as 

protein kinase activities, DNA, ATP, ion, and protein binding factors, oxydoreduction activities, 

signaling transduction factors, calcium-dependent channels. These interactions were further 

vindicated at the proteomic level by the existence of protein-protein interactions among the CGs 

suggesting their involvement in the network-like defense mechanism against insect damages 

(Figure S9). 
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Figure 6. Co-expression between maize pre-CG and rice and Arabidopsis thaliana orthologs: Venn diagram showing the co-expression clusters and 

overlaps between maize (Zea_mays) and their rice (O_sativa) and Arabidopsis (A_thaliana) orthologs (A). Distribution of the molecular functions enriched 

within the pre-CG (B) and their A. thaliana (C) and rice (D) orthologs as revealed by the gene ontology mapping. 
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Figure 7. Protein-protein interaction network (edges)  linking the CGs (nodes). 

Names of the proteins (dots) of the protein-protein interaction network are based on the STRING protein ids. 

DISCUSSION AND CONCLUSIONS 

Association mapping panel 

In this study, a diverse association mapping panel (AMP) composed of maize lines adapted to 

African environments was evaluated in three environments (in Kasese in season 2017B, and in 

Namulonge in seasons 2018A and 2019A) for FAW damage resistance and the bulked grains from 

each genotype were subjected to MW bioassay. The lines that composed the AMP were bred in 

Uganda, Kenya, and Nigeria, and displayed a genetic and geographical diversity suitable not only 

for association mapping but, also, would be of great use in ongoing maize breeding projects. The 

majority of these lines were developed for resistance to either stem borers or storage pests by 

CIMMYT of Nairobi (39–41) and IITA of Ibadan, or, in the case of DH lines from CIMMYT, 

from crosses involving either a stem borer or a storage pest-resistant line. All the resistance traits 

recorded were highly significantly varied among the lines of the AMP owing to the high genetic 

diversity present in the AMP. The observed genetic variability was of paramount interest, 
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especially for FAW since the lines in the AMP were not originally developed for resistance to this 

insect pest. The observed genetic variability for FAW resistance could be a consequence of the 

genetic correlations between maize resistance mechanisms to FAW and stem borers 

(4,67,68,81,82). The moderate to high estimates of heritability and the high genetic variability 

obtained in this study shows the suitability of the measured traits for improving both MW and 

FAW resistance in maize and their potential for association mapping studies. The AMP could serve 

as a base-population for multiple insect resistance breeding targeting FAW, stem borers, and 

storage pests which are hazardous threats to food security in sub-Saharan Africa (1,5,83,84). Since 

the environmental effect and the interactions between the environment and the genotypes were 

significant for FAW damage resistance, the AMP needs to be evaluated in wider multi-

environment trials to assess the stability status of the lines in the panel for these target traits across 

national and regions locations, seasons, and years so as to aid in making the best breeding decisions 

(85,86). Secondary metabolites such as cell wall constituents and proteins are essential for 

resistance to storage pests and their accumulation in the grain is affected by environmental 

parameters (12,87–89). Therefore, it is necessary to evaluate the AMP for MW resistance traits in 

several individual environments and increase the sample size so as to perform both single and 

across-environments analyses to better inform future resistance breeding programs. 

Linkage disequilibrium and control of false-positive and negative association 

LD decayed rapidly in the AMP, at distances of 22.7 and 7.92 at cut-off r2 of 0.1 and 0.2, indicating 

a high recombination rate and promising high resolution in GWAS (90) which is in line with the 

faster LD decay characterizing tropical maize lines (90,91). Chaikam et al.(92) found on a maize 

panel composed of lines adapted to tropical and subtropical ecologies that average LD decayed at 

27.31 and 9.48 kb at r2 = 0.1 and 0.2, respectively, which is very similar to the results presented in 

the current study.  

The high genetic and geographic diversity in the AMP resulted in a pronounced population 

structure that was necessary to account for in GWAS analyses for FAW and MW resistance traits 

to avoid false-positive and negative association signals (30). Two strategies were used to limit the 

chances of getting false positive and negative associations and to increase the statistical power of 

QTN discovery. To reduce the multiple-testing burden, an LD-based pruning approach was used 

(93). Since population structure may affect traits in a population differently, hence, accounting for 

it is not straightforward (30,63), and it was not realistic to include a fixed number of PCs to analyze 
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different traits with varying phenotypic correlations. Therefore, a different number of PCs was 

fitted in the GWAS model for each trait, and the Manhattan and QQ-plots were investigated to 

evaluate the level of control of false positives and negatives (30). As a result, several high-

confidence SNP-trait associations at BGSL of 5 % (47 QTNs) and at the highest level of 1% (31 

QTNs) were discovered proving the worthiness of these quality control approaches used.  

