
STORAGE, INDEXING, QUERY PROCESSING, AND
BENCHMARKING IN CENTRALIZED AND DISTRIBUTED RDF

ENGINES: A SURVEY

A PREPRINT

Waqas Ali
Department of Computer Science and Engineering, School of Electronic,

Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, Shanghai, China
waqasali@sjtu.edu.cn

Muhammad Saleem
Agile Knowledge and Semantic Web (AKWS), University of Leipzig, Leipzig, Germany

saleem@informatik.uni-leipzig.de

Bin Yao
Department of Computer Science and Engineering, School of Electronic,

Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, Shanghai, China
yaobin@cs.sjtu.edu.cn

Axel-Cyrille Ngonga Ngomo
University of Paderborn, Paderborn, Germany

axel.ngonga@uni-paderborn.de

May 30, 2020

ABSTRACT

The recent advancements of the Semantic Web and Linked Data have changed the working of the
traditional web. There is a huge adoption of the Resource Description Framework (RDF) format for
saving of web-based data. This massive adoption has paved the way for the development of various
centralized and distributed RDF processing engines. These engines employ different mechanisms to
implement key components of the query processing engines such as data storage, indexing, language
support, and query execution. All these components govern how queries are executed and can have
a substantial effect on the query runtime. For example, the storage of RDF data in various ways
significantly affects the data storage space required and the query runtime performance. The type
of indexing approach used in RDF engines is key for fast data lookup. The type of the underlying
querying language (e.g., SPARQL or SQL) used for query execution is a key optimization component
of the RDF storage solutions. Finally, query execution involving different join orders significantly
affects the query response time. This paper provides a comprehensive review of centralized and
distributed RDF engines in terms of storage, indexing, language support, and query execution.

keywords: Storage, Indexing, Language, Query Planning, SPARQL Translation, Centralized RDF Engines, Distributed
RDF Engines, SPARQL Benchmarks, Survey.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202005.0360.v2
http://creativecommons.org/licenses/by/4.0/

A PREPRINT - MAY 30, 2020

1 Introduction

Over recent years, the simple, decentralized, and linked architecture of Resource Description Framework (RDF) data
has greatly attracted different data providers which store their data in RDF format. This increase is evident in nearly
every domain. For example, currently, there are approximately 150 billion triples available from 9960 datasets1. Some
huge RDF datasets such as UniProt2, PubChemRDF3, Bio2RDF4 and DBpedia5 have billions of triples. The massive
adoption of the RDF format requires effective solutions for storing and querying this massive amount of data. This
motivation has paved the way the development of centralized and distributed RDF engines for storage and query
processing.

RDF engines can be divided into two major categories: (1) centralized RDF engines that store the given RDF data as
a single node and (2) distributed RDF engines that distribute the given RDF data among multiple cluster nodes. The
complex and varying nature of Big RDF datasets has rendered centralized engines are inefficient to meet the growing
demand of storage, computing capacity and processing of complex SPARQL queries [1, 2, 3, 4]. To tackle this issue
different kinds of distributed RDF engines were proposed [5, 6, 7, 8, 3, 9, 10]. These distributed systems run on a set of
cluster hardware containing a different number of machines with dedicated memory and storage.

Efficient data storage, indexing, language support, and optimized query plan generation are key components of RDF
engines:

• Data Storage. Data storage is an integral component of every RDF engine. Data storage is dependent on
factors like the format of storage, size of the storage and inference supported by the storage format [2]. Recent
evaluation [11] shows that the storage of RDF data in different RDF graph partitioning techniques has a vital
effect on the query runtime.

• Indexing. Various indexes are used in RDF engines for fast data lookup and query execution. The more
indexes can generally lead to better query runtime performance. However, maintaining these indexes can be
costly in terms of space consumption and keeping them updated to reflect the variations in the underlying RDF
datasets. An outdated index can lead to incomplete results.

• Querying Language. Various RDF engines store data in different formats, thus support various querying
languages such as SQL [12], PigLatin [13] etc. Since SPARQL is used as the standard query language, many
of the RDF engines require SPARQL translation (e.g., SPARQL to SQL) for query execution. Such language
support can have a significant impact on query runtimes. This is because the optimization techniques used in
these querying language can be different from each other.

• Query Execution. For a given input SPARQL query, RDF engines generate the optimized query plan that
subsequently guides the query execution. Choosing the best join execution order and the selection of different
join types (e.g., hash join, bind join, nested loop join, etc.) is vital for fast query execution.

There are various studies that categorize, compare, and evaluate different RDF engines. For example, the query runtime
evaluation of different RDF engines are shown in [2, 4, 14, 15, 16]. Studies like [17, 18] are focused towards the data
storage mechanisms in RDF engines. Svoboda et al. [19] classify various indexing approaches used for linked data.
The usage of relational data models for RDF data is presented in [20]. A survey of the RDF on the cloud is presented in
[21]. A high level illustration of the different centralized and distributed RDF engines and linked data query techniques
are presented in [22]. Finally, empirical performance evaluation and a broader overview of the distributed RDF engines
are presented in [4]. According to our analysis, there is no detailed study that provides a comprehensive overview of the
techniques used to implement the different components of the centralized and distributed RDF engines.

Motivated by the lack of comprehensive overview of the components-wise techniques used in existing RDF engines. We
present a detailed overview of the techniques used in a total of 77 centralized and distributed RDF engines. Specifically,
we classify these triples stores into different categories w.r.t storage, indexing, language and query planning. We provide
simple running examples to understand the different types. We hope this survey will help readers to get a crisp idea of
the different techniques used RDF engines development. Furthermore, we hope that this study will help users to choose
the appropriate triple store for the given use-case.

The remaining of the paper is divided into different sections. Section 2 provides vital information on RDF, RDF engines
and SPARQL. The section 3 is about related work. Section 4, 5, 6 and 7 reviews the storage, indexing, query language

1http://lodstats.aksw.org/.
2http://www.uniprot.org/.
3http://pubchem.ncbi.nlm.nih.gov/rdf/.
4http://bio2rdf.org/.
5http://dbpedia.org/.

2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

and query execution process. Section 8 explains different graph partitioning techniques. Section 9 explains centralized
and distributed RDF engines w.r.t storage, indexing, query language and query execution mechanism. Section 10
discusses different SPARQL benchmarks. Section 11 illustrates research problems and future directions, and section 12
gives the conclusion.

2 Basic Concepts and Definitions

This section contains the brief explanation of RDF and SPARQL. Main purpose of explanation is to establish the basic
understanding of the terminologies used in paper. For complete details, readers are encouraged to look at original W3C
sources of RDF6 and SPARQL7. This discussion is adapted from [22, 23, 3, 24].

2.1 RDF

Before going to explain the RDF model, we first define the elements that constitute an RDF dataset:

• IRI: The International Resource Identifier (IRI) is a general form of URIs (Uniform Resource Identifiers) that
allowing non-ASCII characters. The IRI globally identifies a resource on the web. The IRIs used one dataset
can be reused in other datasets to represent the same resource.

• Literal: is of string value which is not an IRI.

• Blank node: refers to anonymous resources not having a name; thus, such resources are not assigned to a
global IRI. The blank nodes are used as local unique identifiers, within a specific RDF dataset.

The RDF is a data model proposed by the W3C for representing information about Web resources. RDF models each
"fact” as a set of triples, where a triple consists of three parts:

• Subject. The resource or entity upon which an assertion is made. For subject, IRI (International Resource
Identifier) and blank nodes are allowed to be used.

• Predicate. A relation used to link resources to another. For this, only URIs can be used

• Object. Object can be the attribute value or another resource. Objects can be URIs, blank nodes, and strings.

Thus the RDF triple represents some kind of relationship (shown by the predicate) between the subject and object. An
RDF dataset is the set of triples and if formally defined as follows.

Definition 1 (RDF Triple, RDF Dataset) I ,B, and L (IRIs, Blank nodes, and Literals, respectively) are considered as
disjoint infinite sets. Then an instance< s, p, o >∈ (I∪B)×I×(I∪B∪L) is called RDF triple, where s is the subject, p
is the predicate and o is an object. An RDF dataset D is a set of RDF triples D = {< s1, p1, o1 >, . . . , < sn, pn, on >}.

An example RDF dataset, repenting information about a university student is shown in Table 1.

Subject Predicate Object
resource:Bob rdf:type Person
resource:Bob schema:interestedIn resource:SemWeb
resource:Bob schema:interestedIn resource:DB
resource:Bob schema:belongsTo “USA"
resource:Alice rdf:type Person
resource:Alice schema:interestedIn resource:SemWeb
resource:SemWeb rdf:type Course
resource:SemWeb schema:fieldOf “Computer Science"
resource:DB rdf:type Course
resource:DB schema:fieldOf “Computer Science"

Table 1: Sample RDF dataset with Prefixes: resource = http://uni.org/resource, schema = http://uni.org/schema
rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#. Colors are used to easily understand the data storage techniques
discussed in section 4.

6RDF Primer: http://www.w3.org/TR/rdf-primer/.
7SPARQL Specification: https://www.w3.org/TR/sparql11-query/

3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

http://www.w3.org/TR/rdf-primer/.
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

RDF models data in the form of a directed labelled graph where resources are represented as nodes and the relationship
between resources are represented as a link between two nodes. For a triple < s, p, o >, a node is created for subject s,
another node is created for object o, and a directed link with labeled-predicate p is crated from s to o.

An RDF graph can be defined as below [22].

Definition 2 (RDF Graph) An RDF graph is a tuple of six things G = 〈V , LV ,fV , E, LE , fE 〉, where,

1. V = Vc ∪ Ve ∪ Vl is a collection of vertexes that correspond to all subjects and objects in RDF data, where Vc,
Ve, and Vl are collections of class vertices, entity vertices, and literal vertices, respectively

2. LV is a collection of vertex labels.
3. A vertex labelling function fV : V → LV is a bijective function that assigns to each vertex a label. The label

of a vertex u ∈ Vl is its literal value, and the label of a vertex u ∈ Vc ∪ Ve is its corresponding URI.
4. E =

{
»u1, u2

}
is a collection of directed edges that connect the corresponding subjects and objects.

5. LE is a collection of edge labels.
6. An edge labelling function fE : E → LE is a bijective function that assigns to each edge a label. The label of

an edge e ∈ E is its corresponding property.

Figure 1 shows the corresponding RDF graph of the sample RDF dataset given in Table 1.

Bob

SemWeb

Person DB

“USA”

Alice Course

“Computer Science”

type

type

interestedIn

type

interestedIn

type

fieldOf

fieldOf

interestedIn

belongsTo

Fig. 1. Pictorial representation of graph

2.2 SPARQL

SPARQL [25] is the standard querying language to query RDF data. The basic building units of the SPARQL queries
are triple pattern and Basic Graph Pattern (BGP). A triple pattern is like an RDF triple except that each of the subjects,
predicate and object may be a variable. A set of triple patterns constitute a BGP8 and is formally defined as follows.

Definition 3 (Triple Pattern and Basic Graph Pattern) Assume there are infinite and pairwise disjoint sets I (set of
IRIs), B (set of blank nodes), L (set of literals) and V (set of variables). Then, a tuple from (I ∪ V ∪B)× (I ∪ V)×
(I ∪ L ∪ V ∪B) is a triple pattern. A sequence of triple patterns with optional filters is considered a single BGP. As
per the specification of BGPs, any other graph pattern (e.g., UNION, MINUS, etc.) terminates a basic graph pattern.

Any BGP of a given SPARQL query can be represented as directed hypergraph (DH) [23], a generalization of a directed
graph in which a hyperedge can join any number of vertices. In this representation, every hyperedge captures a triple
pattern. The subject of the triple becomes the source vertex of a hyperedge, and the predicate and object of the triple
pattern become the target vertices. The hypergraph represented of the SPARQL query is shown in Figure 2. Unlike a
common SPARQL representation where the subject and object of the triple pattern are connected by a predicate edge,
the hypergraph-based representation contains nodes for all three components (i.e., subject, predicate, object) of the
triple patterns. As a result, we can capture joins that involve predicates of triple patterns. Formally, the hypergraph
representation is defined as follows:

8BGP https://www.w3.org/TR/sparql11-query/#BasicGraphPatterns

4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://www.w3.org/TR/sparql11-query/#BasicGraphPatterns
https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Definition 4 (Directed hypergraph of a BGP) The hypergraph representation of a BGP B is a directed hypergraph
HG = (V,E) whose vertices are all the components of all triple patterns in B, i.e., V =

⋃
(s,p,o)∈B{s, p, o}, and that

contains a hyperedge (S, T) ∈ E for every triple pattern (s, p, o) ∈ B such that S = {s} and T = (p, o).

The representation of a complete SPARQL query as a DH is the union of the representations of the query’s BGPs.

SELECT DISTINCT * WHERE
{
?student :interestedIn ?course .
?student :belongsTo ?country .
?student ?p ?sType .
?course ?p ?cType .
?course :fieldOf ?field .
?field :label ?fLabel .

}

student sType

country

field

hyperedge

interestedIn fieldOf

labelfLabel

p

cType

course

belongsTo

Star SinkPath Hybrid

tTail of hyperedge predicate to object edge

SimpleVertex Types

Figure 2: Directed hypergraph representation of a SPARQL query. Prefixes are ignored for simplicity.

Based on the DH representation of SPARQL queries, we can define the following features of SPARQL queries:

Definition 5 (Join Vertex) For every vertex v ∈ V in such a hypergraph we write Ein(v) and Eout(v) to denote the set
of incoming and outgoing edges, respectively; i.e., Ein(v) = {(S, T)∈E | v∈T} and Eout(v) = {(S, T)∈E | v∈S}.
If |Ein(v)|+ |Eout(v)| > 1, we call v a join vertex.

Definition 6 (Join Vertex Types) A vertex v ∈ V can be of type star, path, hybrid, or sink if this vertex participates in
at least one join. A star vertex has more than one outgoing edge and no incoming edges. A path vertex has exactly one
incoming and one outgoing edge. A hybrid vertex has either more than one incoming and at least one outgoing edge
or more than one outgoing and at least one incoming edge. A sink vertex has more than one incoming edge and no
outgoing edge. A vertex that does not participate in joins is simple.

Definition 7 (Join Vertex Degree) Based on the DH representation of the queries the join vertex degree of a vertex v
is JVD(v) = |Ein(v)|+ |Eout(v)|, where Ein(v) resp. Eout(v) is the set of incoming resp. outgoing edges of v.

3 Literature Review

The focus of this section to present studies that discussed the partitioning and storage, indexing, and query processing
techniques used in RDF engines.

For example, Sakr et al. [20] presented one of the first surveys on the usage of the relational model for RDF data. This
survey is all about the use of the relational models for RDF data storage and query processing. A broader overview of
the data storage and query processing techniques in centralized and distributed RDF engines is presented in [22]. A
survey of the storage of RDF data in relational and NoSQL database stores is presented in [18]. Pan et al. [2] discussed
the storage and query processing techniques in centralized and distributed RDF engines. They also compared various
benchmarks datasets. A high level illustration of both storage and query processing in centralized and distributed RDF
engines is presented in Sakr et al. [26]. They also discussed various SPARQL benchmarks.

5

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Svoboda et al. [19] discuss different indexing schemes used in centralized and distributed RDF engines. In particular,
three types of indexing are discussed, i.e., local, distributed and global. Faye et al. [17] also discussed the storage and
indexing techniques in centralized RDF engines. They divided these techniques into non-native and native storage
solutions. The non-native solutions make use of the Database Management Systems (DBMS) or other related systems
to permanently store RDF data. On the other hand, the native storage solutions store the data close to the RDF model.
Thus, such storage solutions avoid the use of DBMS. Rather, the data can be directly stored in different RDF syntaxes9

such as N-Triples, RDFa, JSON-LD, TriG. A classification of RDF engines is presented in [1]. This study focuses on
data storage techniques, indexing strategies, and query execution mechanisms.

Kaoudi et al. [21] present a survey of RDF systems designed specifically for a cloud based environment. The focus of
the paper to classify the cloud based RDF engines according to capabilities and implementation techniques. Elzein et al.
[27] presented another survey on the storage and query processing techniques used in the RDF engines on the cloud.
Janke et al. [28, 29] presented surveys on RDF graph partitioning, indexing, and query processing techniques used in
distributed and cloud-based RDF engines. They also discussed some of the available SPARQL benchmarks for RDF
engines. A survey and experimental performance evaluation of distributed RDF engines is presented in [4]. The study
reviews 22 distributed RDF engines and presents an experimental comparison of 12 selected RDF engines. Reviewed
systems belong to categories like graph-based, MapReduce based, and specialized systems.

Yasin et al. [30] discussed the limitations and discrepancies in distributed RDF engines. In particular, they discussed
the SPARQL 1.1 support in these engines. Authors in [31] discussed the different categories of RDF engines, including
centralized, memory-based, cloud-based, graph-based and binary stores etc. are discussed with their respective examples.
In [32], there is a discussion of different mapping techniques to map the RDF data into the NoSQL databases. The
respective paper describes the mapping process in different types of NoSQL databases, i.e., key-value and columnar
databases etc through their various examples.

Study Year Central Focus
Janke et al. [29] 2020 Partitioning, indexing, and query evaluation in distributed RDF engines
Santana et al. [32] 2020 Discussion of different Mapping strategies for storage of RDF based data into the NoSQL databases
Alaoui [31] 2019 General categorization of different RDF engines
Janke et al. [28] 2018 Partitioning, indexing, and query evaluation in distributed and cloud RDF engines
Sakr et. al [26] 2018 Storage and query evaluation in centralized and distributed RDF engines
Wylot et. al [1] 2018 Storage and indexing in centralized and distributed RDF engines
Pan et al. [2] 2018 Storage techniques in centralized and distributed RDF engines
Yasin et al. [30] 2018 Suitability and query evaluation of distributed RDF engines
Elzein et al. [27] 2018 Storage and query evaluation in RDF engines on cloud
Abdelaziz et al. [4] 2017 Performance evaluation of distributed RDF engines
Ma et al. [18] 2016 Storage techniques in centralized RDF engines
Ozsu [22] 2016 General overview of centralized and distributed RDF engines
Kaoudi et al. [21] 2015 RDF engines on cloud
Faye et al. [17] 2012 Storage and Indexing techniques in centralized RDF engines
Svoboda et al. [19] 2011 Indexing in centralized, distributed, and global RDF engines
Sakr et al. [20] 2010 Storage and query evaluation in SPARQL transnational RDF engines

Table 2: An overview of the existing surveys on RDF engines.

An overview of the surveys, as mentioned earlier on RDF engines is shown in Table 2. The summary indicates
that most of the existing studies are focused on the specific components (storage, indexing, query processing) of the
centralized or distributed RDF engines. According to our analysis, there exists no detailed study which provides a
combined, comprehensive overview of the techniques used to implement the different components of both centralized
and distributed RDF engines. Furthermore, previous studies only considered limited RDF engines. We fill this gap by
presenting a detailed overview of the techniques used, pertaining to the storage, indexing, language and query execution,
both in centralized and distributed RDF engines. We included a complete list of the existing RDF engines as compared
to previous studies. In addition, in Section section 10, we discuss the state-of-the-art SPARQL benchmarks designed for
the performance evaluation of RDF engines. We show the pro and cons of these benchmarks, which will help the user
to choose the best representative benchmark for the given use-case.