QTNs for both single and combined maize resistance to FAW and MW 

This study is the first reported GWAS for maize resistance to FAW and MW as all previous reports 

used bi-parental QTL mapping studies (18,66–68,94,95). Sixty-two QTNs significantly (BGSL > 

30%) associated with maize resistance to MW and FAW  were discovered across all the 10 maize 

chromosomes. However, no QTN for maize resistance to FAW damage was discovered on 

chromosomes 6 and 7. Fourteen QTNs were associated with resistance to FAW of which 9 were 

discovered at BGSL of 5%. Bi-parental QTL analyses conducted previously for FAW resistance 

identified less QTL than reported in this study (66–68). Seven QTL were discovered by Brooks et 

al.(67,68) including on chromosomes 6 and 7 from populations derived from crosses 

Mp708*Mo17 and A619*Mp708, respectively. Womack et al.(66) identified 6 QTL including one 

on chromosome 7 on the same population as studied by Brooks et al.(67). Several FAW resistance 

QTL discovered in these three studies [three in Brooks et al.(67), one in  Brooks et al.(68), and 

four in Womack et al.(66)] co-localize with 6 of the 14 QTNs for resistance to FAW identified in 

this study in maize bins 1.09, 2.02, 5.04, 8.03, and 10.04 and some of these regions were also 

reported to be associated with maize resistance to the southwestern corn borer (66–68). 

Resistance across insect pest species and maize organs 

The majority of FAW and MW resistance QTNs fell within or very close MIRGRs corroborating 

the previous meta-analys results for commonality of resistance regions across maize organs, 

namely, leaves, stems, and kernels, and across insect pest species (16). This is further vindicated 

in this study with the discovery of six QTNs associated with resistance to both FAW leaf damage 

and MW grain damage, of which four are located within the MIRGRs. The nature of the genetic 

action of these multiple-insect resistance-associated QTNs could either be based on gene 

pleiotropy or close linkage (96). Furthermore, a probable role of maize biochemical components 

such as benzoxazinoids and cell wall constituents is further illustrated with the colocalization of 

related QTLs with the MIRGRs previously presented by Badji et al.(16). These maize 
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biochemicals were found to play essential roles in maize resistance to a range of insect species 

including stem borers, FAW, and MW (97–99). Regardless of whether gene pleiotropy or close 

linkage, these MIRGRs, once validated in diverse backgrounds, could be used in GAB to develop 

combined resistance in maize varieties adapted to local environments and consumer needs. These 

comparative mapping results are further supported by the outcome of CG identification and 

prioritization analyses. 

Promising CGs for maize resistance to multiple-insect pests 

Identification and prioritization of CGs is an essential post-GWAS analysis to identify genes in 

the vicinity of QTNs that have the highest likelihood of association with traits of interest. In species 

like maize that present extensive genomic information stored in various databases and that share 

common evolutionary signatures with closely or distantly related species with equal or even more 

comprehensive functional characterization, integrative approaches hold tremendous promise for 

the discovery and validation of meaningful causal genes for several traits of economic importance 

(33,34,100). In that vein, the current study was also intended to discover and prioritize CGs 

associated with traits for maize resistance to insect pests. In total, 78 pre-CGs were discovered 

around the QTNs of which, 62 were given priority based on their functional information. 

Five of the six QTNs identified for combined FAW and MW resistance were associated with one 

gene each further suggesting possible pleiotropic genetic implication in the regulation of multiple-

insect resistance, and therefore, presenting great interest for multiple-insect resistance breeding. 

Pleiotropy, where one gene regulates the expression of more than one phenotype, is pervasive in 

the control of complex traits such as resistance to insect pests even when traits are not positively 

correlated (101–104). Four QTNs, 4593663-22-G/A on chromosome 3 for GWL and FP, 4587005-

7-C/G for AK-NH and 4579331-18-T/C for AP on chromosome 6, and 4776702-53-G/A on 

chromosome 10 for AK, did not have any pre-CG within the 30kb window. Possibly, these QTNs 

resulted from spurious associations that were not successfully controlled during GWAS analysis.  

Furthermore, Network-based inferences are pivotal in studies aimed at finding functional pathways 

regulating genes and are instrumental in discovering additional genes connected to predefined 

genes associated with traits of interest through diverse analyses such as association mapping 

experiments (28,105,106). Therefore, through a network-based inference approach, an additional 

107 genes, subsetted from at total of 3737 genes biologically connected to the GbCGs, were 
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differentially expressed under either biotic or abiotic stress conditions or both and located within 

MIRGRs previously reported (16).  

The genomic and functional information related to most of these CGs, the conserved domains 

within their protein sequences, and genetic descriptions of their co-expressed rice and arabidopsis 

orthologs suggest their possible involvement in plant defense mechanisms. Functional features 

known for their involvement in both biotic and abiotic plant response such as WRKY, F-BOX, 

NAM, bZIP, LRR, AUX_IAA, zf-C2H2, and DNA, ATP, ion, protein-binding protein domains, 

MADS-box, C2C2-YABBY, MYB transcription factors, calcium-related transmembrane transport 

elements, protein kinases, oxydoreduction activities, and several binding factors (107–112) 

characterized most of the CGs, making them promising genetic factors for the regulation of plant 

response to insect pests. 

Most of the CGs had modified expressions under several biotic stress conditions including 

infection with the European corn borer (Ostrinia nubilalis), and on maize organs and at 

developmental stages relevant to FAW feeding. The expression of GWAS-based CGs in maize 

ear-related organs and developmental stages indicated that these genes could have an influence on 

the accumulation of assimilates in the grain among which were phenolic compounds critical for 

resistance to storage pests such as MW (88,113,114). In agreement with the negative interaction 

between plant biotic and abiotic stress responses resulting from negative cross-talk between absicic 

acid (ABA) and jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) signaling pathways 

(107–109,111,115,116),  most of the CGs were upregulated and downregulated under biotic and 

abiotic stress conditions, respectively. In-vivo expression analyses under local conditions would 

help to confirm the role of these CGs in maize response to FAW, SB, and MW. 

Evidence of involvement of the CGs in a network like defense mechanisms were provided by the 

existence of protein-protein interactions among them. These interactions were expected since plant 

defense mechanisms against insect herbivores is a complex mechanism that integrates signaling 

molecules, hormones, and transcription factors, that collaborate as a network under the regulation 

of signaling molecules such as ABA, JA, SA, ET, etc to modulate the production of secondary 

metabolites for direct and indirect responses to insect damage (107–109,115,117–120). The GO 

Molecular function network constituted of 47 GO terms interconnected by 759 edges enriched by 

these CGs further illustrated the extent of interaction among these genes and support their 

involvement in a network-like defense mechanisms against biotic and abiotic stresses. These GO 
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terms were related to protein kinase activities, binding factors, oxidoreduction activities, plant-

pathogen interaction further indicating that they may play crucial roles in maize resistance to insect 

pests such as FAW, MW, and SB. 

Research and breeding perspectives 

Considering the high economic importance of multiple insect pest species including stem borers, 

FAW, and MW in terms of fodder and grain yield loss and mycotoxin contamination (5,6), the 

genetic resistance information revealed in this study would be of great use in genomics-aided 

breeing activities targeting the selection of promising lines and the development of varieties with 

good levels of resistance to either single or multiple-insect species. 

The QTN/QTL information along with the putative CGs discovered in this study are worth going 

through further validation steps in more diverse genetic and environmental backgrounds and 

through In-vivo analyses involving differential gene expression, gene knock-out or silencing 

techniques, or fine-mapping activities, gene editing, among others (121). Also, once validated 

under local conditions, this resistance-related genetic information would further improve the 

capabilities of molecular breeding and genetic engineering programs targeted at building insect 

resistance in maize lines of agronomic importance in Africa. 

The plethora of genomic regions and genes putatively involved in resistance not only corroborates 

the complex architecture of resistance. The co-localization of genomic regions associated with 

resistance to several insect pest species in different maize organs and biological and functional 

connections among genes under these regions indicated the multiple-insect resistance could be a 

result of pleiotropic effect characterized by complex pathway networks and involving biochemical 

defenses such as benzoxazinoids and cell wall constituents (88,98,99,107). Studies allowing direct 

investigations of the role of these biochemicals in maize resistance to multiple insect pests, 

especially in reference to their possible pleiotropy, should be carried out along with validation 

steps needed for the resistance genetic information presented in the current research. 

Furthermore, the polygenic nature of the resistance traits studied here indicates that MAS alone 

might not be efficient for resistance breeding (122,123). The efficiency of genomic selection, a 

complementary approach to GWAS and MAS, which uses whole genome markers to achieve 

selection on a collection of unphenotyped germplasm (124), is worth investigating in the AMP 

owing to the fairly high LD of the genetic data and heritabilities to resistance traits (125,126).
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SUPPLEMENTARY: TABLES AND FIGURES 

Table S1. Descriptions of parents and crosses that constituted the doubled-haploid population 

Parents of the doubled-haploid population 

  Descriptions CKSBL10007 CKSBL10011 CKSBL10203 CKSPL10066 

CKSBL10007 CIMMYT Stem borer-resistant line         

CKSBL10011 CIMMYT Stem borer-resistant line         

CKSBL10203 CIMMYT Stem borer-resistant line     
 

  

CKSPL10066 CIMMYT Storage pest- resistant line   X     

CML312 CIMMYT elite line X    X   

CML485 CIMMYT elite line       X 

X=Crosses between lines 

Table S2. Candidate genes located in the vicinity of the quantitative trait nucleotides (QTNs) along with their genetic information. 

Chr

. 