9RDF Syntaxes https://www.w3.org/TR/rdf11-concepts/#rdf-documents

6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://www.w3.org/TR/rdf11-concepts/#rdf-documents
https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

4 Storage

Data storage is an integral component of any Database Management System (DBMS). Efficient data storage is key
for disk space consumption, security, scalability, maintenance, and performance of the DBMS. This section reviews
storage mechanisms commonly used in centralized and distributed RDF engines. We divide these mechanisms into five
broader categories (ref. Figure 3) namely Triple Table, Property Table, Vertical Partitioning, Graph-based data storage
solutions, and miscellaneous category comprising of Key-Value, Hbase Tables, In-memory, Bit Matrix, storage as an
index permutations and systems using another system as their the storage component.

Figure 3: Pictorial representation of Storage in Centralized and Distributed RDF Engines (*RDF Engines in bold text
are Distributed engines)

4.1 Triple Table

The Triple Table (TT) is the most general approach to save RDF data in a relational style (ref. discussed in section
section 9). This style stores all its RDF data in a one large table, which contains three columns, for Subject, Predicate,
and Object of the RDF triple. Table 3 shows the TT representation of the RDF Pictorial representation of the sample
RDF dataset shown in Table 1.

Subject Predicate Object
Bob type Person
Bob interestedIn SemWeb
Bob interestedIn DB
Bob belongsTo “USA”
Alice type Person
Alice interestedIn SemWeb
SemWeb type Course
SemWeb fieldOf “Computer Science”
DB type Course
DB fieldOf “Computer Science”

Table 3: Triple Table representation of the sample RDF dataset shown in Table 1. Prefixes are ignored for simplicity.

To minimize the storage cost and increase query execution performance, the URIs and Strings used in the TT can be
encoded as IDs or hash values, and separate dictionaries can be maintained. For example, using a very simple integer
dictionary given in Table 4b, the TT table given in Table 3 can be represented as integer TT shown in Table 4a. The
use of a dictionary is particularly useful for RDF datasets having many repeating IRIs or literals. However, in RDF
datasets, IRIs are more commonly repeated as compared to literals. As such, encoding each distinct literal and assigning

7

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

a dictionary id may unnecessarily increase the dictionary size. Consequently, this can leads to performance downgrade
due to extra dictionary lookups during the query execution. To tackle this problem, some RDF engines (e.g. Jena 2
[33]) only make use of the dictionary tables to store strings whose lengths exceed a threshold. On the one hand, this
allows filters operation to be performed directly on the TT. However, on the other hand, it also results in higher storage
consumption due to string values are stored multiple times.

Subject Predicate Object
1 5 9
1 6 3
1 6 4
1 7 12
2 5 9
2 6 3
3 5 10
3 8 11
4 5 10
4 8 11

(a) Integer Triple Table using dictionary

ID String ID String
1 Bob 2 Alice
3 SemWeb 4 DB
5 type 6 interestedIn
7 belongsTo 8 fieldOf
9 Person 10 Course
11 “Computer Science” 12 “USA”

(b) Dictionary

Table 4: Triple Table representation of the TT shown in Table 3 using dictionary encoding.

In general, an RDF dataset is a collection of RDF graphs. Thus, an RDF dataset comprises exactly one default graph
and zero or more named graphs10. Each named graph is a pair consisting of an IRI or a blank node (the graph name),
and an RDF graph. Graph names are unique within an RDF dataset. The SPARQL query language lets the user specify
the exact named graph to be considered for query execution, thus skipping all others named graphs data to be considered
for query processing. Since every RDF triple either belongs to the default graph or specifically named graph, the TT
storage can exploit this information and stored the corresponding named graph as the fourth element for each input
triple. This specific representation of TT is also called Quad, where the table contains four columns; 3 for storing
subject, predicate, and object of a triple and the fourth column stores the corresponding named graph of the given
triple. According to RDF specification, named graphs are IRIs. For simplicity, let’s assume all the triples gave in table
Table 3 belongs to named Graph G1, then the Quad representation of the given TT is shown in Table 5. The quad
representation has been used in many well-known RDF engines11 such as Virtuoso [34] and 4store [35]. Please note
that as per SPARQL specification12, a SPARQL query may specify the RDF graph to be used for matching by using the
FROM clause and the FROM NAMED clause to describe the RDF dataset. Such queries can be efficiently executed by using
Quad tables; as such queries should be executed over the specified named graph and hence skipping triples that belong
to other named graphs.

Subject Predicate Object Named Graph
Bob type Person G1
Bob interestedIn SemWeb G1
Bob interestedIn DB G1
Bob belongsTo "USA” G1
Alice type Person G1
Alice interestedIn SemWeb G1
SemWeb type Course G1
SemWeb fieldOf "Computer Science” G1
DB type Course G1
DB fieldOf "Computer Science” G1

Table 5: Quad representation of the sample RDF dataset shown in Table 1. Prefixes are ignored for simplicity.

Summary. The relational DBMS storage style used in TT saves expensive joins between separate tables but incurs
expensive self joins. SPARQL queries containing multiple triple patterns applied in this storage style are slow to execute
because of the huge number of self joins. Consequently, this might not be a scaleable solution for storing Big Data.
Query execution over a single giant table is also sub-optimal. This is because the whole dataset has to be scanned at

10RDF named graph: https://www.w3.org/TR/rdf11-concepts/#section-dataset
11Further details given in section section 9.
12Specifying RDF datasets: https://www.w3.org/TR/sparql11-query/#specifyingDataset

8

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://www.w3.org/TR/rdf11-concepts/#section-dataset
https://www.w3.org/TR/sparql11-query/#specifyingDataset
https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

least once, even if the query is only for a minimal subset of the table. However, this problem can be degraded by using
multiple indexes on the TT. For example, in section section 9 we will see that TT often comes with various indexes,
mostly six triple permutations P(< s, p, o >) = spo, sop, pso, pos, ops, osp.

4.2 Property Table

The Property Tables approach aims to lessen the number of joins needed evaluation of for SPARQL Basic Graph Pattern.
In this approach, all properties (i.e. predicates) that are expected to be used in combination are stored in one table. A
typical property table contains exactly one column to store the subject (i.e. a resource) and n number of columns to
store the corresponding properties of the given subject. For example, in our sample RDF dataset shown in Table 1, the
subject DB has two properties namely type and fieldOf, thus a typical property table would have three columns: one
to store the subject and two to store the corresponding properties.

There are two ways to determine the set of properties grouped together in a property table: (1) make use of the type
definitions (rdf:type as shown in Table 1) in the dataset itself, (2) use some clustering algorithm to determine the
properties groups. Our sample RDF dataset shown in Table 1 explicitly mentions two rdf:types namely Person
and Course. Thus, we can group all properties that belongs to Person in one table and all properties that belongs to
Course in another table. Table 6 shows the corresponding property tables for the RDF dataset shown in Table 1. Table 6
revealed two explicit disadvantages of using property tables:

• Multi-valued properties: Multi-valued predicates are common in databases. For example, a person can have
more than one contact numbers. In our example, interestedIn is multi-valued predicate: Bob is interested
both in SemWeb and DB courses. A typical multi-valued predicate will introduce duplicated information
in the columns. For example, in Table 6a, the type and the country (belongsTo predicate) information is
duplicated for the subject Bob. One way to handle this problem to use the typical database normalization
approach, i.e. create separate property tables for multi-valued predicates. Table 7 shows the corresponding
properties tables, after creating separate tables for multi-valued predicates.

• Null values: It is very common in RDF datasets that certain resources have missing information for some
particular predicates. For example, the country of the resource Alice is missing in Table 1. Such missing
information is typically represented as null values. The low datasets structuredness values shown in [36]
suggest that many real-world RDF datasets contain missing information for different resources.

Subject type interestedIn belongsTo
Bob Person SemWeb “USA"
Bob Person DB “USA"
Alice Person SemWeb null

(a) Property table of the subjects of type Person

Subject type fieldOf
SemWeb Course “Computer Science"
DB Course “Computer Science"

(b) Property table of the subjects of type Course

Table 6: Property tables representation of the sample RDF dataset shown in Table 1. Multi-valued predicate
interestedIn is not treated separately. The additional row containing majority of the duplicate entries introduced
by the multi-valued predicate is highlighted gray. Prefixes are ignored for simplicity.

Subject type belongsTo
Bob Person “USA"
Alice Person null

(a) Property table of the subjects of type
Person, excluding multi-valued predicates

Subject interestedIn
Bob SemWeb
Bob DB
Alice SemWeb

(b) Property table of the subjects of type
Person for multi-valued predicate

Subject type fieldOf
SemWeb Course “Computer Science"
DB Course “Computer Science"

(c) Property table of the subjects of type Course

Table 7: Property tables representation of the sample RDF dataset shown in Table 1. Multi-valued predicate
interestedIn is treated separately. Prefixes are ignored for simplicity.

9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Summary. PT performs very well for executing star joins (ref. Figure 2) in the query. This is because, a star join node
is based on a subject-subject joins, thus a typical property table will act like a subject-based index for executing such
joins. However, it suffers for executing other types of joins e.g, path, hybrid, and sink (ref. ref. Figure 2) used in the
SPARQL queries. A path join node refers to subject-object join, sink join node refers to object-object join, and hybrid
join node refers combination of all. The real-world users queries statistics of the four datasets, presented in [37], show
that 33% of the real-world queries contain star join, 8.79% contain path join, 6.62% contain sink join, 4.51% contain
hybrid join, and 66.51% contains no join at all. Thus, this approach can produce give efficient results for majority
of the queries containing joins between triple patterns. Furthermore, different tools tried to reduce the problems and
performance deficiencies associated PT. For example, in [33], PT were used together with a TT, where the PT aims to
store the most commonly used predicates. Finally, this approach is sensitive to the underlying schema or data changes
in the RDF datasets.

4.3 Vertical Partitioning

Vertical Partitioning (VP) was proposed in [38]. In contrast to PT and TT, a VP stores RDF data in two columns tables
form. Subject and object named by the property.The number of tables equals the number of distinct predicates used in
the RDF dataset. Since there are four distinct predicates in the sample RDF dataset shown in Table 1, the corresponding
vertical tables are shown in Table 8.

Subject Object
Bob Person
Alice Person
SemWeb Course
DB Course

(a) Predicate type

Subject Object
Bob SemWeb
Bob DB
Alice SemWeb

(b) Predicate interestedIn

Subject Object
Bob “USA"

(c) Predicate belongsTo

Subject Object
DB “Computer Science"
SemWeb “Computer Science"

(d) Predicate fieldOf

Table 8: Vertical partitioning of the sample RDF dataset shown in Table 1. Prefixes are ignored for simplicity.

In contrast to VP, the VT does not suffer from the multi-valued predicates and the missing information that corresponds
to null values. The approach is particularly useful for answering SPARQL triple patterns with bound predicates (e.g. ?s
p ?o). This is because the predicates tables can be regarding as an index on predicates, hence only a single table needs
to considered while answering triple patterns with bound predicates. However, this type of storage is not optimized
for answering triple patterns containing unbounded predicates (e.g., s ?p ?o). This is due to the fact since predicate is
shown as a variable in the triple pattern, the triple pattern matching will consider all vertical tables. Consequently, may
fetched a large portion of intermediate results which will be discarded afterwards.

Summary. VP proves to be efficient in practice for large RDF datasets with many predicates, as it also offers an
indexing by predicates.This approach is particularly useful for column-oriented DBMS and is easy to manage in a
distributed setups. However, the table sizes can significantly vary in terms of number of rows. As such, some partitions
can account for a large portion of the entire graph, leading to workload imbalance. Furthermore, it can cause a lot of
I/O resources for answering SPARQL queries with unbound predicates.

4.4 Graph Based Storage

A graph is a natural storage form of RDF data. Various (un)directed, (a) cyclic (multi) graph data structures can be used
to store RDF graphs. For example, [39] store RDF graphs as directed signature graphs stored as a disk-based adjacency
list table, [40] store as balanced binary tree, and [41] store as multigraphs etc. A very simple labelled, directed signature
graph of the Figure 1 is shown in Figure 4. In Graph-based approaches, the given SPARQL query is also represented as
graph and sub-graph matching is performed to answer the query.

Summary. The main advantage of graph storage of RDF data is that it is the original representation of the RDF data
hence and represents the the original semantics of SPARQL. As graph homo-morphism is NP-complete, the sub-graph
matching can be costly. In particular, graph storage can raises issues pertaining to the scalability of the RDF engines for
large graphs, which can be addressed by indexing of database management techniques.

10

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

1

3

9 4

12

2 10

11

5

5

6

5

6

5

8

8

6

7

N1

N2 N3

N4

N5

N6

N7

N8

Fig. 4. Signature graph representation using dictionary encoding shown in Table 4b

4.5 Miscellaneous Storage

This category includes multiple storage schemes which are yet not widely used in the state of the art. Main storage
schemes are Key-Value based [42], HBase tables based13 [43], API based like Sesame SAIL Storage And Inference
Layer [44], on disk or in memory-based [45], and Bit Matrix-based [46]. We encourage readers to refer to the
corresponding papers for the details of these RDF storage schemes.

5 Indexing

Indexing is one of the important component of the database management systems. The right selection of indexing can
significantly improve the query runtime performances. However, indexes need to be updated with underlying changes in
the data sets. In particular, if the data changes on regular intervals, too many indexes may slow down the performance.
In addition, indexes needs extra disk space for storage. Major types of indexing that we found during the study are
given in Figure 5.

Figure 5: Pictorial representation of Indexing schemes in Centralized and Distributed RDF Engines (*RDF Engines in
bold text are Distributed engines)

• Indexing By Predicate
This type of indexing is found in RDF engines where the data is stored as Vertically Partitioned (VP) tables.
Each of the VP table is naturally indexed by predicate. Predicate-based indexing is particularly helpful for

13http://hbase.apache.org.

11

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

answering triple patterns with bound predicates. In such cases, only one VP table is consulted to answer the
given triple pattern. However, a SPARQL triple pattern can have 8 different combinations based on bounded
or unbounded s, p, o, as shown in Figure 6. As such, only using a single predicate-based index will be less
efficient for triple patterns with unbound predicates.
Summary. If data is stored in VP tables, it is automatically indexed by predicate as well. It is a space
efficient solution and can be useful for datasets with frequent updates. Furthermore, triple patterns of types
<?s, : p, ?o >,<: s, : p, ?o >, and <?s, : p, : o >, can directly answered by only consulting a single VP
table. However, it is less efficient for tps with predicates as a variable, e.g. <: s, ?p, ?o >,<?s, ?p, : o >
, and <: s, ?p, : o >.

Fig. 6. Different types of SPARQL triple patterns based on (un)bound subject S , predicate P and object O. The “:”
refers to bound and “?” refers to unbound subject, predicate or object of a triple pattern.

• Triple-Permutation Indexing. As mentioned before, an RDF triple comprises Subject, Predicate, and Object.
Figure 7 shows the permutations of an RDF triple

〈
s,p,o

〉
. The RDF engines in this category maintain indexes

pertaining to some or all permutations of the spo. The goal is to efficiently execute the different types of
SPARQL triple patterns shown in Figure 6. Consequently, the Triple-Permutation indexes can be particularly
helpful in the efficient execution of triple types of SPARQL joins (ref. Figure 2). The subject, predicate, object
permutations can be extended to quad to include the fourth element of named graph or model.
Figure 8 shows the spo index for the sample RDF dataset given in Table 1. For each distinct subject si in a
dataset D, a vector of predicates VP = {pi1, . . . , pin} in maintained; and for each element pij ∈ VP , a separate
list LO = {oi,j1 , . . . , oi,jk } of the corresponding objects maintained. The spo index can directly answer triple
patterns of type <: s, : p, ?o >. Similarly, SOP can directly answer triple pattern of type <: s, ?p, : o > and so
on. Finally, both spo and sop can be used to answer triple pattern of type <: s, ?p, ?o >. The same approach
can be followed for other type of triple-permuted indexes. The use of dictionary is helpful to reduce the storage
cost of such indexes.
Summary. The triple-permutation indexes solve the aforementioned issue of unbound predicates, associated
with predicate-based indexing. The triple-permutation indexes can directly answer all types of triple patterns
shown in Figure 6, and hence avoiding expensive self joins on the large TT. However, they suffers from a
severe storage overhead and are expensive to be maintained for RDF data with frequent changes.

Fig. 7. Common Triple-Permutation indexes in RDF-3X and Hexastore.

• Backend Database Indexing Certain RDF engines, e.g. Jena1, Jena2, and Sesame, etc. make use of the
existing DBMS as backend for storing RDF data. Usually, there are multiple indexes available from that
backend DBMS which are utilized as an indexes. For example, in Oracle DBMS various index including
b-tree, function-based reverse key etc. are available. PostgreSQL14 provides several indexes e.g., b-tree, hash,
GiST, SP-GiST, GIN and BRIN.

14PostgreSQL index types: https://www.postgresql.org/docs/9.5/indexes-types.html

12

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://www.postgresql.org/docs/9.5/indexes-types.html
https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

type

Person SemWeb
DB

USA

interestedIn belongsTo

Bob

type

Person SemWeb

interestedIn

Alice

type

Course Computer
Science

fieldOf

SemWeb

type

Course Computer
Science

fieldOf

DBsi:

VP:

LO:

Figure 8: Simple SPO index for the sample RDF dataset given in Table 1.

Summary. Using existing DBMS systems avoid the extra work of creating indexes. The available indexes
in such DBMS are already mature and optimized for the data these DBMS are designed. However, due to
different semantics of RDF data, they available indexes or storage solutions in the existing DBMS may not be
optimized for RDF datasets.

• No Indexing Some centralized and distributed RDF engines do not maintain any indexing scheme at all. This
could be due to the storage solution they used can be working as natural index. For example, the graph-based
storage solutions serve as natural index as well; where the query execution is reduced to sub-graph matching
problem.

• Miscellaneous Indexing
This type of indexing contains multiple types, i.e., Local predicate and global predicate indexing [47], Space-
filling [42], array indexing [48] and Hbase tables15 [43] indexing scheme etc. We encourage readers to refer to
the corresponding papers for the details of these indexing schemes.

6 Language Support

Language is an interface through which any data repository can be queried. RDF data can be directly queried via
SPARQL. However, a translation of SPARQL to other querying language is required if the data is not stored in RDF
format. Summary of query languages in centralized and distributed RDF engines is shown below in Figure 9.

The efficient translation of SPARQL into other querying languages is one of the major optimization step in such engines.
Some RDF engines use different API’s for querying purposes as well. Different types of the query languages found
during the study are given below.

1. SPARQL: SPARQL is the standard query language for RDF based dataa. Directly using SPARQL on top of
RDF can be much faster, as the underlying semantics of RDF and SPARQL can be utilized towards better
runtime performance. In addition, the aforementioned triple-permutation indexes can be leveraged to further
optimize the query execution. Majority (ref. Figure 9) of the RDF engines make use of the direct SPARQL
execution on top of RDF data. However, storing Big RDF datasets in format that can be directly queried via
SPARQL is still a challenging task.