QTNs Trait Candidate Gene DQTN CGC Gene description Conserved protein domain 

1 2544389-10-G/C GWL Zm00001d027955 IG A MADS-box transcription factor 

47 

K-box superfamily 

Zm00001d027954 -1,862 B Expressed protein TMEM131_like || Herpes_BLLF1 

superfamily 

2399751-6-C/A AP Zm00001d028046 2,523 A Putative pentatricopeptide 

repeat-containing protein 

PLN3218 superfamily 

Zm00001d028045 IG A Mannose-1-phosphate 

guanylyltransferase 1 

M1P_guanylylT_A_like_N || 

LbetaH superfamily 

5584129-55-C/T AK Zm00001d029411 -1,217 NGI NA NA 

Zm00001d029412 IG A Patatin-like protein 2 Pat17_isozyme_like 

4580363-8-A/G AK Zm00001d029419 IG A Probable protein phosphatase 2C 

12 

PP2Cc 

Zm00001d029420 2,023 A Protein WEAK 

CHLOROPLAST MOVEMENT 

UNDER BLUE LIGHT 1 

WEMBL 

4583673-29-G/C GWL Zm00001d032806 589 A Pectate lyase 12 Amb_all 
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Zm00001d032807 4,404 A RNA-binding (RRM/RBD/RNP 

motifs) family protein 

RRM1_SF3B4 

100024832-19-A/C GWL-FAW Zm00001d033471 -3,094 A Putative DNA-binding protein WRKY 

Zm00001d033472 IG A TATA-binding protein1 PLN62 

4583685-9-G/A NH-AK Zm00001d033508 IG A C2C2-YABBY-transcription 

factor 12 

YABBY 

4580090-67-T/C GWL Zm00001d034182 -4,182 B NA NA 

Zm00001d034183 IG A clast3-related PAC2 

2382596-67-A/G FAW Zm00001d034901 -219 A Receptor protein kinase-like 

protein 

SASA 

2 2452223-17-A/G FAW Zm00001d002145 IG B Formation of crista junctions 

protein 1 

Mitofilin superfamily 

4771831-60-G/T AK Zm00001d003048 IG A Disease resistance gene analog 

PIC17 

NB-ARC superfamily || LRR_8|| 

LRR 

Zm00001d003049 3,867 A Casein kinase 1-like protein 6 STKc_CK1_delta_epsilon 

4767220-53-G/A AK Zm00001d003198 IG A eIF-2-alpha kinase GCN2 STKc_EIF2AK4_GCN2_rpt2 || 

PLN2972 superfamily || RWD 

2388222-45-G/C FP-GWL Zm00001d003335 -767 C OSJNBaNANA89K21.8 protein zf-C2H2_6 

2435073-40-T/C AP-FP Zm00001d004810 IG A FHA domain-containing protein 

PS1 

PIN_Smg5-6-like || FHA 

2448649-48-G/A FAW Zm00001d005028 IG A NAC domain-containing protein 

77 

NAM 

4583437-30-G/C FP Zm00001d006657 IG A Homogentisate 

solanesyltransferase 

chloroplastic 

PT_UbiA_HPT1 

4765698-16-A/G AK Zm00001d007088 -3,974 C Retrovirus-related Pol 

polyprotein LINE-1 

NA 

Zm00001d007087 -4,180 C NA NA 

Zm00001d007089 IG A Protein CHROMATIN 

REMODELING 5 

PLN3142 superfamily || 

CD1_tandem || DUF428 || CD_CSD 

superfamily 

100130818-44-A/G FP Zm00001d007639 IG A GTP-binding family protein PRK93 || GTP_HflX superfamily 

4591349-29-A/G GWL Zm00001d007640 -2,040 A F-box/LRR-repeat protein 4 AMN1 superfamily 

3 9714175-54-C/G FAW-NH Zm00001d039372 3,380 A Small nuclear 

ribonucleoprotein family 

protein 

Sm_E 
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4764930-10-C/T FAW-GWL Zm00001d039434 IG A Agamous-like MADS-box 

protein AGL5 

MADS_MEF2_like || K-box 

4772102-17-T/G FP Zm00001d039883 IG A Mitochondrial glycoprotein 

family protein 

MAM33 

4593663-22-G/A GWL-FP NA NA NCG NA NA 

2446859-65-C/G AP Zm00001d042777 IG A Basic leucine zipper protein%3B 

Liguleless2 

DOG1 

4584446-12-G/C NH Zm00001d043494 IG A elongation factor family protein TypA_BipA superfamily|| TypA 

superfamily 

4583173-13-T/C GWL Zm00001d044409 -1,195 A MYB-related transcription factor myb_SHAQKYF 

Zm00001d044410 IG A Cycloartenol synthase F-box-like 

4 2381322-13-C/G FAW Zm00001d049175 15,726 B OSJNBaNANA43A12.2NA 

protein 

NA 

4779016-24-C/T NH Zm00001d049295 IG A Auxin response factor 2 Auxin_resp || B3|| AUX_IAA 

superfamily 

4577027-47-G/A GWL Zm00001d049854 -672 A 3'-5'-exoribonuclease family 

protein 

RNase_PH superfamily 

100220678-45-A/G FAW-FP Zm00001d050286 789 C Sphingolipid delta(4)-

desaturase DES1-like 

PLN2579 superfamily 

4771330-29-T/C NH Zm00001d052111 IG A DENN (AEX-3) domain-

containing protein 

DENN || uDENN 

2619648-16-T/C GWL Zm00001d052377 IG A Pentatricopeptide repeat protein 

PPR868-14 isoform 1%3B 

PLN381 superfamily 

5 4589321-22-G/A AK Zm00001d013314 IG A Vps51/Vps67 family 

(components of vesicular 

transport) protein 

Vps51 || COG2 superfamily 

7048960-37-T/G NH Zm00001d014099 IG A Disease resistance protein RPM1 NB-ARC superfamily || RX-

CC_like superfamily || LRR || 

HHH_5 superfamily 

7049219-26-T/C FAW Zm00001d015956 IG A NAD(P)-binding Rossmann-fold 

superfamily protein 

PLN2662 

4584182-35-C/G FAW Zm00001d016271 IG B NA DUF761 

Zm00001d016272 2,578 NGI NA NA 

4774140-50-G/A FP Zm00001d017703 -2,370 B survival motor neuron protein NA 

Zm00001d017704 IG A Target of Myb protein 1 VHS || GAT_GGA_like_plant 

6 4587005-7-C/G AK-NH NA NA NCG NA NA 

4771590-67-A/T FP Zm00001d036215 IG A MAP kinase7 PKc_like superfamily 
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5586936-13-T/C FP Zm00001d036830 IG A Putative calcium-dependent 

lipid-binding (CaLB domain) 

family protein 

C2_ArfGAP || ArfGapM-associated 

superfamily || ArfGap superfamily|| 

DUF48 superfamily 

4579331-18-T/C AP NA NA NCG NA NA 

4764931-6-G/A FP-AP Zm00001d039049 IG A Putative homeodomain-like 

transcription factor superfamily 

protein%3B SANT/MYB protein 

SANT 

Zm00001d039050 1,571 A DNA-3-methyladenine 

glycosylase 1 

AlkA 

Zm00001d039048 -2,212 NGI NA NA 

7 4771072-39-A/G GWL Zm00001d018807 81 A Leucine-rich repeat receptor-like 

serine/threonine-protein kinase 

PLN113 superfamily 

5587204-51-A/C AK Zm00001d001255 -253 B NA NA 

4580355-27-G/A GWL-AP Zm00001d022267 IG A chromatin remodeling factor18 DEXHc_HARP_SMARCAL1 || 

HepA 

8 4773640-63-T/A FP Zm00001d008175 -1,289 C S-adenosylmethionine synthase 1 PLN2243 superfamily 

Zm00001d008176 IG A Squamosa promoter-binding 

protein-like (SBP domain) 

transcription factor family 

protein 

SBP 

4770550-8-G/C GWL Zm00001d008669 -96 A Histone H4 PLN35 

2504966-32-A/G FAW Zm00001d010095 3,287 NGI NA NA 

Zm00001d010094 IG B Dehydrin family protein 

expressed || Embryogenic-cell 

protein 4NA (Ecp4NA) 

Dehydrin 

2559495-18-T/G FAW-AK Zm00001d011308 IG A Ubiquitin-like superfamily 

protein 

Ubl_SUMO_like 

2610943-54-T/C GWL-AP Zm00001d012218 -1,236 NGI NA NA 

Zm00001d012219 1,885 A NA F-box-like 

2376195-62-T/G FP Zm00001d012553 IG A octopine synthase binding 

factor4 

DOG1|| bZIP_HBP1b-like 

4579847-66-T/G FP Zm00001d012761 IG A Protein kinase family protein STKc_CK1 

9 4771587-19-T/C AK Zm00001d046069 -5,859 B NA FANCI_S4 superfamily 
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Zm00001d027105 IG C NA NA 

Zm00001d046070 -10,149 NGI NA NA 

100023814-29-T/G AK-FP Zm00001d047162 IG A UDP-Glycosyltransferase 

superfamily protein 

NA 

9682691-38-C/T FP-FAW Zm00001d047412 IG A Protein phosphatase 2C 32 PP2Cc 

4764675-42-C/G AP Zm00001d047518 IG A Nardilysin-like Ptr superfamily 

10 4582917-12-A/G GWL Zm00001d024816 IG A chromatin complex subunit A PLN3142 superfamily 

2539012-9-A/C GWL-FP-AP Zm00001d025013 IG NGI NA 

NA 

NA 

Zm00001d025014 2,385 NGI NA 

100298755-56-T/C FAW Zm00001d025153 IG A Phospholipid-transporting 

ATPase 2 

HAD_like superfamily || 

PhoLip_ATPase_C 

4776702-53-G/A AK NA NA NGC NA NA 

7061499-37-A/G AP Zm00001d026042 971 A Probable purine permease 11 PUNUT superfamily 

Chr=Chromosome; DQTN=Distance from QTN, a negative (-) distance means the CG is upstream the QTN and a positive value indicates the CG located downstream 

the QTN; IG=Inside gene; NA=Not available; NCG=No candidate gene; NGI=No genetic information. In bold are QTNs and CGs for combined fall armyworm (FAW) 

and maize weevil (MW) traits such as Grain weight loss (GWL), emerged Adult progenies (AP), Flour produced (FP), number of Affected kernels (AK), and Number 

of grain holes (NH). 

 

Table S3. 107 Network-CGs with their chromosome (Chr), start and end position based on the AGPv4 maize genome reference genome and descriptions. 