2. SPARQL Translation: As mentioned before, certain RDF engines make use of the existing DBMS as backend
for storing RDF data. The relational DBMS systems (PostgreSQL, Oracle etc.) are the most popular among
them. Since SPARQL is not directly supported by these DBMS, a translation of SPARQL to DMBS-supported-
language is required for query execution. Most of the RDF engines in this category translate SPARQL to SQL
using existing translation tools e.g., Sparklify [49], Ontop [50] etc.

3. Other Languages: Some RDF engines also use their own query language other than SPARQL i.e., RDF Data
Query Language (RDQL) [51], Interactive Tucana Query Language (iTQL) etc. Some RDF engines are used
as a libraries to be used with different applications and offer full or part of RDF functionality [45].

7 Query Execution

Different RDF engines employ different query execution strategies. The overall goal is to devise an optimized query
execution plan that leads to fast query execution. This is generally achieved by using different query optimization
strategies, e.g., the selection of query planning trees (e.g. bushy tree vs. left-dept tree), the lowest cardinality joins

15https://hbase.apache.org/

13

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Figure 9: Pictorial representation of Query languages in Centralized and Distributed RDF Engines (*RDF Engines in
bold text are Distributed engines)

should be executed first, parallel execution of different joins, minimization of intermediate results, use of different joins
(hash, bind, merge sort etc.), filter operations are push down in the query plan etc. As such, categorizing the complete
surveyed systems according to their query execution strategies is rather hard; a variety of optimization strategies are used
in state-of-the-art RDF engines. A broader categories (ref. Figure 10) of the query execution strategies are explained
below.

Fig. 10. Types of Query Execution in Centralized and Distributed RDF Engines(*Bold represents the Distributed RDF
Engines)

1. Statistics Based
This type of query plans is based on the cardinality (estimated or actual) of triple patterns and join between
triple patterns. The cardinality estimations are may be performed by using stored statistics. The actual
cardinalities can be obtained at runtime by using different queries, executed on the underlying dataset. The
goal is to execute the lowest cardinality join first, followed by the next lowest cardinality join and so on. The
advantage of executing the lowest cardinality joins first is that the intermediate results for the next join could be
significantly reduced, hence the join operations are performed quickly. The cost of cardinality of a particular
join is estimated by using the stored statistics as index.

14

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

2. Translation Based Those RDF engines that make use of the existing DBMS systems can take advantage of
different optimization steps used, already implemented in these DBMS. For such systems, the SPARQL query
language is translated into another language supported by the underlying DBMS. Thus, additional optimization
can be applied during the translation, e.g., the ordering of triple patterns, the use of filters etc.

3. API Based
Some RDF engines are used as a library (e.g. Jena [51], Sesame [44] to store and query datasets. Query
execution is dependent on the Application-specific procedure to generate efficient query plans.

4. Subgraph Matching Based
RDF engines in this category exploit the graph nature both for RDF data and the corresponding SPARQL query.
Once both data and query is represented as graph, the query execution problem is reduced to the subgraph
matching problem. query execution.

5. Miscellaneous In this category, different types of query execution models exist. For example index lookups
combined with different joins, heuristic-based query processing and join ordering etc.

8 RDF Graph Partitioning

In distributed RDF engines, the data is distributed among cluster nodes. This partitioning of big data among multiple
data nodes helps in improving systems availability, ease of maintenance, and overall query processing performances.
Formally, the problem of RDF graph partitioning is defined as below.

Definition 8 (RDF Graph Partitioning Problem) Given an RDF graph with vertexes (V) and edges (E), G = (V,E),

divide the graph G into n sub-graphs G1, . . . Gn such that G = (V,E) =
n⋃

i=1

Gi.

RDF graph partitioning techniques can be divided into two major categories:

• Horizontal Partitioning. It is row-wise distribution of data into different partitions. It is also called database
sharding. In RDF each row of a TT represents a triple, the triple-wise distribution of complete dataset is
regarded as horizontal partitioning.

• Vertical Partitioning. It is column-wise distribution of data into different partitions and involves creating
tables with fewer columns and using additional tables to store the remaining columns. In the context of
RDF dataset, each triple represents a row with three columns namely subject, predicate and object. Hence,
distribution by any of these columns is regarded as vertical RDF partitioning. Famous example of vertical
partitioning by predicate column is already discussed in 4.

A recent empirical evaluation [11] of the different RDF graph partitioning showed that the type of partitioning used in
the RDF engines have a significant impact of the query runtime performance. They conclude that the data that is queried
together in SPARQL queries should be kept in same node, thus minimizing the network traffic among data nodes. The
Figure 11 shows categories of the partitioning techniques found in distributed RDF engines. Please note that all the
engines under workload-based, hash-based and graph-based categories are the examples of horizontal partitioning.

Now we define each of the category given in Figure 11. We explain commonly used [28, 52, 10, 53] graph partitioning
techniques by using a sample RDF graph shown in Figure 1216. In this example, we want to partition the 11 triples into
3 partitions namely green, red, and blue partitions.

Range Partitioning: It distributes triples based on certain range values of the partitioning key. For example, create
a separate partition of all RDF triples with Predicate age and object values between 30 and 40. In our motivating
example, let the partition key is the triple number with partitions defined according the following ranges: first partition
is created for all the triples in the range [1,4], a second partition is created for all the triples in the range [5,8], and third
partition is created for all the triples in the range [9,11].

Workload-Based Partitioning: The partitioning techniques in this category make use of the query workload to
partition the given RDF dataset. Ideally, the query workload contains real-world queries posted by the users of the RDF
dataset which can be collected from the query log of the running system. However, the real user queries might not be
available. In this case the query work load can either be estimated from queries in applications accessing the RDF data
or synthetically generated with the help of the domain experts of the given RDF dataset that needs to be partitioned.

16We used different example to show a clear difference between the discussed RDF partitioning techniques.

15

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Fig. 11. Types of Partitioning used RDF Engines

Hash-Based Partitioning: There are three techniques used in this category:

• Subject-hashed. This technique assigns triples to partitions according to a the hash value computed on their
subjects modulo the total number of required partitions (i.e., hash(subject) modulus total number of partitions)
[54]. Thus, all the triples with the same subject are assigned to one partition. However, due to the modulo
operation, this technique may result in high partitioning imbalance. In our motivating example given in
Figure 12, Using this technique, our example dataset is split such that, triples 3,10 and 11 are assigned into red
partition, triple 7 is assigned into blue partition, and the remaining triples are assigned into green partition.
Thus, a clear partitioning imbalance (3:1:7 triples) results.
• Predicate-hashed. This technique assigns triples to partitions according to a the hash value computed on

their predicates modulo the total number of required partitions. Thus, all the triples with the same predicate
are assigned to one partition. In our motivating example, there are four distinct predicate while the required
number of partitions are 3. Thus by using the first come for serve strategy, all the triples with predicate p1 will
be assigned to first partition (red), p2 triples will be assigned to second partition (green), p3 triples will be
assigned to third partition (blue), and p4 triples will be again assigned to first partition. This technique can
leads to significant performance improvement, provided that the predicates are intelligently grouped intro
partitions, such that communication load among data nodes is reduced [11].

• URI Hierarchy-hashed: This partitioning is inspired by two assumptions: (1) IRIs have path hierarchy,
(2) IRIs with a common hierarchy prefix are often queried together [54]. This partitioning technique ex-
tracts path hierarchies from the IRIs and assigning triples having the same hierarchy prefixes into one
partition. For instance, the extracted path hierarchy of “http://www.w3.org/1999/02/22-rdf-syntax-ns#type"
is “org/w3/www/1999/02/22-rdf-syntax-ns/type". Then, for each level in the path hierarchy (e. g., “org",
“org/w3", “org/w3/www", ...) it computes the percentage of triples sharing a hierarchy prefix. If the percentage
exceeds an empirically defined threshold and the number of prefixes is equal to or greater than the number
of required partitions at any hierarchy level, then these prefixes are used for the hash-based partitioning on
prefixes. In comparison to the subject-hash-based partition, this technique requires a higher computational
effort to determine the IRI prefixes on which the hash is computed. In our motivating example given in
Figure 12, all the triples having hierarchy1 in subjects are assigned to the green partition, triples having
hierarchy2 in subjects are assigned to the red partition, and triples having hierarchy3 in subjects are
assigned to the blue partition. This partitioning may not produce the best query runtimes as the underlying
assumptions about IRIs might not be true in practice [11].

Graph-Based Partitioning: It makes use of the graph-based clustering techniques to split a given graph into the
required pairwise disjoint sub-graphs. There are three techniques used in this category:

• Recursive-Bisection Partitioning. Recursive bisection is a multilevel graph bisection algorithm aiming to
solve the k-way graph partitioning problem as described in [52]. This algorithm consists of the following three
phases: (1)) Coarsening: The initial phase is coarsening the graph, in which a sequence of smaller graphs
G1, G2, ..., Gm is generated from the input Graph G0 = (V0, E0) in such a way that |V0| > |V1| > |V2| >

16

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

@pref ix h i e r a r c h y 1 : < h t t p : / / f i r s t / r / > . @pref ix h i e r a r c h y 2 : < h t t p : / / second / r / > .
@pref ix h i e r a r c h y 3 : < h t t p : / / t h i r d / r / > . @pref ix schema : < h t t p : / / schema / > .
h i e r a r c h y 1 : s1 schema : p1 h i e r a r c h y 2 : s11 . # T r i p l e 1
h i e r a r c h y 1 : s1 schema : p2 h i e r a r c h y 2 : s2 . # T r i p l e 2
h i e r a r c h y 2 : s2 schema : p2 h i e r a r c h y 2 : s4 . # T r i p l e 3
h i e r a r c h y 1 : s1 schema : p3 h i e r a r c h y 3 : s3 . # T r i p l e 4
h i e r a r c h y 3 : s3 schema : p2 h i e r a r c h y 1 : s5 . # T r i p l e 5
h i e r a r c h y 3 : s3 schema : p3 h i e r a r c h y 2 : s13 . # T r i p l e 6
h i e r a r c h y 2 : s13 schema : p1 h i e r a r c h y 2 : s8 . # T r i p l e 7
h i e r a r c h y 1 : s1 schema : p4 h i e r a r c h y 3 : s9 . # T r i p l e 8
h i e r a r c h y 3 : s9 schema : p1 h i e r a r c h y 2 : s4 . # T r i p l e 9
h i e r a r c h y 2 : s4 schema : p4 h i e r a r c h y 2 : s13 . # T r i p l e 10
h i e r a r c h y 2 : s11 schema : p2 h i e r a r c h y 1 : s10 . # T r i p l e 11

(a) An example RDF triples

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

13

3

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

Basic RDF Graph Range-based Predicate-Hash-basedSubject-Hash-based

Hierarchical-Hash-based Graph-based Recursive-Bisection Graph-based TCV-Min Graph-based Min-Edgecut

(b) Graph representation and partitioning. Only node numbers are shown for simplicity.

Figure 12: Partitioning an example RDF into three partitions using different partitioning techniques. Partitions are
highlighted in different colors.

... > |Vm|. (2) Partitioning In the second phase, computation of a 2-way partition Pm of the graph Gm takes
place, such that Vm is split into two parts and each part contains half of the vertices. (3) Uncoarsening The
third and last phase is uncoarsening the partitioned graph. In this phase the partition Pm of Gm is projected
back to G0 by passing through the intermediate partitions Pm−1, Pm−2, ..., P1, P0.
In our motivating example given in Figure 12, triples 1, 2, 4, 7, and 8 are assigned into green partition, triples
3, 5, 6, 9 and 10 are assigned into red partition, and triple 11 is assigned into blue partition.

• TCV-Min Partitioning. Similar to Recursive-Bisection, the TCV-Min also aims to solve the k-way graph
partitioning problem. However, the objective of the partitioning is to minimize the total communication
volume [55] of the partitioning. Thus, this technique also comprises the three main phases of the k-way
graph partitioning. However, the objective of the second phase, i.e. the Partitioning, is the minimization of
communication costs. In our motivating example given in Figure 12, triples 1, 2, 4, 5, 6, 8 and 9 are assigned
into green partition, triples 3, 7 and 10 are assigned into red partition, and triple 11 is assigned into blue
partition.

17

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

• Min-Edgecut Partitioning. The Min-Edgecut [52] also aims to solve the k-way graph partitioning problem.
However, unlike TCV-Min, the objective is to partition the vertices by minimizing the number of edges
connected to them. In our motivating example given in Figure 12, triples 1, 2, 4, 7 and 8 are assigned into
green partition, triples 3, 5, 6, 9 and 10 are assigned into red partition, and only triple 11 is assigned into blue
partition.

The graph-based partitioning techniques are computational complex, and may takes very strong for splitting big RDF
datasets.

Vertical Partitioning: The vertical partitioning is already discussed in section 4. This technique generally divides the
given RDF dataset based on predicates17. It creates n number of two columns tables, where n is the number of distinct
predicates in the dataset. Please note that it breaks the triples and only store the subject and objects parts. The predicate
become the caption of the table. Ideally, the number of distinct partitions would be equal to the number of distinct
predicates used in the dataset. However, it is possible that the the required number of partitions may be smaller than
the number of predicates used in the dataset. In this case the predicate tables are grouped into partitions, i.e., multiple
predicate tables are stored in partitions. There can be multiple way of grouping predicates into partitions: (1) first
come, first serve, (2) by looking at the number of triples per predicate and thus group predicates such that maximum
load balancing is achieved among partitions, (3) using some intelligence to determine which predicates will be queried
together, and hence grouped their corresponding triples in one partition.

9 State-of-the-Art RDF Engines

Now we present state-of-the-art centralized and distributed RDF Engines. The goal is to provide a broader overview of
these engines and classify them according to the previously discussed data storage and partitioning, indexing, language,
and query processing techniques. Summary of these characteristics in centralized and distributed RDF engines is shown
in table 9 and 10.

9.1 Centralized RDF Engines

Redland [45] is a set of RDF libraries for storing and querying RDF data that can be used by other RDF-based
applications. It provides a TT like storage based on creating three hashes – SP2O, PO2S, SO2P – per RDF triple, where
S stands for subject, P stands for predicate and O stands for object of the triple. Each hash is a a map of a key to a value
with duplicates allowed. The first two characters represent the hash key and the last character represent the value. For
example, in SP2O the key for this hash is subject and predicate and value is the object. These hashes also serve as three
triple-permutation indexes. The hashes can be stored either in-memory or on a persistent storage. It creates an RDF
model which can be queried with SPARQL and RDQL using the Rasqal RDF query library22.

Jena1 [51] uses relational databases to store data as TT called statements tables. Jena1 statement table has entries for
subject, predicate, objectURI, and objectliteral. URIs and Strings are encoded as IDs and two separate dictionaries are
maintained for literals and resources/URIs. This scheme is very efficient in terms of storage because of the one-time
storage of more than one occurrence of URIs and literals. However, the query execution performance is greatly affected
by the multiple self joins as well as dictionary lookups. The indexing, query processing depends upon the relational
DBMS (e.g., Postgresql, MySQL, Oracle) it uses for storage. RDQL is used as a query language that is translated into
SQL to be run against the underlying relational DBMS.

TDB23 is a component of the Jena API24 for storing and querying RDF data. It runs on the single machine and supports
full Jena APIs. A dataset in TDB consists of three table namely the node table, the triple and Quad indexes, and the
prefixes table. TDB assigns a node ID to each dataset node and is stored in a dictionary table called node table. Triple
and quad indexes table uses: (1) three columns or TT to store all the RDF triples belonging to the default named graph,
(2) four columns or quads to store triples (along with the corresponding named graphs), belonging to other named
graphs. Prefixes table does not take part in a query processing and only contains node table and an index for GPU. For
query processing, TDB makes use of the OpExecutor extension point of the Jena ARQ25. TDB provides low level
optimization of the SPARQL BGPs using a statistics based optimizer. FUSEKI26 component of the Jena can be used to
provide a public http SPARQL endpoint on top of TDB data storage.

17Division by subject and object is also possible but not common in RDF partitioning.
22RASQAL library http://librdf.org/rasqal/
23https://jena.apache.org/documentation/tdb/architecture.html
24Jena: https://jena.apache.org/
25Jena ARQ: https://jena.apache.org/documentation/query/
26FUSEKI: https://jena.apache.org/documentation/fuseki2/

18

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

http://librdf.org/rasqal/
https://jena.apache.org/
https://jena.apache.org/documentation/query/
https://jena.apache.org/documentation/fuseki2/
https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Storage Indexing Language Query Processing

Engine T P V G M P T B N M S T O S T A G M
RedLand [45] 3 3 3 3 3
Jena1 [51] 3 3 3 3

TDB18 3 3 3 3
Sesame [44] 3 3 3 3
3store [56] 3 3 3 3
Jena2 [33] 3 3 3 3 3

Mulgara19 3 3 3 3
RStar [57] 3 3 3 3
BRAHMS [58] 3 3 3 3
YARS [59] 3 3 3 3
Kowari [60] 3 3 3 3
RDF-Match [61] 3 3 3 3
SW-Store [38] 3 3 3 3
Hexastore [62] 3 3 3 3

RDFJoin20 3 3 3 3
Parliament [48] 3 3 3 3
DOGMA [40] 3 3 3 3
TurboHOM++ [63] 3 3 3 3
RDF-3X [64] 3 3 3 3
RIQ [65] 3 3 3 3

Stardog21 3 3 3 3
gStore [39] 3 3 3 3
Strabon [66] 3 3 3 3
BitMat [67] 3 3 3 3
Triplebit [46] 3 3 3 3
DB2RDF [68] 3 3 3 3
RDFox [69] 3 3 3 3
AMBER [41] 3 3 3 3

Table 9: Categorization of centralized RDF Engines.
Storage (T = Triple Table, P = Property Table, V = Vertical Partitioning, G = Graph-based, M = Miscellaneous)
Indexing (P = Predicate-based, T = Triple-permutation, B = Backend Database, N = No-indexing, M = Miscellaneous)
Language (S = SPARQL, T = SPARQL Translation, O = Others Languages)
Query Processing (S = Statistics-based, T = Translation-based, A = API-based, G = Subgraph Matching-based, M =
Miscellaneous)

Sesame [44] is an architecture that allows persistent storage and querying of RDF data. Sesame provides storage-
independent solutions and hence it can be deployed on top of a variety of storage devices such as relational DBMS and
Object-oriented databases. The querying is based on RQL language. The storage, indexing, and query processing is
based on the underlying DBMS used by the Sesame. Sesame has been renamed as Eclipse RDF4J27 with an improved
functionalities such as both in-memory and persistence data storage, SPARQL and SeRQL support etc.

3store [56] uses MySQL28 as its back end and arranges its data in MySQL database schema in four tables namely
triples table, models table, resource table, and literal table. The triples table stores RDF triples (one per row) with
additional information: (1)the model this triple belongs, (2) the Boolean value if a literal is used in the triple, and (3)
and the Boolean value if this triple is inferred. The models, resource, and literal are two columns tables to map hash
IDs to models, resources, and literals, respectively. As 3store uses MySQL as its backend, it depends upon the MySQL
built-in query optimizer to effectively use its native indexes. The query processing is based on the translating RDQL to
SQL.

Jena2 [33] is an improved version of the Jena1. It has support both for statement and property tables. Unlike Jena1, the
schema is denormalized and URIs, simple literals are directly stored within the the statement table. Jena2 also makes
use of the dictionary tables only for strings whose lengths exceed a threshold. The advantage of directly storing URIs
and literals into TT is that the filters operation can be directly performed on TT, thus avoiding extra dictionary lookups.
The disadvantage is that it also results in higher storage consumption, since string values are stored multiple times. The
use of property tables for most frequently used predicates can avoid the multiple self joins in statement tables.

27RDF4J: https://en.wikipedia.org/wiki/RDF4J
28https://www.mysql.com/

19

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://en.wikipedia.org/wiki/RDF4J
https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Mulgara29 uses transactional triple store XA30 as its storage engine. It stores metadata in the form of subject-predicate-
object. It makes use of the triple-permutation indexing based on Subject, Predicate, Object and Meta or Model.
A total of six indexes31 – spom, posm, ospm, mspo, mpos, mosp – are used in Mulgara which are stored in AVL
(Adelson-Velskii and Landis) (AVL) trees. iTQL is the language used for querying. The query planning is based on
cardinality estimations.

RStar [57] was designed to store ontology information and instance data. The storage is based on multiple relations,
stored in relational IBM DB2 DBMS. Five two-column tables were used to store Ontology-related data. Similarly,
another five two-columns tables were used to store instance-related data. RStar Query Language (RSQL) was defined
for resource retrieval. RStar performs translation of RSQL into the SQL of an underlying database. Query engine of
RSQL pushes many tasks to the underlying database to take advantage of built in query evaluation.

BRAHMS [58] main memory-based RDF engine. The RDF data is store in three hash tables – s-op, o-sp, p-so where
s represents the subject, o represents the object and p represents the predicate of the triple. This RDF engines was
designed to find semantic associations in large RDF datasets. This was done by leveraging the depth-first search and
breath-first search algorithms.

Yet Another RDF Store (YARS) [59] stores RDF data in the form of quads having four columns in the disk. In
addition to subject, predicate, object, it also stores the context of the triple. YARS maintains two kinds of indexes: (1)
Lexicons indexes, which operate on the string representations of RDF graph nodes to enable fast retrieval of object
identifiers, (2) Quad indexes, which are a set of permutation indexes applied on quad (subject s, predicate p, object o
and context c). The are six –spoc, poc, ocs,csp, cp, os – quad indexes used in the YARS. YARS uses Notation3 (N3)
to query RDF data. The query processing is based on index lookups and join operations. The join ordering (lowest
cardinality join should be executed first) is based on getting the actual cardinalities using getCountQ query.

Kowari [60] is a metastore built to provide scalable, secure transactions, and storage infrastructure for RDF data.
Kowari makes use of the persistent quad–storage by using XA Statement Store. Along with subject, predicate, object,
it also stores additional meta node with each triple. The meta node illustrates in which model this statement occurs.
Multiple quad-permutation indexes are maintained. Same like Mulgara, Kowari also maintains six indexes which
are stored as AVL tree and B-Trees. This combination enables fast, simple searching and modification. The query
processing is based on iTQL. Kowari query execution plan is also based on cardinality estimations. Once the initial
execution plan is complete, the query engine starts to merge the results using join operations. During this process, the
query engine may find a more efficient alternate execution plan from the sizes of intermediate results. If this happens,
the query engine will further optimize the execution plan, and complete results are returned to a client after the final
join operation.

RDF-Match [61] is implemented on top of Oracle RDBMS using Oracle’s table function infrastructure. It stores RDF
data in two different tables: (1) IdTriples table consisting of columns ModelID, SubjectID, PropertyID, ObjectID,
and (2) UriMap table consisting of UriID, UriValue. It translates the query into a self-join query on IdTriples table. It
defines B-tree indexes and materialized views on both tables. SQL is used as a query language to perform queries. For
efficient query processing, materialized join views and indexes are used. RDF-MATCH also uses a Kernel enhancement
to eliminate runtime overheads.

SW-Store [38] is the example of vertical partitioning: the data is divided into n two columns (subject, object) tables,
where n is the number of distinct predicates in the dataset. In addition to natural indexing by predicate, each of the n
tables is indexed by subject so that particular subjects can be retrieved quickly from the tables. The implementation of
SW-Store relies on a column-oriented database system C-store [70]. SW-Store uses Jena ARQ to translate SPARQL
queries into SQL. For triple patterns with bound predicates, only one table is consulted to get the required results. A
fast merge-join operations are exploited to collect information about multiple properties for subsets of subjects.

Hexastore [62] proposes an RDF storage scheme that uses the triple nature of RDF as an asset. In this approach, a
single giant TT is indexed in six possible ways – spo, sop, pso, pos, osp, ops –, one for each possible ordering of the
subject s, predicate p, and object o. In this storage technique, two vectors are associated (ref. Figure 8) with each
distinct instance of the subject, predicate or object. This format of extensive indexing allows fast query execution at the
price of a worst-case five-fold increase in index space as compared to single TT. Hexastore uses SPARQL as its query
language. The query processing is based on using the appreciate index for the different types of triple patterns (ref.
Figure 6). Since, all vectors store elements in sorted order, a fast merge-joins can be used to integrate the results of the
different triple patterns.

29http://mulgara.org/
30XA1: https://code.mulgara.org/projects/mulgara/wiki/XA1Structure
31https://code.mulgara.org/projects/mulgara/wiki/Indexing

20

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://code.mulgara.org/projects/mulgara/wiki/XA1Structure
https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

RDFJoin32 contains three types of tables namely the URI conversion tables, TT, and join table. The URI
conversion tables are just like dictionary encoded values of the URIs. RDFJoin stores triple in three TTs namely
PSTable, POTable, and SOTable. The PSTable consists of columns for PropertyID, SubjectID and ObjectBitVector.
The PropertyID and SubjectID represent the property resp. subject of a triple and ObjectBitVector is a bit vector of
all objects that are associated with given property and subject instances. The same explanation goes for POTable and
SOTable. The PSTable is naturally ordered by the property and secondary indexed by the subject. Both property
and subject make the primary key of the table which enables to find out Object by the primary key lookups. The
same explanation goes for POTable that facilitates the merge joins in the case of Subject-Subject and Object-Object
joins. The Join tables store the results of subject-subject joins, object-object joins, and subject-object joins in a
bit vectors. Three separate join tables namely SSJoinTable, SOJoinTable, and OOJoinTable are used to store the
subject-subjec, object-object, and subject-object joins, respectively. Each of the three join tables has three columns for
Property1, Property2 and a BitVector. The first two columns make the primary key upon which hash indexed is applied
to produce a corresponding BitVector. The query execution is based on SPARQL query processing with index lookups
and different join implementations such as merge joins.

Parliament [48] contains three types of tables, i.e. resource table, statement table, and resource dictionary. These
tables are stored as linked lists. Most important is the statement table, which stores records pertaining to the RDF triples.
Records are stored sequentially with a number as IDs. Each record has seven components: three IDs representing
Subject, Predicate, and Object, three IDs for the other triples which are re-using the same Subject, Predicate, and Object
instances. The seventh component is a bit field for encoding attributes of a statement. The index structure of Parliament
revolves around the Resource table and a memory-mapped file containing the string representations of Resources ID.
Records or instances can be accessed through a simple array indexing technique by giving its ID. Parliament is an
embedded triple store, so directly querying through SPARQL or any other query language is not possible. Rather,
it allows search, insert, and delete operations. However, querying can be indirectly made possible while accessing
it through some SPARQL API like Jena and Sesame. For example, the given SPARQL SELECT query needs to be
converted in the format of Parlimaent’s supported find query (or set of queries) to be executed.

DOGMA [40] presents a graph-based RDF data storage solution. In this model, RDF graph is represented as balanced
binary tree and store it on disk. There is no specific index needed for query processing as subgraph matching; the tree
itself can be regarded as index. However, author have proposed two additional indexes for fast subgraph matching.
DOGMA develops algorithms to answer only graph matching queries expressible in SPARQL, and hence it was not
supporting all SPARQL queries.

TurboHOM++ [63] is another graph-based solution for running SPARQL queries. However, unlike DOGMA, it is an
in-memory solution in which both RDF graph and SPARQL query is represented as specialized graphs by using type-
aware transformation, i.e., it makes use of the type information specified by the rdf:type predicate. The sub-graph
matching is performed for SPARQL query execution. This approach also makes use of the predicate index where a key
is a predicate, and a value is a pair of a list of subject IDs and a list of object IDs.

RDF-3X [64] is an example of exhaustive indexing over a single giant TT by using optimized data structures. Triples
are stored in a clustered B+ trees in lexicographic order. The values inside the B+ tree are delta encoded [64] to further
reduce the space required for storing these indexes. A triple < S,P,O > is indexed in six possible ways – spo, sop,
pso, pos, osp, ops –, one for each possible ordering of the subject s, predicate p, and object o. These indexes are called
compressed indexes in RDF-3X. In addition, RDF-3X makes use of the six aggregated indexes – (sp, ps, so, os, po,
op – each of which stores only two out of the three components of a triple along with an aggregated count which is
the number of occurrences of this pair in the full set of triples. The aggregated indexes (value1, value2, count) are
helpful for answering SPARQL query of type "select?a?cwhere?a?b?c ". Finally, three one value indexes (value1,
count) are also maintained for storing the count of the s, p, and o. Thus, all together 15 indexes are maintained in
RDF-3X. SPARQL query processing and the selection of optimized query execution plan is based on a cost model
which calculates the cost of the different plans and select the plan with minimum cost.

RIQ [65] SPARQL query execution is based on decrease-and-conquer strategy. Rather than creating a single large
index over the entire RDF graph, RIQ identifies groups of similar RDF graphs and creates small indexes on each group
separately. A new vector representation has been used for RDF graphs along with locality sensitive hashing to construct
the groups efficiently. RIQ creates a filtering index on the groups and compactly represents it as a combination of
Bloom and Counting Bloom Filters. During query processing, RIQ employs a streamlined approach. The query plan
is constructed by searching the stored index to quickly identify quickly identify candidate groups that may contain
matches for the query. RIQ rewrites the original query to produce an optimized query for each candidate. The optimized
queries are then executed using an existing SPARQL processor to generate the final results.

32http://www.utdallas.edu/ jpm083000/rdfjoin.pdf.

21

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Stardog33 storage is based on the RocksDb34, a persistant key-value store for fast storage. It supports the triple-
permutation indexes where triples are represented as quads, thus the fourth element of the quad (i.e, the context) is also
indexed. It supports SPARQL 1.1, full-text search through Lucene and ACID transactions. The query planning is based
on index search with support for different types of joins such as hash join, bind join, merge join etc.

gStore [39] is a graph-based engine that stores RDF triples in the form of directed, multi-edge graph. The subject and
object of a triple is represented by graph nodes and the corresponding predicate represents a directed link from subject
node to object node. Multi edges between two nodes can be formed if there exist more than one property relation
between the subject and object. The RDF graph is stored in an adjacency list table and encoded into a bitstring, also
called vertex signature. The bitstring encoding of the graph is been done by using different hash functions [71]. gStore
uses two trees for indexing: (1) a height-balanced S-tree [72], and (2) VS-tree (vertex signature tree). The S-tree index
can be used to find attribute values in the adjacency list specified in a query. But it is not able to support multi-way joins
over attribute values. To solve this problem, gStore makes use of the VS-tree. Same like graph encoding, a SPARQL
query is also represented as signature graph called query signature. Consequently, query execution problem is reduce to
the sub-graph matching problem where query signature graph is matched against the graph signature.

Strabon [66] is used for storing and querying geospatial data, which exists in the form of stRDF, originally presented
in [73]. Strabon is built upon Sesame also known as RDF4J. Sesame is chosen because it is an open-source nature,
consists of layered architecture, offers a wide range of functionalities and it has the ability to have PostGIS, which
is a database management system with spatial features. Strabon has three components which consists of the storage
manager, the query engine and PostGIS. The storage manager of Strabon makes use of a bulk loader to store stRDF
triples. These triple are stored in a storage scheme of Sesame, "one table per predicate" and dictionary encoding. For
each of predicate and dictionary tables, Strabon maintains a two B+ tree two-column indexes and a B+ tree index on the
id column respectively. Strabon has new extension of SPARQL query language, stSPARQL [73] to query stRDF based
datasets.

The query engine of Strabon performs the query execution. It consists of a parser, an optimizer, an evaluator and a
transaction manager. The parser and the transaction manager are same like in a Sesame. An optimizer and an elevator
are modified in Strabon. The parser generates an abstract syntax tree, which becomes a query tree by mapping into
the Sesame’s algebra. The the optimizer takes the query tree and applies different optimizations and then an evaluator
produces the corresponding SQL query. This SQL query will be executed on PostgreSQL.

BitMat [67] as in example of binary data storage which makes use of the three-dimensional (subject, predicate, object)
bit matrix which is flattened to two dimensions for representing RDF triples. In this matrix, all the values used are
either 0 or 1, representing the absence or presence of that triple. BitMat further compress the data on each row level. In
particular, BitMat creates three auxiliary tables to get mappings of all distinct subjects, predicates, and objects to the
sequence-based identifiers. Bitwise AND/OR operators are used to process join queries.

Triplebit [46] stores RDF data in the form of bit matrix storage structure [67] and applies an encoding mechanism
to compress huge RDF graphs. The RDF triples are represented as a two-dimensional bit matrix. The columns of
the matrix represents triples, with only bit value entries for subject and object of the triple. Each row is defined by a
distinct entity value which represents set of triples which contain this entity. TripleBit vertically partitions the matrix
into multiple disjoint buckets, one bucket per predicate. Two indexes are used in TripleBit namely ID-Chunk bit
matrix and ID-predicate bit matrix. The former supports a fast search for finding the relevant chunks for given
subject or object. The later provides a mapping of a subject or an object to the list of corresponding predicates to which
it relates. A dynamic query planning algorithm is used to generate the optimized SPARQL query execution plans, with
the aim of minimizing the size of intermediate results as early as possible. Merge joins are used extensively in the
generated optimized query execution plans.

DB2RDF [68] uses a relational schema consisting property tables to store RDF data. The storage is based on the
encoding scheme which encodes a list of properties for each subject in a single row. DB2RDF does not maintained any
specific index over triple < s, p, o >. However, the property tables can be naturally regarded as subject based index to
quickly locate all the properties and the corresponding objects for the given subject instance. DB2RDF performs query
optimization in two steps. In the first step SPARQL is optimized, and in the second step SPARQL to SQL translation is
optimized.

RDFox [69] is an in-memory RDF engine that supports materialisation-based parallel datalog reasoning and SPARQL
query processing. The RDF triples are stored in TT. Three different types of indexes are maintained over the TT namely
ThreeKeysIndex, TwoKeysIndex, and OneKeyIndex. These indexes are used to efficiently answer the different
types of triple patterns (ref. Figure 6). For example, the ThreeKeysIndex can be used for answering triple patterns

33https://www.stardog.com/docs/7.0.0/
34RocksDB: https://rocksdb.org/

22

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://rocksdb.org/
https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

containing bound subjects, predicates, and objects (i.e., variable-free patterns). The TwoKeysIndex can be used for
answering triple patterns containing one or two variable. Each TwoKeysIndex contains a OneKeyIndex that is used
to locates the first triple in the relevant list with the given resource ID. RDFox answers SPARQL queries by using
its querying package, which first parse the SPARQL query int a query object. Then, the SPARQL compiler converts
the query object into a TupleIterator that provides iteration over the answers. RDFox contains many different
TupleIterator variants such TableIterator supports iteration over SPARQL triple patterns, DistinctIterator
implements the “DISTINCT” construct of SPARQL etc.

AMBER (Attributed Multigraph Based Engine for RDF querying) [41] stores all of its RDF data in the form of
multigraph. It maintains three different dictionaries of key value pairs namely a vertex dictionary, an edge-type
dictionary and attribute dictionary. Same like three dictionaries, AMBER maintains three indexes: first is an inverted
list to store the set of data vertex for each attribute, second is a trie index for storing features of the data vertices, and
third is also a trie index structure for storing information of neighbours of the data vertices. SPARQL query in AMBER
is transformed into a query mutligraph and then applied on the data multigraph. Results are obtained by using the
subgraph matching mechanism of the query and data multigraphs.

9.2 Distributed RDF Engines

The distributed RDF engines can be divided into four broader categories : (1) No-SQL-based, (2) Hadoop/Spark-based,
(3) Distributed memory-based, and (4) others, e.g., MPI-based, Graph-based. Our discussion is focused towards the
storage, indexing, query processing, and partitioning in state-of-the-art distributed RDF engines.

AllegroGraph41 can be used to store and query both documents (e.g. JSON) and graph data (e.g. RDF). The data
is horizontally distributed also called shards. It uses efficient memory management in combination with disk-based
storage, enabling it to scale up to billions of quads. For RDF data, it makes use of the triple-permutation indexes along
with named graph and triple id. The default indexes are: are: spogi, posgi, ospgi, gspoi, gposi, gospi and i, where s
is the subject, p is the predicate, o is the object of a triple pattern, g is the named graph and i is the unique ID of the
triple. Query processing is based on two components 42. The first is a simple static query analyzer, which indicates the
best indexes to be used during query processing. The second one is a dynamic query analyzer, which processes the
query and determines which indexes are actually used. There is a trade-off in the use of the dynamic query analyzer: by
providing better information, it takes a much longer time processing the query.

Blazegraph43, formerly known as BigData, is an open-source graph database system which supports both RDF and
SPARQL. Blazegraph supports both row and column data storage models, which can be saved both in-memory or on
a disk. Indexing is dependent on the triples or quads or triples with provenance. Based on the type of triple Bigdata
creates three or six key-range partitioned B+ tree indexes. Indexing in Bigdata is like in YARS. Dictionary encoding
with 64bit integers is used for compressed representation of RDF triples. The query optimizer of Bigdata generates
optimized query execution plans according to two different approaches: the default approach uses static analysis and
fast cardinality estimation of access paths, the second approach uses runtime sampling of join graphs. In remove the
scaling limit, the Blazegraph employs a dynamically partitioned key-range shards.

YARS2 (Yet Another RDF Store, Version 2) [74] data storage is based on RDF quads (subject, predicate, object,
context). The main focus of YARS2 is on the distributed indexing. The index manager in YARS2 uses three indexes
namely keyword index, quad index and join index for evaluating queries. The keyword index is used for keyword
lookups. The quad indexes are the triple permutation indexes, applied on YARS2 RDF quads. The join index helps
speeding up query execution, containing certain combinations of values, or paths in the graph. YARS2 also uses
SPARQL as its query language. YARS2 performs the distributed query execution by using optimized methods for
handling the network traffic and avoiding memory overheads, index loop joins, and dynamic programming for joins
ordering. Finally, a hash-based data placement used for quads indexing.