Gene stable ID Chr Start (bp) End (bp) Gene name Gene description 

Zm00001d027760 1  13,023,613   13,024,482  NA Histone H2A 

Zm00001d029075 1  57,258,183   57,259,499  NA CBL-interacting serine/threonine-protein kinase 10 

Zm00001d029263 1  64,042,656   64,045,687  NA Chaperonin 

Zm00001d033746 1  272,697,870   272,704,606  phosphoglucomutase1 phosphoglucomutase1 

Zm00001d033822 1  274,809,375   274,810,292  NA Probable histone H2AXa 

Zm00001d034089 1  283,693,163   283,695,688  NA Probable receptor-like protein kinase 

Zm00001d034372 1  291,107,391   291,111,360  NA Calcium-dependent protein kinase 1 

Zm00001d034562 1  296,437,168   296,441,398  NA Calcium-dependent protein kinase 2 

Zm00001d034663 1  299,194,181   299,196,764  alpha-expansin4 alpha-expansin4 

Zm00001d034671 1  299,442,286   299,444,334  NA Lectin-like receptor kinase 7 

Zm00001d002172 2  7,110,526   7,119,435  NA G-type lectin S-receptor-like serine/threonine-protein kinase B120 

Zm00001d002172 2  7,110,526   7,119,435  NA G-type lectin S-receptor-like serine/threonine-protein kinase B120 

Zm00001d002253 2  8,988,852   8,989,265  NA 60S ribosomal protein L27 
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Zm00001d003019 2  29,627,526   29,635,338  NA Protein kinase superfamily protein 

Zm00001d003673 2  53,484,601   53,488,150  NA Protein kinase superfamily protein 

Zm00001d003725 2  56,544,752   56,545,162  H3C2 Histone H3.2 

Zm00001d003730 2  56,683,255   56,683,907  H3C2 Histone H3.2 

Zm00001d005808 2  189,439,983   189,444,202  NA Probable ethanolamine kinase 

Zm00001d005964 2 
 194,057,868   194,060,798  bHLH-transcription 

factor 151 
Transcription factor bHLH76 

Zm00001d006008 2  195,179,025   195,182,945  NA Heat shock protein 90-2 

Zm00001d006536 2  210,665,909   210,668,852  NA Cysteine-rich receptor-like protein kinase 10 

Zm00001d038708 2  163,090,769   163,092,715  NA Proline-rich receptor-like protein kinase PERK15 

Zm00001d007192 2  224,425,013   224,429,818  NA T-complex protein 1 subunit zeta 

Zm00001d007166 2  223,634,679   223,635,971  NA CBL-interacting serine/threonine-protein kinase 4 

Zm00001d007167 2  223,667,838   223,669,229  NA CBL-interacting serine/threonine-protein kinase 15 

Zm00001d041215 3  105,826,354   105,830,061  NA ATP binding protein 

Zm00001d040996 3  89,082,044   89,084,928  NA Calcium-dependent protein kinase 1 

Zm00001d045359 3  19,532,789   19,536,828  NA Mitogen-activated protein kinase kinase 2 

Zm00001d042475 3  168,871,221   168,878,750  NA Probable thimet oligopeptidase 

Zm00001d043480 3  201,473,205   201,476,633  NA Proline-rich receptor-like protein kinase PERK15 

Zm00001d043841 3  211,598,479   211,613,691  NA Katanin p60 ATPase-containing subunit A1 

Zm00001d043955 3  214,775,698   214,777,826  NA Eukaryotic translation initiation factor 3 subunit D 

Zm00001d043923 3  213,970,968   213,973,403  NA PAN domain-containing protein 

Zm00001d044246 3  222,967,858   222,968,792  NA Histone H2A 

Zm00001d044301 3 
 224,583,950   224,589,560  protein phosphatase 

homolog13 
Protein phosphatase 2C ABI2 

Zm00001d044639 3  233,811,186   233,813,372  NA L-type lectin-domain containing receptor kinase IX.1 

Zm00001d049286 4  24,420,976   24,426,546  NA LRR receptor-like serine/threonine-protein kinase EFR 

Zm00001d052340 4  187,401,028   187,402,359  NA CBL-interacting serine/threonine-protein kinase 10 

Zm00001d000110 4 
 187,964   193,349  MYB-related-

transcription factor 61 
SWI/SNF complex subunit SWI3C 

Zm00001d053087 4  213,023,215   213,025,176  NA G-type lectin S-receptor-like serine/threonine-protein kinase SD2-5 

Zm00001d053135 4  215,474,432   215,476,369  NA D-mannose binding lectin family protein 
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Zm00001d013428 5  11,195,010   11,201,017  phosphoglucomutase2 phosphoglucomutase2 

Zm00001d014152 5  34,251,816   34,258,225  NA Cationic amino acid transporter 4 vacuolar 

Zm00001d014291 5  39,715,418   39,722,456  NA Probable protein phosphatase 2C 71 

Zm00001d016381 5  160,203,687   160,206,309  NA Histone deacetylase 

Zm00001d017069 5  184,380,955   184,383,871  NA Inorganic phosphate transporter 2-1 chloroplastic 