SHARD [75] is Hadoop-based distributed RDF engine, which employs hash-based data distribution. It stores RDF data
in flat files on HDFS in a way that each line presents all the triples associated with a subject resource of the RDF triple.
Input dataset is hash partitioned, so that every partition contains the distinct set of triples. There is no specific indexing
employed in SHARD. Query execution is performed through MapReduce iterations: first, it collects the results for the
sub-queries, following by the joins, and finally filtering is performed for bounded variable and to remove the redundant
results.

41https://franz.com/agraph/allegrograph/
42https://franz.com/agraph/support/documentation/current/query-analysis.html
43https://blazegraph.com/

23

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Storage Indexing Language Query Processing Partitioning

Engine T P V G M P T B N M S S O S T A S M W H G V M N R
Allegrograph35 3 3 3 3 3

Blazegraph 36 3 3 3 3 3
YARS2 [74] 3 3 3 3 3 3
SHARD [75] 3 3 3 3 3
4store [35] 3 3 3 3 3
Virtuoso [34] 3 3 3 3 3

HDT 37 3 3 3 3 3
H-RDF-3X [3] 3 3 3 3 3 3

GraphDB 38 3 3 3 3 3
CumulusRDF [76] 3 3 3 3 3
Rapid+ [77] 3 3 3 3 3
Jena-HBase [78] 3 3 3 3 3 3 3 3 3
Rya [79] 3 3 3 3 3 3
AMADA [80] 3 3 3 3 3 3
H2RDF [81] 3 3 3 3 3
SHAPE [82] 3 3 3 3 3 3
WARP [7] 3 3 3 3 3
PigSPARQL [83] 3 3 3 3 3
EAGRE [42] 3 3 3 3 3
H2RDF+ [43] 3 3 3 3 3
Trinity.RDF [47] 3 3 3 3 3
D-SPARQ [84] 3 3 3 3 3
CliqueSquare [85] 3 3 3 3 3 3 3
TripleRush [86] 3 3 3 3 3
chameleon-db [87] 3 3 3 3 3
Partout [6] 3 3 3 3 3
Sempala [9] 3 3 3 3 3
TriAD [88] 3 3 3 3 3
SparkRDF [89] 3 3 3 3 3 3
SemStore [90] 3 3 3 3 3 3
DREAM [5] 3 3 3 3 3
DiploCloud [91] 3 3 3 3 3
SPARQLGX [83] 3 3 3 3 3
S2RDF [10] 3 3 3 3 3
AdPart [92] 3 3 3 3 3
S2X [93] 3 3 3 3 3
gStoreD [8] 3 3 3 3 3
Wukong [94] 3 3 3 3 3
SANSA [95] 3 3 3 3 3
Stylus [96] 3 3 3 3 3
Koral [97] 3 3 3 3 3 3
PRoST [98] 3 3 3 3 3
WORQ [99] 3 3 3 3 3

Anzograph 39 3 3 3 3 3

Neptune40 3 3 3 3 3 3
HF,VF,MF [100] 3 3 3 3 3
DiStRDF [101] 3 3 3 3 3 3
Leon [102] 3 3 3 3 3
DISE [103] 3 3 3 3 3

Table 10: Categorization of distributed RDF Engines.
Storage (T = Triple Table, P = Property Table, V = Vertical Partitioning, G = Graph-based, M = Miscellaneous)
Indexing (P = Predicate-based, T = Triple-permutation, B = Backend Database, N = No-indexing, M = Miscellaneous)
Language (S = SPARQL, T = SPARQL Translation, O = Others Languages)
Query Processing (S = Statistics-based, T = Translation-based, A = API-Based, G = Subgraph Matching-based, M =
Miscellaneous)
Partitioning (W = Workload-based, H = Hash-based, G = Graph-based, V = Vertical, M = Miscellaneous, N = No
partitioning, R= Range Partitioning)

4store [35] stores data in quad (model, subject, predicate, object), where model represents the graph in which triples
are saved. The partitioning of data among n partitions is exactly same like subject-based-hashed partition. However,
RIDs (Resource IDentifiers) [104] values of the triple subjects are used instead of using hashing function over the
subject component of the triple. The allocation of triples to a specific partition is based on the formula defined as:
n = RID(subject)modn. Three different types of indexes are used in 4Store namely R , M, and P indexes. RDF
Resources, i.e. URIs, Literals, and Blank Nodes are represented as triple (rid, attr, lexical value), and stored in a
bucketed, power-of-two sized hash table, known as the R Index. The M index is created over named graphs or model. It
is basically a hash table which maps named graphs to the corresponding triples in the named graph. The P Indexes (two

24

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

for each predicate) corresponds to the predicates and consist of a set of radix tries [105], using a 4-bit radix. The query
engine is largely based on Relational Algebra. The join ordering is based on the cardinality estimations.

Virtuoso [34] stores RDF data as single table with four columns: Subject (s), Predicate (p), Object (o), and Graph
(g), where s, p and g are IRIs, and o may be of any data type. The Virtuoso makes use of the dictionary encoding for
IRI’s and literals used in the triples. It maintains a fewer number of indexes. The gspo is the default index used in
the Virtuoso. In addition, it maintains an auxiliary bitmap index opgs. Query execution is based on the translation of
SPARQL queries into SQL to be executed on the underlying database backend. The optimized query plan generation is
based on the cost estimations functions. Virtuoso partitions data using subject-hash-based partitioning.

HDT Header (metadata), Dictionary (strings occurring in the dataset), and Triples (graph structure) (HDT)44 is a form
of binary representation to achieve high compression and indexing for efficient querying. HDT is used to compress
massive RDF datasets. The header contains metadata, and the dictionary contains the catalogue of all the resources,
literals, and blank nodes. A triple component represents the Graph in the tuple of three components Subject, Predicate,
and Object. In HDT, one can take advantage of fast search operations to different parts of the file without having
to decompress it fully. HDT works on the principle of in-memory access, and the whole file is uploaded to memory
to worked upon as a data structure. In-memory operations save the expensive indexing. All this process occurs at a
server-side, and it is only restricted to an only containing SPO, SP?, S?? and ??? queries. To be able to work on the
client-side and for queries containing other triple patterns, HDT includes two indexes to the original data structure of
HDT. The original Sp based index is now loaded as a wavelet tree despite an array. Another index called O-Index is
added with the triples. This new representation is called HDT-FoQ: HDT Focused on Querying.

The triple portion of the HDT contains the triples in a binary format in a tree form. The tree consists of three levels
with Subject as a root node followed by Predicate and Object. Query execution in HDT starts from the listed Subject as
a root node in the SPARQL query. For queries starting with Predicate and Object, HDT has the new representation of
its data structure after the addition of two indexes. The new representation is HDT-FoQ: HDT Focused on Querying.
HDT-FoQ only supports conjunctive queries with index and merge joins and still lacks the support for dis-junctions,
and more operators.

H-RDF-3X [3] uses RDF-3X as its storage component to RDF data as graph. It also makes use of a k-hop guarantee to
replicate vertices and edges, which are k-hop away. RDF-3X installed in every partition contains duplicated values
because of replication. H-RDF-3X makes use of RDF-3X internal statistics to generate efficient query plans. Because
of replication and RDF-3X’s full scans of the dataset in a partition, it may cause storage and time overhead. H-RDF-3X
also utilizes indexes, which are built over all possible permutations of Subjects, Predicates, and Objects in a partition.
SPARQL query processing in H-RDF-3X is a decision between two things. Either a query will be Parallelizable
Without Communication (PWOC) or not. If a query can be answerable without involving expensive Hadoop jobs, then
the query is PWOC. This can be achieved through hop guarantee, larger the replication larger is a hop guarantee. That
will help to avoid Hadoop in some queries. If the query is not PWOC, then it will be decomposed into subqueries that
are going to join by expensive Hadoop jobs. Hadoop jobs are directly proportional to the number of subqueries. In
order to avoid expensive Hadoop jobs, heuristics are used to minimize the number of subqueries.

GraphDB stores its all of data, indexes, entity pools in the directory called storage45. GraphDB is packaged as Storage
and Inference Layer (SAIL) for the Sesame RDF framework, and RDF4J API’s for storage and querying. GraphDB
contains many automatic indexes apply to implicit or explicit triples. Two main indexes are SPO, OSP, and POSIndexes
in GraphDB offers many advantages for specific datasets, retrieval patterns and query loads. For SPARQL query
evaluation, the GraphDB makes use of two indexes. GraphDB makes use of predicate object, subject (POS) and the
predicate, subject, object (PSO) index to perform query evaluation. Another index, known as Literal index may be used
during query evaluation if the query or subquery contains filters with literals constraints using comparison or equality.

CumulusRDF [76] employs a NoSQL system, Apache Cassandra for implementation of its storage layouts, i.e.,
hierarchical and flat layout. Cassandra uses a set of distributed hash tables in which each hash working as a hash key is
responsible for storing rows in a particular range of hash keys. These layouts help in linked data and basic triple pattern
lookup. The hierarchical layout makes use of super columns of Cassandra. Three permutations of s,p,o are maintained
to enable fast lookup for triple patterns and named graphs. CumulusRDF also employs a secondary index, cspo to map
the column values to row keys. For query processing, Sesame processor translates the queries into index lookups of
Cassandra.

RAPID+ [77] is a Pig-based system that uses a Vertical Partitioning storage strategy to save RDF data. To store data in
VP tables fashion in Pig, a SPLIT command of Pig is used. In previous approaches data transfer between the mappers
and reducers using Map Reduce frameworks show high communication and I/O costs. To minimize these costs, Nested

44http://www.rdfhdt.org/hdt-internals/
45http://graphdb.ontotext.com/documentation/6.6/standard/storage.html#graphdb-s-indexing-options

25

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Triple Group Algebra (NTGA), new intermediate algebra comes into action for the optimization of a query process.
The main concept of NTGA is based on the TripleGroup, which cluster of triples with same subject or object like in
Star-shaped queries.

Jena-HBase [78] a distributed framework for scalable storage and querying for massive RDF data. It supports multiple
storage layouts of Vertical Partitioned, Indexed, Hybrid and Hash over several HBase tables. Through these variety of
storage layouts, there is a tradeoff between storage and query performance in Jena-HBase. Experimental evaluation
shows the superiority of Hybrid layout due to combination of other layouts. For querying, Jena-HBase has query runner
block that provides APIs for different storage layouts.

Rya [79] employs Accumulo, a key-value and column-oriented store as its storage backend. Rya can also use any
other NoSQL database as its storage component. The row-id part stores all the key-value pairs. Rya stores three index
permutations, i.e., (spo, pos, and osp). In Rya, OpenRDF Sesame SAIL APIs are used for storage and querying purpose.
Specifically, index nested loop joins are used for SPARQL query execution using MapReduce fashion. The count of
distinct subjects, predicates, and objects is maintained and used during joins reordering and query optimization. These
counts are only updated in case of data distribution changes significantly. This updation is critical because the query
planner will use this information to reorder the query according to the triple pattern with the highest selectivity.

AMADA [80] is implemented on Amazon Web Services (AWS) cloud infrastructure. This infrastructure supports
storage, indexing and querying as software as a service (SAAS). AMADA builds indexes using SimpleDB, which
supports SQL queries. SimpleDB is based on key-value storage solution. It supports no joins, single relation queries. In
AMADA, query is submitted to a query processor module running on EC2. After that, indexes are lookup in SimpleDB
to find the answers related to a query. Results are written in a file stored in S3, whose URI is sent back to the user to
retrieve the query answers.

H2RDF [81] is a kind of distributed RDF system that stores data as a multiple indexing scheme over HBase in
combination with Hadoop framework. HBase is a horizontally scalable NoSQL store. In H2RDF, three permutations
of s,p,o (spo, pos, and osp) are maintained. These permutations are maintained over the HBase tables in the form of
key-value pairs. For query processing, join planner algorithm in H2RDF makes use of statistical information collected
during data loading. The join planner algorithm takes into account the selectivity information, execution cost and
greedily selects the join for execution. The join executor module of H2RDF decides between the execution of joins in a
centralized and distributed manner.

Semantic Hash Partitioning-Enabled distributed RDF data management system (SHAPE) [82] uses RDF-3X to
store RDF triples across nodes of a cluster. Storage of triples is done by semantic hash partitioning based on the URI
hierarchy to achieve data locality. In the URI hierarchy, triples with the same Subject or Object are identified and are
placed in the same partition. K-hop expansion is applied, which replicates the triples on the border to achieve data
locality. RDF-3X offers different statistics for efficient query plans, but a huge TT also suffers from a lot of self joins.
Replication of triples on a border is cumbersome for datasets because of full semantic hash partitioning. URI based
hierarchy is problematic is some datasets where URI’s of both datasets are uniform. RDF-3X in SHAPE maintain
indexes covering all possible permutations of Subject, Predicate, and Object, which are stored as clustered B+ trees.
Replication and extensive indexing of the entire dataset at each node cause extra storage overhead. In SHAPE at the
time of grouping on the base of similar Subject or Object and assigned to the partition indexed by the hash value of
their subject or object value. SPARQL query execution in SHAPE is divided into three phases, i.e., query analysis,
query decomposition, and generating distributed query execution plans. Query analysis is performed to term query as
intra partition or inter partition. If a query is inter partition, then it is split into sub-queries by query decomposer to be
executed by client machines. Intermediate results from different client machines are loaded into HDFS and joined using
MapReduce Hadoop joins using subsequent Map and Reduce phases.

Workload-Aware Replication and Partitioning (WARP) [7] also uses RDF-3X to store triples in partitions among a
cluster of machines. Storage of triples is done after taking into consideration advanced replication methods and typical
query workload. The replication method replicates the vertices and edges occurring at a border of partition by using
the n-hop guarantee method. Query workload consists of a set of queries that are aggregated from different interfaces
that contain queries having the same structure. WARP also uses the underlying RDF-3X indexes. WARP uses a query
workload to process SPARQL queries efficiently. Multi-pass queries (MPQ) consisting of many triple patterns are
converted into one pass queries (OPQ). This conversion is based on the replication of triples at the border of partition.
For each of one pass queries query optimizer creates an execution plan made up of left deep joins tree. One pass query
is executed in parallel by all the slave machines, and results are combined using merge joins.

PigSPARQL [83] also uses VP for storing triples. PigSPARQL does not maintain a costly index structure. Because of
this characteristic, PigSPARQL is well suited for "Extract, Transform, Load" like scenarios. The main component of
PigSPARQL is a translation of SPARQL queries into Pig Latin [13] scripts on Apache Pig. The translation follows

26

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

a common principle, which is based on the algebraic representation of SPARQL query expressions. In the first step,
an abstract syntax tree is generated from the SPARQL query using the Jena ARQ framework. The abstract syntax
tree is translated into the SPARQL algebra tree. In PigSPARQL, during the stage of translation of SPARQL to Pig
Latin, in the first step, an abstract syntax tree is generated from the SPARQL query using the Jena ARQ framework.
The abstract syntax tree is translated into the SPARQL algebra tree. At this optimization for filters and rearrangement
of triples, patterns based on selectivity are also applied. Then this optimized algebra tree is traversed bottom up to
generate PigLatin expressions for every SPARQL algebra operator. After this, these PigLatin expressions are mapped
into MapReduce iterations. Optimizations in the translation process employ multi join to reduce the number of joins in
Pig Latin. Multi joins can also be used where many consecutive joins refer to the same variable.

Entity Aware Graph compREssion technique (EAGRE) [42] stores RDF data in HDFS in a (key, value) fashion to
preserve both the semantic and structural information. After uploading data to the HDFS and extract “entities” and
“entity classes" from the original RDF graph G and build the “compressed RDF entity graph, novel RDF representation
model in the (key, value) store so that the inner correlation of RDF data remains valid. Due to the huge volume of RDF
data, MapReduce is used to perform the process of extractions. After the extraction of entities and entity classes, the
RDF data layout comes into place. RDF data layout encompasses two things one is which RDF data should be deployed
to which of the slave machines, and the other is how this data should be organized. For the first purpose Metis [106]
is used to partition the entity graph among slave machines. For the purpose of the organization, which also serves as
an indexing structure, EAGRE adopts a space-filling curve technique, which is used to index high dimensional data.
The space-filling curve offers three types of advantages. First is that it provides an efficient solution to save the I/O
cost of unnecessary disk scans. Second is the order-preserving property of it. Thirdly it functions well in case of data
updates, which is not very efficient in modern distributed RDF engines. The distributed and centralized manner through
MapReduce and over a single node, respectively. SPARQL query processing in EAGRE is all about minimizing I/O
costs by efficient distributed scheduling approaches. All this is done to reduce the reading of data blocks which are to
be read for query evaluation.

H2RDF+ [43] uses HBase46 table to store RDF data. Two HBase tables are also used to store dictionaries to translate
string values to IDs and vice versa. HBase tables are also used to store indexes for data stored in HBase. The main
component of H2RDF+ is a distributed indexing scheme to load and index large RDF datasets. H2RDF+ also keeps
statistics for the aggregated index to use for estimation of pattern selectivity, join output, and join cost. H2RDF+
maintains a multi-way merge join and sort-merge join algorithms for sorted and unsorted data respectively to apply on
our distributed index or intermediate results. Both merge algorithms can be executed in a distributed I/O is done to
postpone the expensive MapReduce jobs to minimize the query evaluation time.

SPARQL query execution in H2RDF+ makes the decision of the execution order of the different joins to minimize
query execution time. More joins make the choice of join order makes all computation expensive. For the facilitation of
the execution of join in every step, greedy, cost-based, and online planner is used. This join cost model makes use of
stored statistics in HBase tables and also helps in making the decision of query execution in a distributed or centralized
manner.

Trinity.RDF [47] store RDF data in its native graph form. Trinity.RDF is based on Trinity key-value store. In
Trinity.RDF RDF entity is termed as a graph node, given a unique id as a key and adjacency list with incoming and
outgoing edges as a value. The adjacency list contains predicate and node id of the connected nodes with predicate as
a label on the edge. Through this storage layout, one can easily find any node id of connected nodes by giving any
node. In Trinity.RDF, RDF graph is partitioned randomly across by applying hashing on nodes. This will retrieve
the key-value pair of that node-id. This structure helps us to explore the graph from any node through accessing its
adjacency list. Trinity.RDF maintains local predicate and global predicate indexing. Local predicate index is applied
on an adjacency list, which contains predicate and node-id. All pairs of them are sorted first by predicate wise and
then node-id wise, apart from that aggregated index containing the node with given predicate and number of connected
nodes by the predicate.

The exploration-based approach employed in Trinity.RDF avoids the generation of unnecessary intermediate results.
In first step of SPARQL query processing, query Q is decomposed into subqueries qi to qn. Then matches for each q
are found, from these matches graph is explored to find matches for connected nodes. All of this process is performed
in parallel in each slave machine. In the last stage, the gathering of all single triple patterns at a centralized query, the
processor is merged to produce the final result.