Zm00001d035476 6  28,516,750   28,525,006  NA L-type lectin-domain containing receptor kinase VIII.1 

Zm00001d035588 6  35,148,537   35,151,188  NA Serine/threonine-protein kinase 

Zm00001d035747 6  44,780,803   44,789,355  argonaute1a argonaute1a 

Zm00001d036097 6  72,141,933   72,145,178  NA Putative DUF26-domain receptor-like protein kinase family protein 

Zm00001d036322 6  84,112,004   84,117,155  NA Ribonucleoside-diphosphate reductase 

Zm00001d036879 6  105,515,248   105,521,341  NA Putative CBL-interacting protein kinase family protein 

Zm00001d036917 6  106,360,618   106,367,670  argonaute1NAb argonaute10b 

Zm00001d036986 6  108,327,528   108,338,061  NA ABC transporter G family member 29 

Zm00001d038282 6 

 153,243,817   153,250,372  

NA 

Putative LSTK-1-like/NimA-related protein kinase family protein isoform; 

3B Putative LSTK-1-like/NimA-related protein kinase family protein 

isoform 2 

Zm00001d038409 6  156,603,002   156,614,078  NA Calcium-dependent protein kinase 13 

Zm00001d038708 2  163,090,769   163,092,715  NA Proline-rich receptor-like protein kinase PERK15 

Zm00001d019042 7  13,942,239   13,944,164  NA Actin-related protein 2/3 complex subunit 3 

Zm00001d019045 7  14,093,201   14,093,758  NA Histone H2A 

Zm00001d019084 7  15,693,408   15,695,533  NA RNA-binding (RRM/RBD/RNP motifs) family protein 

Zm00001d020134 7  94,949,585   94,962,130  NA ABC transporter G family member 40 

Zm00001d020138 7  95,424,853   95,428,598  NA L-type lectin-domain containing receptor kinase IX.1 

Zm00001d020396 7 
 111,240,634   111,244,556  trehalose-6-phosphate 

synthase13 
trehalose-6-phosphate synthase13 

Zm00001d020496 7  119,111,856   119,113,250  NA CBL-interacting serine/threonine-protein kinase 5 

Zm00001d020497 7  119,140,649   119,141,980  NA CBL-interacting serine/threonine-protein kinase 6 

Zm00001d020584 7  123,703,834   123,704,145  H4C7 Histone H4 

Zm00001d020585 7  123,712,201   123,712,512  H4C7 Histone H4 

Zm00001d021139 7  143,856,218   143,860,073  NA Calcium-dependent protein kinase 24 

Zm00001d021255 7  147,034,121   147,042,045  NA NA 
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Zm00001d021300 7  148,227,448   148,227,942  NA Histone H2A 

Zm00001d021434 7  152,277,267   152,279,488  NA G-type lectin S-receptor-like serine/threonine-protein kinase B120 

Zm00001d021434 7  152,277,267   152,279,488  NA G-type lectin S-receptor-like serine/threonine-protein kinase B120 

Zm00001d021477 7  153,335,991   153,336,302  H4C7 Histone H4 

Zm00001d022307 7  174,845,532   174,847,522  NA 10 kDa chaperonin 

Zm00001d022547 7  179,784,948   179,788,293  NA CBL-interacting serine/threonine-protein kinase 3 

Zm00001d008468 8  9,622,565   9,639,429  NA PR5-like receptor kinase 

Zm00001d008477 8  9,807,195   9,830,853  receptor-like kinase4 receptor-like kinase4 

Zm00001d008581 8 
 13,548,214   13,555,561  

NA 
LEAF RUST 10 DISEASE-RESISTANCE LOCUS RECEPTOR-LIKE 

PROTEIN KINASE-like 1.1 

Zm00001d010459 8  116,264,102   116,265,454  NA Putative CBL-interacting protein kinase family protein 

Zm00001d010529 8  119,419,987   119,423,027  NA Probable mediator of RNA polymerase II transcription subunit 37c 

Zm00001d010461 8  116,331,820   116,334,299  NA Sm-like protein LSM5 

Zm00001d010575 8  120,733,570   120,733,881  H4C7 Histone H4 

Zm00001d010659 8  123,186,799   123,189,450  NA Putative calcium-dependent protein kinase family protein 

Zm00001d010743 8  126,502,112   126,503,641  NA Putative CBL-interacting protein kinase family protein 

Zm00001d011392 8 

 149,387,614   149,392,198  

NA 

Calcium-dependent protein kinase%2C isoform 2%3B Putative calcium-

dependent protein kinase family protein isoform 1%3B Putative calcium-

dependent protein kinase family protein isoform 2 

Zm00001d011628 8  156,686,200   156,694,580  NA PR5-like receptor kinase 

Zm00001d045190 9  15,650,398   15,654,451  NA Putative WAK family receptor-like protein kinase 