D-SPARQ [84] is a distributed RDF engine, which is implemented on top of MongoDB, a NoSQL document database.
D-SPARQ takes RDF triples as in input and makes graph. The graph is then partitioned among nodes of a cluster.
After partitioning, the triples with the same subject as vertex are placed in the same partition as the vertex. In

46https://hbase.apache.org/

27

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

addition, a partial data replication is then applied where some of the triples are replicated across different partitions for
parallelization execution of queries. Grouping the triples based on the same subject enables D-SPARQ to efficiently
execute star patterns queries. D-SPARQ also uses indexes which involve subject-predicate (sp) and predicate-object
(po) permutations. For query execution, D-SPARQ employs a selectivity of each triple pattern to reorder individual
triple pattern in star pattern queries.

CliqueSquare [85] is a Hadoop-based RDF engine used to store and process massive RDF datasets. It stores RDF
data on the basis of semantic hash partitioning in order to minimize the number of MapReduce jobs and amount of
data transfer among cluster nodes. In CliqueSquare, the objective of partitioning is to perform called as co-located or
partitioned joins. In these join RDF data is placed in such a manner that the maximum number of joins are evaluated in
map phase. CliqueSquare stores RDF data in three replicas. In order to apply SPARQL queries on RDF dataset, the
CliqueSquare uses a clique-based algorithm, which produces query plans that minimize the number of MapReduce
stages. This algorithm divides a query variable graph into clique sub-graphs. This algorithm works in an iterative way
to identify cliques and to collapse them by evaluating the joins on the common variables of each clique. The process
ends when the variable graph consists of only one node.

TripleRush [86] is built upon the Signal/Collect [107], a parallel and distributed graph processing framework written
in Scala, similar to GraphX. In TripleRush, three types of vertices exit. The index vertex corresponds to a triple pattern,
triple vertex is RDF triple and query vertexes coordinate the query execution. In TripleRush, index graph is formed by
index and triple vertexes. A query execution is initialized when a query vertex is added to a TripleRush graph. Then a
query vertex emits a query particle which is routed by the Signal/Collect to index vertex for matching. In TripleRush
there is no partitioning performed.

chameleon-db [87] stores its data and queries in a graph form. It is based on Workload aware partitioning mechanism to
adjust storage layout to efficiently execute queries. chameleon-db indexes the partitions by workload aware partitioning
indexing technique. It is an incremental indexing technique which uses a decision tree to keep track of relevant segments
of the queries. It also uses vertex index which is a kind of hash table to contain URIs of vertices in subset of partitions.
For keeping the track of minimum and maximum literal values, chameleon db also contains range index. For SPARQL
query execution, the chameleon-db performs the subgraph matching. The chameleon-db performs the RDF graph
partitioning by partition-restricted evaluation (PRE). This technique is used to filter the dormant triples which don’t
contribute to the final result.

Partout [6] also uses RDF-3X for storing its triples by making use of Workload aware partitioning. It stores triple based
on the query workload. It makes partitions based on graph patterns occurring together in a query and assigns partition of
data to a cluster node running RDF-3X to avoid inter-partition communication. RDF-3X in Partout maintain indexes
covering all possible permutations of Subject, Predicate, and Object, which are stored as clustered B+ trees. Replication
and extensive indexing of the entire dataset at each node cause extra storage overhead.

In Partout SPARQL query is issued at a server which generates suitable query plans for distributed query execution.
The query execution process is passed through different steps. The query is issued at a server having no direct access
to original data. The server utilizes a global statistics file, which is generated a time of making partitions containing
information about partitions definition, size, and mapping to a client. These statistics are used to convert SPARQL
queries according to an RDF-3X execution plan, which resembles like leaves of a tree with access to data. In the
next step, the centralized execution plan of RDF-3X is transformed into a distributed plan, which is then refined by a
distributed cost model to resolve the triple’s locations in a cluster setup. The refined query plan is executed by client
machines in parallel, and the final result is joined by Binary Merge Union (BMU).

Sempala [9] a columnar storage format for Hadoop known as Parquet47 for storing RDF triples. Advantages of Parquet
are that in column format, all columns are stored consecutively on a disk. This feature enables better compression and
encoding, as all data is of the same type. The parquet does not store null values. Null values are determined by the
definition levels. The Parquet is designed for supporting a wide table. Because of this characteristic, Sempala uses a
single Unified Property Table consisting of all properties for the reduction of self joins. This results in a zero number
of joins for Star pattern queries. Sempala’s Unified Property Tables lack the support for null values and multi-valued
attributes. Null values are not explicitly stored in Parquet. Multi-valued attributed cause little bit storage overhead. To
tackle the issue of multi-valued, Parquet uses nested data structures. As Parquet is used with Apache Impala [108],
Impala at the time of Sempala doesn’t support nested data structures. For storing multi-valued attributes, duplication of
rows with different values is done. The storage of multi-valued attributes causes enormous storage overhead when there
exist many multi-valued attributes. The run-length encoding of Parquet mitigates this effect.

Sempala has no indexing use in its execution of queries. In Sempala main component is a translation of SPARQL
queries into SQL for running on Apache Impala. In Sempala, the main component of query execution is the translation

47http://parquet.apache.org

28

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

of SPARQL to SQL. This translation is done by the query compiler of Sempala. Like other translation approaches, Jena
ARQ is used to generate an equivalent algebraic tree of the SPARQL query. Then this tree is parsed in a bottom-up
fashion after applying some optimizations like filters. Parsing generates the Impala SQL expressions based on Unified
PTs to be executed.

Triple Asynchronous and Distributed (TriAD) [88] stores triples after the process of graph summarization. In the
process of graph summarization, the summary graph is formed, which contains only relevant triples with respect to a
query. In this process, the original large data graph is converted into smaller graphs that retain the major characteristics
of an original data graph. The complex query applied against the summary graph is faster than applying on the original
RDF data graph. TriAD being a master-slave architecture, maintains indexes at both master and slave machines. After
distributing the summary graph among partitions, it is also indexed at a master site. The summary graph is indexed
in the adjacency list format in large in-memory vectors, the permutations of Predicate, Subject, and Object (pso) and
Predicate, Object and Subject (pos) of the summary graph as hash partitioned shards in a lexicographic order to support
exploratory search. The slave machines create six in-memory vectors of triples received from the master machine.
These are divided into two parts, one is Subject-based, and the other is Object-based. Subject-based are (spo, sop, pso),
and object-based are (osp, ops, pos).

In TriAD for query execution, SPARQL query is parsed and translated into a query graph and passed through two
stages. In the first stage, pruning of data is done through an exploratory algorithm for join ahead pruning at the later
stages. This process is done with the help of summary graph statistics maintained at the master machine. The second
step involves the processing of queries for data distributed among slave machines. In this step query processor selects
the best join order by dynamic programming (dp) optimizer and distributed cost model. Each slave machine receives
a global query plan and pruning information from the master machine. Based on this information, slave machines
perform multiple join operators in parallel, which share their results by asynchronously sending and receiving to/from
other slaves. When query processing finishes, intermediate results from slaves are merged at the master node.

SparkRDF [89] is a Spark-based RDF engine which distributes the graph into multi-layer elastic subgraphs (MESG)
by extending vertical partitioning. MESGs are based on the classes and relations to cut down search space and memory
overhead. There are five kinds of indexes created in SparkRDF, i.e., C (Class subgraphs), R (Relation subgraphs), CR,
RC and CRC (combinations of class and relation subgraphs). These indexes are modeled as RDSGs (Resilient Discreted
SubGraphs). For query processing, SparkRDF employs Spark APIs and an iterative join operation to minimize the
intermediate results to perform subgraph matching. The final subgraph is obtained by the computation of matching
every triple pattern in a query.

SemStore [90] uses a centralized RDF engine Triplebit as its storage component. SemStore partitions data in a novel
way of Rooted Sub-Graph (RSG), which is a way to localize the shapes of all queries. It implements hash function
to assign RSG to slave nodes. In order to reduce redundancy and localize more query types, a k-mean partitioning
algorithm is used to assign RSGs to a cluster nodes. SemStore follows a master-slave architecture having one master
node and many slave nodes. After partition, the data partitioner maintains a global bitmap index over the vertices and
collect the global statistics. The slave nodes builds local indexes and statistics to be used during local join processing.
The SPARQL query is submitted to a master node which parses the query and decides the query as local or distributed.
In case of a distributed query, query is distributed among slave nodes as subqueries and executed on the bases of local
indexes and statistics.

DREAM [5] uses RDF-3X single node RDF engine as its storage component. Generally distributed RDF engines
partition RDF dataset into different subgroups, but DREAM replicates an entire dataset on every node with RDF-3X
installed. This replication causes storage overhead but avoids inter partition communication among cluster nodes. This
replication results in non-shuffling of intermediate data and only identifiers of triples are communicated. RDF-3X
installed on every node helps to achieve statistics for query evaluation. RDF-3X in DREAM maintain indexes covering
all possible permutations of Subject, Predicate, and Object, which are stored as clustered B+ trees. Replication and
extensive indexing of the entire dataset at each node cause extra storage overhead.

In the query execution phase of DREAM, SPARQL queries are partitioned instead of dataset. In the first step, the
SPARQL query is translated into a directed graph. Then the query planner partitions the directed graph into multiple
sub-graphs. Query planner locates the vertices with certain degrees as a join vertex, i.e., degree greater than 1 is join
vertex (JV). At this step, empty sets are created for join vertices are created and populated with sub-graphs of the
original directed graph using a Rule bases strategy. For every join vertex, only one set is selected and assigned to
different nodes of a cluster. Now all sets can be run in parallel and can exchange necessary information. For joining
intermediate results to get a final result, a hash-based join algorithm like in relational query optimizers is used.

DiploCloud [91] makes use of three things as its storage components on single node system dipLODocus [109]. A
molecule clusters, which extend property tables to form RDF subgraphs that groups related URIs in a nested hash tables.

29

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Literals are stored in Template lists as in a columnar database system. For storing URIs indexes, a molecule index is
used. DiploCloud is based on the master slave architecture. The master node contains the key index encoding of URIs
into IDs, a partition manager and distributed query executor. The worker node contains a type index, local molecule
cluster and a molecule index. In query execution, the master node distributes the subqueries among slave nodes, which
runs subqueries and return intermediate results to a master node. In the case of distributed joins, if the intermediate
results are small, then master node performs the joins. In other case distributed hash join is performed. DiploCloud
makes use of different partitioning strategies like Scope-k Molecules, Manual Partitioning and Adaptive Partitioning to
distribute data among cluster.

SPARQLGX [110] stores its RDF data in Hadoop Distributed File System (HDFS) [111] in VP fashion. SPARQLGX
achieves three advantages of fast conversion, compression, and slight indexation by saving data in VP. Fast conversion
is done because of linear and traverses dataset only for a single time. RDF data is compressed because of the removal
of Predicate from RDF triple. In SPARQLGX, a minor form of indexation is achieved because of saving different
groups of triples by their predicate. Translation of SPARQL query triple patterns into SPARK code contain some
steps in SPARQLGX. In a first step, concerned data from the disk is accessed against each triple pattern and then
aggregated. To translate the conjunction of triple patterns, they are joined on the base of their common variables as a
key: keyBy in Spark. In the case when there is no common variable cartesian product is used to join triple patterns. In
the final step after translation, a map is used to retain only desired variables and, at this stage, further optimizations,
i.e., removing duplication takes place. This step-up also translates keywords like UNION and OPTIONAL located in
a WHERE clause. Query execution of SPARQLGX has two options, one which involves statistics for optimization
as triple patterns are joined on the bases of their common variables. Minimum intermediate results produced in this
process will result in minimum communication among processing nodes to achieve faster execution. Statistics on these
intermediate results are used for optimization. Another option for query planning is direct when there is a single query
or update query. This scenario requires minimum query preprocessing and evaluation time. To achieve this original
triple source file, not predicate based storage is taken, and another translation process is the same. This option is called
“direct evaluator” or SDE.

S2RDF [10] is an RDF engine which indirectly runs on the top of Spark [112] by translating SPARQL queries into
SQL. For storing triples, S2RDF uses VP to reduce the size of input data. To avoid skewness in data and because of that
dangling tuples cause unnecessary Input/Output and comparison’s in joins execution in limited in-memory of Spark, an
extended version of VP is implemented. This extension is known as Extended Vertical Partitioning (ExtVP) related to
Join indexes [24]. ExtVP is based on the position of a variable that occurs in both triple patterns (called join variable)
determines the columns on which the corresponding VP tables must be joined. We call the co-occurrence of a variable
in two triple patterns a correlation i.e. subject-subject correlation (SS), subject-object correlation (SO), object-subject
(OS) and object-object correlation (OO). Semi joins reductions for correlations except (OO) is precomputed. These
precomputations are not mandatory. ExtVP has the advantage of choosing VP instead of ExtVP tables when the
difference between both in terms of size is not large enough. This is done through an optional selectivity threshold.

S2RDF slight indexation which reduces response time in some cases since predicates classify triples. In terms of index
updation, insertions are quickly done by appending new triples to ExtVP tables. Deletions are a little bit complicated
as it will need to remove Predicate from every ExtVP table, which may result in dangling tuples. In the current
implementation of S2RDF updation cannot be implemented because of the immutable nature of HDFS. S2RDF does
the translation of SPARQL into SQL by parsing the SPARQL query parsed into algebra tree and through Jena ARQ48,
and then optimizations like a filter, etc. are applied. Then this tree is traversed from bottom up to generate corresponding
single SparkSQL query.

For query execution in S2RDF, the order of triple patterns in equivalent query expression governs query performance.
S2RDF orders triple patterns on the basis of selectivity i.e. sel(tpi) less then sel(tpi+1). In query optimization, patterns
with more bound values are selected, and cross products are avoided as they have the worst selectivity.

AdPart [92] is a kind of specialized distributed RDF engine that follows typical Master-Slave architecture. In terms of
storage, AdPart slave machines store their local set of triples Di in an in-memory data structure to support predicate
based search operations.

1. if Predicate P is given, return will be
{(
s, o
)∣∣〈s,p,o

〉
∈ Di

}
.

2. if Subject S and Predicate P is given, return will be
{
o
∣∣〈s,p,o

〉
∈ Di

}
.

3. if Object O and Predicate P is given, return will be
{
s
∣∣〈s,p,o

〉
∈ Di

}
.

For all the above searches, the presence of predicate P is necessary.

48https://jena.apache.org/documentation/query/

30

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

For all the searches involving Predicate P AdPart, performs hashing of triples in each slave machine by the predicate P.
Resulting index or simply P-index can support searches by the input of P. Further two more hashing of Predicate-Subject
(ps-index) and Predicate-Object (po-index) is maintained at each slave machine for 2 and 3 search. Each slave machine
also contains an in-memory Replica Index for adaptivity, and it is grown incrementally after query workloads. It is
maintained to replicate data that is accessed by most of the queries, and that is indexed in a structure called Pattern
Index (PI) at the master machine. That data is replicated among all slave machines.

In AdPart, for SPARQL query execution, each slave machine also keeps a query processor that works in two modes.
One is distributed mode and other is parallel mode. Query planning involves the use of global statistics from the
statistics manager and the pattern index from the redistribution controller to decide if a query can be processed with
or without communication among nodes of a cluster. Each node independently executes the queries which are don’t
require communication. For the other case, the query planner uses dynamic programming based cost optimization to
produce an efficient query plan. Distributed semi-join algorithm (DSJ) is used for communication among nodes of a
cluster.

S2X [93] RDF data has an inherent graph-like structure. S2X makes use of this property to process SPARQL queries
on the top of the Spark component called GraphX [113]. S2X store triples among different worker machines after
applying hash-based encoding on Subject and then Objects through GraphX default partitioner. S2X converts the RDF
graph into a property graph data model of GraphX. The property graph is a directed multigraph having vertices and
edges representing nodes and links, respectively. GraphX maintains the structure and properties of the graph separately
to help in preserving the structure of the graph while properties are being changed. S2X has no indexing in its query
execution path.

For query processing, SPARQL in S2X combines matching of graph patterns with relational style operators to produce
solution mappings. Matching of graph patterns is started by distributing all triple patterns to all vertices. Then matching
of an edge is done with the predicate of the triple. If a match is found, then this information is passed to direct
neighbours by exchanging messages. Through this, partial results are merged. Relational operators of SPARQL are
implemented through Spark API, e.g., In S2X OPTIONAL keyword is applied through the left-outer join.

gStoreD [8] is based on the strategy of partitioning the data graph but not decomposing the query. Overall gStoreD is
based on the partial evaluation and assembly framework. gStoreD stores the triples by modifying the centralized RDF
engine gStore. gStore stores RDF triples in an adjacency list table and encodes them into a bitstring also known as vertex
signature. In gStoreD there is no indexing mechanism. Only in order to compare fairly with Trinity.RDF and TriAD
whole RDF graph together with the corresponding index into memory. Query processing in gStoreD encompasses
different steps. In the first step, the SPARQL query is issued against each site. Every site finds the local matches
against the applied query by the use of partial evaluation. In the last step, all the local matches are assembled for the
computation of cross matches. For assembly, two strategies may be used. One is a centralized assembly, and the other
is distributed assembly. In centralized assembly, a single site is used to assemble all the local matches. In distributed
assembly, local matches are joined in parallel at different sites. The work in [114] proposes some optimizations for
partial evaluation and assembly for pruning useless intermediate results.

Wukong [94] stores its RDF data in a directed graph form on a distributed key-value store. Wukong is based on two
kinds of indexes. One is normal vertex which refers to a subject and object and other is predicate index which maintain
all subjects and objects labeled with the particular predicate using its in and out edges respectively. Wukong makes use
of Remote Direct Memory Access (RDMA) for query distribution. Each query is divided into multiple subqueries on
the basis of selectivity and complexity of queries. Wukong employs a graph exploration mechanism with Full History
Pruning to remove intermediate results during query execution.

Semantic Analytics Stack (Sansa) [95], a data processing engine contains different layers for large scale analysis
of RDF data. Sparklify [49] is one of a layer in the SANSA framework and serves as a default query engine for
SPARQL-to-SQL translation of SPARQL queries into Apache Spark code through Spark SQL. Sparklify makes use of
extended Vertical partitioning (VP) of RDF data. Sparklify stores data in Hadoop Distributed File-System (HDFS) in
order to be efficiently read by Spark. SANSA stack achieves a minor form of indexation, because of saving different
groups of triples by their predicate.

Sparklify in SANSA stack translates the SPARQL queries to SQL to execute as a Spark code. Sparklify supports
R2RML and Sparqlification Mapping Language (SML). Sparklify translates a SPARQL query into a SQL query and a
set of SPARQL result variable definitions. The line of action of Sparklify contains similar steps like other translation
schemes. In the first step, algebra is created, and in the other step, optimizations are applied. The query mechanism of
SANSA Stack is dependent upon the efficient translation of SPARQL queries into SQL. The resultant queries are then
applied to the Spark SQL engine. The result of this operation is a data frame which is then mapped into a SPARQL
binding.

31

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

The storage scheme of the Stylus [96] is built upon a key-value store. Specifically, Microsoft Trinity Graph Engine
is used. In order to enable easy searching of subjects by the given object, Stylus maintains a reverse triple. As it is
obvious in many datasets that more than 90 percent of entities are represented by only a small number of predicates.
This fact causes to form a template of similar entities. Based on this reason, Stylus uses a data structure called xUDT to
represent such “templates” – combinations of predicates. In Stylus storage by triples and reverse triples in the xUDT
data structure makes retrieval faster. An index in Stylus maps a given predicate to xUDT containing a matched predicate.
Through this Stylus enumerate the subjects and objects related to a specific predicate. The storage scheme of Stylus
also supports data updates. Updates in Stylus is performed without disturbing the original schema.

In Stylus, for the purpose of matching the SPARQL queries are divided into two types. The first type is used for
matching against preprocessed data which also includes indexes. And the other type is matched against intermediate
results. For preprocessed data, Stylus uses an optimized query planner, and for intermediate results, set operations are
used. Queries are represented as a Twig, which is the height of two. Stylus uses xTwig, which is an extended version of
the Twig to postpone cartesian products.

Koral [97] stores the RDF data in a graph form using hash partitioning. Due to the huge size of the RDF graph, this
graph needs to be minimized. In order to minimize the graph, the dictionary is maintained, which contain the mapping
of resources to ids. Koral follows the master-slave architecture in which slaves, after receiving the chunk of the graph,
creates spo, osp, and pos indexes. Koral is a distributed system which offers the facility of alternate approaches for each
component in distributed query processing. So there is no specific language used in the respective paper, as different
components have different query language interface. For query execution, Koral offers different variations in two things.
These two things are the additional information which is added the different chunks of the graph. And the other thing is
the difference of creation of query execution tree made for different queries.

PRoST [98] stores data twice using VP and PT. Two different storage strategies are employed to take advantage of both
according to different query types. VP in PRoST has some advantages and disadvantages, like in SPARQLGX. A PT
consists of a unique table where each row contains a distinct subject and all the object values for that subject, stored
in columns identified by the property to which they belong. PT has an advantage of avoidance of several joins when
triple patterns in a query share the same subject, i.e., Star queries. PT suffers from the problems of the number of nulls
and multi-valued attributes. A large number of nulls occur because not every subject-predicate pair have an object. To
tackle the problem of nulls, Parquet uses a run-length encoding. Overhead by multi-valued is negligible compared with
the execution of one join in a query. PRoST offers no indexing in its execution path.

In PRoST, SPARQL queries are translated into Join Tree format. In Join Tree format, every node represents the VP
table or PT’s subquery’s patterns. Join tree takes conjunction of triple patterns are considered. Triple patterns having
the same subject are grouped together and translated into a single node with a special label, denoting that we should use
the PT. All the other groups with a single triple pattern are translated to nodes that will use the VP tables. The presence
of a joining edge between every pair of nodes sharing a variable is the possibility of more than one join tree.

WORQ [99] performs the partition of RDF data in online fashion. WORK uses a query workload driven approach
during the partitioning of data stored in a Vertical partitioning manner. In each of the SPARQL query, WORQ considers
each triple pattern as a subquery. After this, the partition is performed by the join attribute of each subquery. Indexing
in WORQ is challenging in case of queries with unbound properties. In this case, any other storage scheme is not
preferred. In order to process queries with unbounded properties, WORQ uses Bloom Filters as indexes over the
Vertically partitioned tables. WORQ performs two steps, i.e. identification and verification, to perform the indexing.

SPARQL query processing in WORQ is dependent on many steps. In the first step, based on the query workload,
partitions of data are performed. Then online reductions of RDF joins are performed by bloom filters. Caching of RDF
joins reductions is performed to boost the query performance. At this point, the efficient performance of identification
and verification steps is important. At first, the unbound and bound attributes are identified. As the bloom filter also
incurs false positives, a verification step is also performed by applying a filter related to abound attributes with the value
indicated in the query triple pattern.

Anzograph49 stores data in a graph form and supports massive parallel processing. Anzograph can be installed on
single or multiple nodes. Users of Anzograph are not required to create and maintain partitions, it’s automatically
handled. There are no indexes created or maintained in Anzograph. Anzograph handles all itself for the users50.
Anzograph makes use of SPARQL 1.1 queries to send to receive over HTTP. Developers can also make use of standard
graph APIs to use Anzograph in their products. Query processing in Anzograph follows a master-slave architecture.
The query is issued at a master node, which passes the query through parsing and planning. Planner decides the type of
join or an aggregation needed for a query. Then the code generator unites the different steps into segments. Then all

49https://docs.cambridgesemantics.com/anzograph/userdoc/features.htm
50https://www.cambridgesemantics.com/anzograph-db-benchmarking-guide/

32

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

the segments are packaged for query into a stream. The master sends this stream to all the nodes, and after processing
parallely, all the nodes send their result back the master.

Neptune51 works as graph database service to work with highly connected datasets. Neptune stores RDF graph in the
form of a quad containing four things Amazon S3. In addition to subject, predicate and object, graph identifier is also
added. Neptune maintains three index permuations, SPOG, POGS and GPSO. In addition to three index permutations,
each index permutations has 16 access patterns. Neptune stores all of its indexes in a Hash tables. Datasets in Neptune
can be queried through SPARQL, Apache TinkerPop and Gremlin 52. Gremlin queries can be processed into a series of
TinkerPop steps, which produce the accurate results, they are not much efficient when applied on large graphs. Neptune
converts these steps into its custom query graph steps. In case of failed conversion, process is stopped. Neptune makes
use of cardinality estimations and static analysis to rewrite queries, which will be executed through pipeline of physical
operators. In Neptune there is no partitioning of graphs, instead it maintains 15 replicas at its master node.

The work in Adaptive Distributed RDF Graph Fragmentation and Allocation based on Query Workload [100]
stores RDF data in three types of fragmentation. Vertical, Horizontal, and Mixed Fragmentation are used in the study.
In comparison with other systems this study is listed as HF, VP and MF. Storage is performed on the basis of FAP
(frequently accessed patterns) from the query workload. In the study to improve the query throughout VF is used,
to maximize the parallelism of query evaluation and reduction of the query response time for a single query, HF is
employed. The MF combines both the VF and HF. The study (HF, VF, MF) uses no indexing mechanism. SPARQL
query processing in a study (HF,VF, MF) is based on the efficient fragmentation across different partitions. Due to
implicit replications in three types of fragmentation strategies used, there will be different query decomposition for each
fragmentation strategy. To avoid this problem, a cost model-driven approach is used in this study. Query optimization
technique of pushing cross-fragments joins to avoid useless intermediate results.

DiStRDF [101] stores RDF data in an encoded form. DiStRDF manages the storage of Spatio-temporal RDF data
through its storage layer. It employs a special purpose encoding scheme [115] for the encoding of RDF data stored in
CSV or Parquet. It also maintains a dictionary for mapping between ID’s and data. DiStRDF can handle data stored
in both the Triple table and property table. Due to the huge size of RDF data, it exploits range partition to distribute
data. For indexing, DiStRDF makes use of predicate pushdown mechanism offered by Spark with the combination
of Parquet. This mechanism helps to select the required data by exploiting filters in the query. For SPARQL query
execution, DiStRDF Processing Layer comes into action. For the implementation of processing layer of DiStRDF,
Spark, a distributed in-memory processing engine is used. Query processing involves different steps, i.e., the encoding
of data is followed by different logical plans using physical plans. Query processing in DiStRDF is performed by
storing data in TT and PT.

Leon [102] stores RDF data in heuristics-based partitioning, which is based on the characteristics set. Characteristics
set is a mean to capture the structure of a dataset. Lean save the triples evenly on different partitions after encoding.
Leon maintains a bi-directional dictionary between id’s in characteristics set and subjects. This dictionary is used as
an index. Leon follows a master-slave architecture for query processing. Leon effectively deals with the multi-query
problem. By exploiting the characteristics set based partitioning, Leon minimizes the communication cost during query
evaluation.

DISE [103] stores RDF data as tensors. RDF triples can be represented as a 3D tensor in which the adjacency matrix of
subject, predicate and object is known as slice. According to [116] Tensors can be shown as a multidimensional array
of ordered columns. DISE maintains indexes of RDD of subject, predicate and object at their respective position. DICE
performs the translation of SPARQL queries into Spark tensor operation through Spark-Scala compliant code. DISE
integrates the tensor representation of RDF into the representation layer and tensor querying into the query layer of
SANSA stack. To execute a query on RDF as tensor data, DISE makes use of SANSA RDF reader. After input, the
file is converted to RDD of triples. In the next step, RDDs of triples creates tensor. Next step creates the Apache Jena
query objects from the input query string. At this step, the Degree of Freedom of each query pattern is calculated by
recursively scanning. For reducing the search space, DICE starts with the selection of query pattern with lowest DOF.
DOF of SPARQL query is “a measure of a triple pattern’s explicit constraints” [117]. Based on the results of previous
steps of translating SPARQL query into tensor operation, the builder calculates the results of the query.

10 SPARQL Benchmarks for RDF Engines

This discussion is adapted from [36] which analyzed different SPARQL benchmarks used to evaluate RDF engines.
The discussion is divided into two sections: first, we explain the SPARQL benchmarks key design features, and then we

51https://aws.amazon.com/neptune/
52https://dbdb.io/db/neptune

33

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

present an analysis of the existing SPARQL benchmarks. The overall goal facilitates the development of benchmarks
for high performance in the future, and help RDF engines developers/users to select the best SPARQL benchmark for
the given scenario and RDF engine.

10.1 Benchmarks Design Features

SPARQL query benchmarks are comprised of three elements i.e., RDF datasets, SPARQL queries, and performance
measures.

We first discussed the key features related to these elements that are vital to take in account in the development of RDF
engine benchmarks. Then a high level analysis of the datasets and queries used in latest RDF engines benchmarks is
presented.

Datasets. The datasets used in RDF engine benchmarks are of two types namely synthetic and real-world RDF
datasets [118]. Real-world RDF datasets are very useful as they contain real world information [119]. On the other hand,
synthetic datasets are helpful to test the scalability under varying size of datasets. Synthetic datasets of varying sizes
are generated by different generators, which are tuned to reflect the features of real datasets [120]. In order to select
a datasets for benchmarking RDF engines, two measures are proposed by [36]. These two measures are (1) Dataset
Structuredness, (2) Relationship Speciality. The structuredness or coherence measures how well a dataset’s classes (i.e.,
rdf:type) are covered by the different instances of the dataset. The structuredness value for any given dataset lies
between [0, 1], where 0 stands for lowest possible structure and 1 points to a highest possible structured dataset. In RDF
datasets, some resources are more distinguishable from others, and more attributes are more commonly associated with
these resources. The number of occurrences of a predicate associated with each resource in the dataset provides useful
information on the graph structure of an RDF dataset and makes some resources distinguishable from others [121]. In
real datasets, this kind of relationship speciality is commonplace. The relationship speciality of RDF datasets can be
any positive natural number: the higher the number, the higher the relationship speciality. The dataset structuredness
and relationship speciality directly affect the result size, the number of intermediate results, and the selectivities of the
triple patterns of the given SPARQL query [36]. The formal definitions of these datasets measures can be found in
[36]. It is essential to mention that besides the dataset structuredness and relationship speciality, observations from the
literature [24, 120] suggest that other RDF datasets feature such as varying number of triples, number of resources,
number of properties, number of objects, number of classes, diversity in literal values, average properties and instances
per class, average indegrees and outdegrees as well as their distribution across resources should also be considered
which selecting datasets for SPARQL benchmark.

SPARQL Queries. Saleem et al. [36] suggests that a SPARQL querying benchmark should vary the queries with
respect to various features such as query characteristics: number of projection variables, number of triple patterns,
result set sizes, query execution time, number of BGPs, number of join vertices, mean join vertex degree, mean
triple pattern selectivities, join vertex types, and highly used SPARQL clauses (e.g., LIMIT, OPTIONAL, ORDER BY,
DISTINCT, UNION, FILTER, REGEX). All of these features have a direct impact on the runtime performance of RDF
engines. Saleem et al. [36] combine all these vital query features into a single composite metric called the Diversity
Score of the benchmark queries. The higher the diversity score, the more diverse the queries of the benchmark. The
Diversity score is defined as follows.

Definition 9 (Queries Diversity Score) Let µi be the mean and σi the standard deviation of a given distribution w.r.t.
the ith feature of the said distribution. The overall diversity score DS of the queries is the average coefficient of
variation of all the query features k analyzed in the queries of benchmark B:

DS =
1

k

k∑
i=1

σi(B)

µi(B)

Performance Mesures. Saleem et al. [36] divided the performance metrics for RDF engines comparison into four
broader categories:

• Query Processing Related: The measures in this category are about query processing of the RDF engines, for
which query execution time is the most important. However, since a benchmark usually contains many queries,
reporting the execution time for individual queries might not be possible. For this problem, the combined
results are presented in terms of measures like Query Mix per Hour (QMpH) and Queries per Second (QpS)
[36]. In addition, the query processing overhead in terms of the CPU and memory usage is important to
measure during the query executions [122]. This also includes the number of intermediate results, the number
of disk/memory swaps, etc.

34

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

• Data Storage Related: In this category, the data loading time, the storage space acquired, and the index size
are important performance metrics [36].

• Result Set Related: A fair comparison between two RDF engine is only possible if they produce exactly the
same results. Therefore, the result set correctness and completeness are important metrics to be considered in
the RDF engines evaluations [36].

• Parallelism with/without Updates: There are benchmarks execution frameworks such IGUANA [123] that
can be used to measure the parallel query processing capabilities of the triplestores by simulating workloads
from multiple querying agents with and without dataset updates.

We now present a broader analysis of the state-of-the-art existing RDF engines benchmarks across all of the above-
mentioned dataset and query features as well as the performance metrics.

10.2 RDF Engines Benchmarks Analysis

Saleem et al. [36] considered the benchmarks according to the following inclusion criteria: (1) the benchmark target the
query runtime performance evaluation of triplestores, (2) both RDF data and SPARQL queries of the benchmark are
publicly available or can be generated (3) the queries must not require reasoning to retrieve the complete results. RDF
engines benchmarks are divided into two main categories of synthetic and real-data benchmarks.

Synthetic Benchmarks. Synthetic benchmarks make use of the data (and/or query) generators to generate datasets
and/or queries for benchmarking. Synthetic benchmarks are useful in testing the scalability of RDF engines with varying
dataset sizes and querying workloads. However, such benchmarks can fail to show the features of real datasets or
queries. The Train Benchmark (TrainBench) [124] is about railway networks in increasing sizes, which serializes them
in different formats, including RDF. The Waterloo SPARQL Diversity Test Suite (WatDiv) [125] provides a synthetic
data generator that produces RDF data with a tunable structuredness value and a query generator. The queries are
generated from different query templates. SP2Bench [122] mirrors vital characteristics (such as power-law distributions
or Gaussian curves) of the data in the DBLP bibliographic database. The Berlin SPARQL Benchmark (BSBM) [126]
uses query templates to generate any number of SPARQL queries for benchmarking, covering multiple use cases
such as explore, update, and business intelligence. Bowlogna [127] models a real-world setting derived from the
Bologna process and offered mostly analytic queries reflecting data-intensive user needs. The LDBC Social Network
Benchmark (SNB) defines two workloads. First, the Interactive workload (SNB-INT) measures the evaluation of graph
patterns in a localized scope (e.g., in the neighbourhood of a person), with the graph being continuously updated [128].
Second, the Business Intelligence workload (SNB-BI) focuses on queries that mix complex graph pattern matching with
aggregations, touching on a significant portion of the graph [129], without any updates. Note that these two workloads
are regarded as two separate RDF engine benchmarks based on the same dataset.

Real-Data Benchmarks. Real-data benchmarks make use of real-world datasets and queries from real user query
logs for benchmarking. Real-data benchmarks are useful in testing RDF engines more closely in real-world settings.
However, such benchmarks may fail to test the scalability of RDF engines with varying dataset sizes and query
workloads. FEASIBLE [118] is a cluster-based SPARQL benchmark generator, which is able to synthesize customizable
benchmarks from the query logs of SPARQL endpoints. The DBpedia SPARQL Benchmark (DBPSB) [119] is another
cluster-based approach that generates benchmark queries from DBpedia query logs, but employs different clustering
techniques than FEASIBLE. The FishMark [130] dataset is obtained from FishBase53 and provided in both RDF and
SQL versions. The SPARQL queries were obtained from logs of the web-based FishBase application. BioBench [131]
evaluates the performance of RDF RDF engines with biological datasets and queries from five different real-world RDF
datasets54, i.e., Cell, Allie, PDBJ, DDBJ, and UniProt. Due to the size of the datasets, we were only able to analyze the
combined data and queries of the first three.

Basic Statistics. Table 11 shows high-level statistics of the selected datasets and queries of the benchmarks. For the
synthetic benchmarks that include data generators, the datasets used in the evaluation of the original paper were chosen.
For template-based query generators such as WatDiv, DBPSB, SNB, we one query per available template was selected.
For FEASIBLE (a benchmark generation framework from query logs), 50 queries from DBpedia log was selected, to be
comparable with a well-known WatDiv benchmark that includes 20 basic testing query templates, and 30 extensions for
testing.55

53FishBase: http://fishbase.org/search.php
54BioBench: http://kiban.dbcls.jp/togordf/wiki/survey#data
55WatDiv query templates: http://dsg.uwaterloo.ca/watdiv/

35

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

http://fishbase.org/search.php
http://kiban.dbcls.jp/togordf/wiki/survey#data
http://dsg.uwaterloo.ca/watdiv/
https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

Benchmark Subjects Predicates Objects Triples Queries

Sy
nt

he
tic

Bowlogna [127] 2,151k 39 260k 12M 16
TrainB. [124] 3,355k 16 3,357k 41M 11
BSBM [126] 9,039k 40 14,966k 100M 20
SP2Bench [122] 7,002k 5,718 19,347k 49M 14
WatDiv [125] 5,212k 86 9,753k 108M 50
SNB [128, 129] 7,193k 40 17,544k 46M 21

R
ea

l

FishMark [130] 395k 878 1,148k 10M 22
BioBench [131] 278,007k 299 232,041k 1,451M 39
FEASIBLE [118] 18,425k 39,672 65,184k 232M 50
DBPSB [119] 18,425k 39,672 65,184k 232M 25

Table 11: High-level statistics of the data and queries in the benchmarks. Both SNB-BI and SNB-INT use the same
dataset and are therefore named as SNB for simplicity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Da
ta

se
t s

tr
uc

tu
re

dn
es

s

Synthetic benchmark

Real data benchmark

(a) Structuredness

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

Da
ta

se
t r

el
at

io
ns

hi
p s

pe
cia

lty

(lo
g s

ca
le

)

Synthetic benchmark

Real data benchmark

(b) Relationship Specialty

Figure 13: Analysis of the datasets of the RDF engines benchmarks.

Structuredness and Relationship Speciality. Figure 13a contains the structuredness values of the different bench-
marks. Duan et al. [120] first proposed this measure and propose that the real-world datasets are low valued than
synthetic benchmarks in structuredness. The results show that most of the synthetic benchmarks contain the structured-
ness feature. Even there are data generators, e.g WatDiv generator, allow the users to generate a benchmark dataset of
according to their need of structuredness.

Figure 13b shows the relationship speciality values of different benchmarks. According to [121], it is evident that
the values of relationship speciality shown by real world datasets are higher than that of synthetic ones as shown in
Figure 13b. This is also presented by average figures of (11098 vs 744). The relationship speciality values of real-world
datasets are much higher than that synthetic ones like Bowlogna (8.7), BSBM (2.2), and WatDiv (22.0).