Zm00001d045192 9 
 15,720,802   15,728,927  hybrid proline-rich 

protein1 
Ribonucleoside-diphosphate reductase large subunit 

Zm00001d045359 3  19,532,789   19,536,828  NA Mitogen-activated protein kinase kinase 2 

Zm00001d045839 9  42,917,485   42,919,506  NA Putative lectin-like receptor protein kinase family protein 

Zm00001d045838 9  42,913,838   42,915,841  NA Putative lectin-like receptor protein kinase family protein 

Zm00001d046438 9  89,734,202   89,740,800  argonaute1NA1 argonaute101 

Zm00001d048460 9  156,719,295   156,724,276  NA CBL-interacting serine/threonine-protein kinase 9 

Zm00001d047531 9 

 134,014,122   134,018,935  

NA 

Putative AGC-like protein kinase family protein isoform; 3B Putative AGC-

like protein kinase family protein isoform; 3B Putative AGC-like protein 

kinase family protein isoform; 3B Serine/threonine-protein kinase AtPK19 

Zm00001d047758 9  141,026,557   141,029,745  MAP kinase1 MAP kinase1 
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Zm00001d047858 9  143,631,572   143,633,228  NA Protein STRICTOSIDINE SYNTHASE-LIKE 13 

Zm00001d047909 9 
 144,963,925   144,969,440  

NA 
transcription activators;DNA binding;RNA polymerase II transcription 

factors;catalytics;transcription initiation factors 

Zm00001d048203 9  152,377,111   152,382,143  NA Probable protein phosphatase 2C BIPP2C1 

Zm00001d024591 10  79,578,452   79,580,065  NA SnRNP core Sm protein Sm-X5-like protein 

Zm00001d024637 10  81,459,381   81,466,000  NA L-type lectin-domain containing receptor kinase V.9 

Zm00001d024637 10  81,459,381   81,466,000  NA L-type lectin-domain containing receptor kinase V.9 

Zm00001d024903 10 
 93,908,317   93,911,235  heat shock protein, 

9NA kDa 
heat shock protein 90 kDa 

Zm00001d025406 10  117,441,376   117,441,837  H3C2 Histone H3.2 

Zm00001d025913 10  133,665,354   133,665,806  NA Histone H2B 

Zm00001d025920 10  133,768,161   133,770,170  NA Putative lectin-like receptor protein kinase family protein 

Zm00001d025997 10  135,684,027   135,687,837  NA Protein kinase superfamily protein 

Zm00001d026489 10  146,944,932   146,946,110  NA OSJNBb0022F16.11 protein;  protein 
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Figure S1. Distribution of the 3124 LDPSNPs across the 10 maize chromosomes. 

                        Chr11 groups SNPs which were not mapped in any chromosomes. 

 

      Figure S2. Rating of maize plants based on foliar damage by FAW (45). 

 
Supplmentary Figure 3. Number of principal components (PC) included in the GWAS model for fall 

armyworm (FAW) damage, and for the different maize weevil (MW) resistance traits: number of affected 

kernels (AK), number grain holes (NH), number of emerger adult progenies (AP), total amount of flour 

produced (FP), and grain weight loss (GWL). 

FAW Ak NH AP FP GWL

152
116 107 93 72 70

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 May 2020                   doi:10.20944/preprints202005.0337.v1

https://doi.org/10.20944/preprints202005.0337.v1


38 
 

 

Figure S4. Physical map based on the AGPv4 maize reference genome showing on the chromosomes the single (in green) and multiple (in blue) insect 

resistance genomic regions (IRGR) and on the side their colocalizations with QTL for Asian corn borer (ACB), southwestern corn borer (SWCB), Fall 

armyworm (FAW), Maize weevil (MW), African maize stalk borer (AMSB), spotted SB (SSB) resistance, and maize benzoxazinoids (Benzox) content. 

Start and end positions of the chromosomes (P1 to 224) and the location of the GWAS-CGs (in blue) and Network-CGs (in red) associated with maize resistance 

to FAW and MW were placed on the chromosomal bars. TL=Tunnel length, rTL=Relative TL, LFR=leaf feeding rate, EH=Exit holes. 
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Figure S5. In-silico expression profile of the CG at different maize developmental stages relevant to FAW 

and MW damage under different biotic (A) and abiotic (B) stress conditions. 

A B 
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Figure S6. In-silico expression profile of the CG in different maize organs relevant to FAW and MW 

damage under different biotic (A) and abiotic (B) stress conditions. 

A 
B 
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Figure S7. In-silico expression profile of the CG under different biotic stress, jamonates and jasmonate-like treatments (A) and abiotic (B) stress conditions. 

B 
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Figure S8. Network-based candidate genes differentially expressed under different biotic agents (A) including Fusarium graminearum and verticelloides, 

Meloidogyne incognita, Ostrinia nubilalis, Rhopalosiphum maidis and Ustilago maydis, and under different abiotic stress conditions (B) such as cold 

temperature, drought, heat, and submergence. 

A 

B 
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Figure S9. Molecular function networks enriched within the candidate genes showing interactions (edges) 

among the Gene ontology terms (nodes) enriched by the CGs. 
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