Diversity Score and Coverage. Figure 14 shows the overall diversity counts of the benchmarks. In real-data
benchmarks, FEASIBLE generated benchmarks is the most diverse. While in synthetic benchmarks, WatDiv is the
most diverse benchmark.

Table 12 shows each benchmark with its coverage percentage of SPARQL clauses and join vertexes [37]. The table
also highlights the benchmarks with missing SPARQL constructs and types of overused join vertexes. A lot of vital
SPARQL constructs are missing from TrainBench and WatDiv queries. Every query of FishMark contains at least one
Star join node.

Performance Measures Table 13 presents different benchmarks with performance measures to compare triplestores.

Which RDF engine is the fastest?. One of the critical questions is to know which RDF engine is the fastest in terms of
query runtimes? According to our analysis, no other study compares both centralized and distributed RDF engines for
their query runtime performances. The performance evaluations presented in the two most diverse SPARQL benchmarks,
i.e. FEASIBLE[118] and WatDiv[16], showed that Virtuoso version 7.X is the fastest RDF engine. However, recently
there are more RDF engines developed, and even existing engines are more improved in their new versions. As such, it
would be interesting to perform a combined performance evaluation of both centralized and RDF engines.

36

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

0

0.5

1

1.5

2

2.5

Q
ue

ri
es

 d
iv

er
si
ty

 s
co

re

Synthetic benchmark

Real data benchmark

Figure 14: Benchmarks with diversity counts

SPARQL Clauses Types of Join Vertexes

Benchmark DIST FILT REG OPT UN LIM ORD Star Path Sink Hyb. N.J.

Sy
nt

he
tic

Bowlogna 6.2 37.5 6.2 0.0 0.0 6.2 6.2 93.7 37.5 62.5 25.0 6.2
TrainB. 0.0 45.4 0.0 0.0 0.0 0.0 0.0 81.8 27.2 72.7 45.4 18.1
BSBM 30.0 65.0 0.0 65.0 10.0 45.0 45.0 95.0 60.0 75.0 60.0 5.0
SP2Bench 42.8 57.1 0.0 21.4 14.2 7.1 14.2 78.5 35.7 50.0 28.5 14.2
Watdiv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 64.0 26.0 20.0 0.0
SNB-BI 0.0 61.9 4.7 52.3 14.2 80.9 100.0 90.4 38.1 80.9 52.3 0.0
SNB-INT 0.0 47.3 0.0 31.5 15.7 63.15 78.9 94.7 42.1 94.7 84.2 0.0

R
ea

l

FEASIBLE 56.0 58.0 22.0 28.0 40.0 42.0 32.0 58.0 18.0 36.0 16.0 30.0
Fishmark 0.0 0.0 0.0 9.0 0.0 0.0 0.0 100.0 81.8 9.0 72.7 0.0
DBPSB 100.0 48.0 8.0 32.0 36.0 0.0 0.0 68.0 20.0 32.0 20.0 24.0
BioBench 28.2 25.6 15.3 7.6 7.6 20.5 10.2 71.7 53.8 43.5 38.4 15.3

Table 12: Percentages of different SPARQL clauses and types of join vertexes in different benchmark. SPARQL
clauses: DIST[INCT], FILT[ER], REG[EX], OPT[IONAL], UN[ION], LIM[IT], ORD[ER BY]. Join vertex types: Star,
Path, Sink, Hyb[rid], N[o] J[oin]. Zeros and Hundreds represent the missing and overused features respectively.

Processing Storage Result Set Additional

Benchmark QpS QMpH PO LT SS IS RCm RCr MC DU

Sy
nt

he
tic

Bowlogna 7 7 7 3 7 3 7 7 7 7
TrainBench 7 7 7 3 7 7 3 3 7 3
BSBM 3 3 7 3 7 7 3 3 3 3
SP2Bench 7 7 3 3 3 7 3 3 7 7
WatDiv 7 7 7 7 7 7 7 7 7 7
SNB-BI 3 3 7 7 7 7 3 3 7 7
SNB-INT 3 3 7 7 7 7 3 3 7 3

R
ea

l

FEASIBLE 3 3 7 7 7 7 3 3 7 7
Fishmark 3 7 7 7 7 7 7 7 7 7
DBPSB 3 3 7 7 7 7 7 7 7 7
BioBench 7 7 7 3 3 7 3 7 3 7

Table 13: Measures related to a query processing, data storage, result set, simultaneous multiple client requests, and
dataset updates in different benchmarks. QpS: Queries per Second, QMpH: Queries Mix per Hour, PO: Processing
Overhead, LT: Load Time, SS: Storage Space, IS: Index Sizes, RCm: Result Set Completeness, RCr: Result Set
Correctness, MC: Multiple Clients, DU: Dataset Updates.

37

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

11 Research problems

This section illustrates the different research problems found during the study. Both centralized and distributed RDF
engines lack the support for the update operation. Although in some setups it is implemented in a batch-wise manner,
overall, it is immature. Indexing in RDF engines also has a lot of research potential. A number of indexes and the storage
overhead caused by them require dedicated research efforts. To execute complex queries containing multiple triple
patterns results in large intermediate results. These intermediate results cause network delay and I/O communications.
This problem requires efficient storage and partitioning mechanism to distribute datasets in a way to avoid inter
partition communication. It is also found during the study that upcoming distributed RDF engines use different prebuilt
repositories with SQL interface to store RDF data. These systems perform translation of SPARQL or other domain
query language into SQL for applying queries on the repositories. This translation is the main component in their
operation, but SPARQL query optimization was not their core aspect. The translation process does not take into account
the different features related to the distribution of datasets among a cluster of machines. The translation process also
does not take into account the other Semantic Web concepts of Ontologies and Inference etc.

12 Conclusion

This paper reviews centralized and distributed RDF engines. We review both categories in terms of their storage,
indexing, language, and query execution. Due to an ever-increasing size of RDF based data, centralized RDF engines
are becoming ineffective for interactive query processing. For the problems of effective query processing, distributed
RDF engines are in use. Rather than relying on the specialized storage mechanism, some distributed RDF engines rely
on existing single-node systems to take advantage of the underlying infrastructure. SQL is a choice for query language
in most of the repositories. Rather than making capable SQL for RDF data, RDF engines translate SPARQL into other
languages like SQL, PigLatin etc. This translation is an integral step in distributed setups.

References

[1] Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr. Rdf data storage and query
processing schemes: A survey. ACM Comput. Surv., 51(4):84:1–84:36, September 2018.

[2] Zhengyu Pan, Tao Zhu, Hong Liu, and Huansheng Ning. A survey of RDF management technologies and
benchmark datasets. Journal of Ambient Intelligence and Humanized Computing, 9(5):1693–1704, oct 2018.

[3] Jiewen Huang, Daniel J. Abadi, and Kun Ren. Scalable SPARQL querying of large RDF graphs. Proceedings of
the VLDB Endowment, 4(11):1123–1134, 2011.

[4] Ibrahim Abdelaziz, Razen Harbi, Zuhair Khayyat, and Panos Kalnis. A survey and experimental comparison of
distributed SPARQL engines for very large RDF data. Proceedings of the VLDB Endowment, 10(13):2049–2060,
2017.

[5] Mohammad Hammoud, Dania Abed Rabbou, Reza Nouri, Seyed Mehdi Reza Beheshti, and Sherif Sakr. DREAM:
Distributed RDF engine with adaptive query planner and minimal communication. Proceedings of the VLDB
Endowment, 8(6):654–665, feb 2015.

[6] Luis Galárraga, Katja Hose, and Ralf Schenkel. Partout: A distributed engine for efficient RDF processing. In
WWW 2014 Companion - Proceedings of the 23rd International Conference on World Wide Web, WWW ’14
Companion, pages 267–268, New York, NY, USA, 2014. ACM.

[7] Katja Hose and Ralf Schenkel. WARP: Workload-aware replication and partitioning for RDF. In Proceedings -
International Conference on Data Engineering, pages 1–6, apr 2013.

[8] Peng Peng, Lei Zou, M. Tamer Özsu, Lei Chen, and Dongyan Zhao. Processing sparql queries over distributed
rdf graphs. The VLDB Journal, 25(2):243–268, April 2016.

[9] Alexander Schätzle, Martin Przyjaciel-Zablocki, Antony Neu, and Georg Lausen. Sempala: Interactive SPARQL
query processing on Hadoop. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8796, pages 164–179, 2014.

[10] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg Lausen. S2RDF: RDF querying
with SPARQL on Spark. Proceedings of the VLDB Endowment, 9(10):804–815, 2016.

[11] Adnan Akhter, Axel-Cyrille Ngomo Ngonga, and Muhammad Saleem. An empirical evaluation of rdf graph
partitioning techniques. In European Knowledge Acquisition Workshop, pages 3–18. Springer, 2018.

38

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

[12] James Groff and Paul Weinberg. SQL The Complete Reference, 3rd Edition. McGraw-Hill, Inc., USA, 3 edition,
2009.

[13] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins. Pig Latin: A
not-so-foreign language for data processing. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 1099–1110, New York, NY, USA, 2008. ACM.

[14] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. Feasible: A feature-based sparql
benchmark generation framework. In International Semantic Web Conference, pages 52–69. Springer, 2015.

[15] Felix Conrads, Jens Lehmann, Muhammad Saleem, Mohamed Morsey, and Axel-Cyrille Ngonga Ngomo. I
guana: a generic framework for benchmarking the read-write performance of triple stores. In International
Semantic Web Conference, pages 48–65. Springer, 2017.

[16] Güneş Aluç, Olaf Hartig, M Tamer Özsu, and Khuzaima Daudjee. Diversified stress testing of rdf data
management systems. In International Semantic Web Conference, pages 197–212. Springer, 2014.

[17] David Célestin Faye, Olivier Curé, and Guillaume Blin. A survey of RDF storage approaches. In Revue Africaine
de la Recherche en Informatique et Math{é}matiques Appliqu{é}es, volume 15, page pp. 25, 2012.

[18] Zongmin Ma, Miriam A.M. Capretz, and Li Yan. Storing massive Resource Description Framework (RDF) data:
A survey. Knowledge Engineering Review, 31(4):391–413, 2016.

[19] Martin Svoboda and Irena Mlỳnková. Linked data indexing methods: A survey. In OTM Confederated
International Conferences" On the Move to Meaningful Internet Systems", pages 474–483. Springer, 2011.

[20] Sherif Sakr and Ghazi Al-Naymat. Relational processing of rdf queries: a survey. ACM SIGMOD Record,
38(4):23–28, 2010.

[21] Zoi Kaoudi and Ioana Manolescu. Rdf in the clouds: a survey. The VLDB Journal, 24(1):67–91, 2015.
[22] M. Tamer Özsu. A survey of RDF data management systems. Frontiers of Computer Science, 10(3):418–432,

2016.
[23] Muhammad Saleem, Alexander Potocki, Tommaso Soru, Olaf Hartig, and Axel-Cyrille Ngonga Ngomo. CostFed:

Cost-based query optimization for SPARQL endpoint federation. In SEMANTICS, volume 137 of Procedia
Computer Science, pages 163–174. Elsevier, 2018.

[24] Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. LargeRDFBench: A billion triples
benchmark for SPARQL endpoint federation. J. Web Sem., 48:85–125, 2018.

[25] Olaf Hartig and M. Tamer Özsu. Linked Data query processing. In Proceedings - International Conference on
Data Engineering, pages 1286–1289, mar 2014.

[26] Sherif Sakr, Marcin Wylot, Raghava Mutharaju, Danh Le Phuoc, and Irini Fundulaki. Linked Data: Storing,
Querying, and Reasoning. Springer, 2018.

[27] Nahla Mohammed Elzein, Mazlina Abdul Majid, Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Fadele Ayotunde
Alaba, and Muhammad Imran. Managing big rdf data in clouds: Challenges, opportunities, and solutions.
Sustainable Cities and Society, 39:375 – 386, 2018.

[28] Daniel Janke and Steffen Staab. Storing and querying semantic data in the cloud. In Reasoning Web International
Summer School, pages 173–222. Springer, 2018.

[29] Daniel Dominik Janke. Study on Data Placement Strategies in Distributed RDF Stores, volume 46. IOS Press,
2020.

[30] Muhammad Qasim Yasin, Xiaowang Zhang, Rafiul Haq, Zhiyong Feng, and Sofonias Yitagesu. A comprehensive
study for essentiality of graph based distributed sparql query processing. In International Conference on Database
Systems for Advanced Applications, pages 156–170. Springer, 2018.

[31] Khadija Alaoui. A categorization of rdf triplestores. In Proceedings of the 4th International Conference on
Smart City Applications, SCA ’19, New York, NY, USA, 2019. Association for Computing Machinery.

[32] Luiz Henrique Zambom Santana and Ronaldo dos Santos Mello. An analysis of mapping strategies for storing
rdf data into nosql databases. In Proceedings of the 35th Annual ACM Symposium on Applied Computing, SAC
’20, page 386–392, New York, NY, USA, 2020. Association for Computing Machinery.

[33] Kevin Wilkinson, Craig Sayers, Harumi Kuno, and Dave Reynolds. Efficient RDF storage and retrieval in jena2.
In Proceedings of the 1st International Conference on Semantic Web and Databases, SWDB 2003, SWDB’03,
pages 120–139, Aachen, Germany, Germany, 2003. CEUR-WS.org.

[34] Orri Erling and Ivan Mikhailov. Virtuoso: RDF Support in a Native RDBMS, pages 501–519. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

39

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

[35] Steve Harris, Nick Lamb, and Nigel Shadbolt. 4store: The design and implementation of a clustered RDF store.
In CEUR Workshop Proceedings, volume 517, pages 94–109, 2009.

[36] Muhammad Saleem, Gábor Szárnyas, Felix Conrads, Syed Ahmad Chan Bukhari, Qaiser Mehmood, and Axel-
Cyrille Ngonga Ngomo. How representative is a sparql benchmark? an analysis of rdf triplestore benchmarks. In
The World Wide Web Conference, WWW ’19, page 1623–1633, New York, NY, USA, 2019. Association for
Computing Machinery.

[37] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo.
LSQ: the linked SPARQL queries dataset. In ISWC, pages 261–269. Springer, 2015.

[38] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Scalable semantic web data
management using vertical partitioning. In 33rd International Conference on Very Large Data Bases, VLDB
2007 - Conference Proceedings, VLDB ’07, pages 411–422. VLDB Endowment, 2007.

[39] Lei Zou, Jinghui Mo, Lei Chen, M. Tamer Özsu, and Dongyan Zhao. gStore: Answering SPARQL queries via
subgraph matching. Proceedings of the VLDB Endowment, 4(8):482–493, 2011.

[40] Matthias Bröcheler, Andrea Pugliese, and V. S. Subrahmanian. Dogma: A disk-oriented graph matching
algorithm for rdf databases. In Abraham Bernstein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana
Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, editors, The Semantic Web - ISWC 2009, pages
97–113, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[41] Vijay Ingalalli, Dino Ienco, and Pascal Poncelet. Querying RDF Data: a Multigraph-based Approach, chapter 5,
pages 135–165. John Wiley Sons, Ltd, 2018.

[42] Xiaofei Zhang, Lei Chen, Yongxin Tong, and Min Wang. EAGRE: Towards scalable I/O efficient SPARQL
query evaluation on the cloud. In Proceedings - International Conference on Data Engineering, pages 565–576,
apr 2013.

[43] Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, Panagiotis Karras, and Nectarios Koziris.
H2RDF+: High-performance distributed joins over large-scale RDF graphs. Proceedings - 2013 IEEE Interna-
tional Conference on Big Data, Big Data 2013, pages 255–263, 2013.

[44] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame: A generic architecture for storing and
querying RDF and RDF Schema. In Ian Horrocks and James Hendler, editors, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 2342
LNCS, pages 54–68, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[45] David Beckett. The design and implementation of the redland RDF application framework. In Proceedings of
the 10th International Conference on World Wide Web, WWW 2001, WWW ’01, pages 449–456, New York, NY,
USA, 2001. ACM.

[46] Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. Triplebit: A fast and compact system
for large scale rdf data. Proc. VLDB Endow., 6(7):517–528, May 2013.

[47] Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. A distributed graph engine for web
scale RDF data. In Proceedings of the VLDB Endowment, volume 6 of PVLDB’13, pages 265–276. VLDB
Endowment, 2013.

[48] Dave Kolas, Ian Emmons, and Mike Dean. Efficient linked-list RDF indexing in Parliament. CEUR Workshop
Proceedings, 517:17–32, 2009.

[49] Claus Stadler, Gezim Sejdiu, Damien Graux, and Jens Lehmann. Sparklify: A scalable software component
for efficient evaluation of sparql queries over distributed rdf datasets. In Chiara Ghidini, Olaf Hartig, Maria
Maleshkova, Vojtěch Svátek, Isabel Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon,
editors, The Semantic Web – ISWC 2019, pages 293–308, Cham, 2019. Springer International Publishing.

[50] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Martin Rezk, Mariano
Rodriguez-Muro, and Guohui Xiao. Ontop: Answering sparql queries over relational databases. Semantic Web,
8(3):471–487, 2017.

[51] Brian McBride. Jena: A semantic web toolkit. IEEE Internet Computing, 6(6):55–58, nov 2002.

[52] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20(1):359–392, December 1998.

[53] Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov, and Axel-Cyrille Ngonga Ngomo. A fine-grained
evaluation of sparql endpoint federation systems. Semantic Web, 7(5):493–518, 2016.

40

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

[54] Daniel Janke, Steffen Staab, and Matthias Thimm. On data placement strategies in distributed rdf stores. In
Proceedings of The International Workshop on Semantic Big Data, SBD ’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[55] Aydin Buluc, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent advances in graph
partitioning, 2013.

[56] Stephen Harris and Nicholas Gibbins. 3store: Efficient Bulk RDF Storage. In Proceedings of the 1st International
Workshop on Practical and Scalable Semantic Systems (PSSS’03), pages 1–20, 2003.

[57] Li Ma, Zhong Su, Yue Pan, Li Zhang, and Tao Liu. Rstar: an rdf storage and query system for enterprise resource
management. In Proceedings of the thirteenth ACM international conference on Information and knowledge
management, pages 484–491, 2004.

[58] Maciej Janik and Krys Kochut. Brahms: a workbench rdf store and high performance memory system for
semantic association discovery. In International Semantic Web Conference, pages 431–445. Springer, 2005.

[59] Andreas Harth and Stefan Decker. Optimized index structures for querying RDF from the Web. In Proceedings -
Third Latin American Web Congress, LA-WEB 2005, volume 2005 of LA-WEB ’05, pages 71–80, Washington,
DC, USA, 2005. IEEE Computer Society.

[60] David Wood, Paul Gearon, and Tom Adams. Kowari: A platform for semantic web storage and analysis. In
XTech 2005 Conference, pages 5–402, 2005.

[61] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srinivasan. An efficient sql-based rdf
querying scheme. In Proceedings of the 31st International Conference on Very Large Data Bases, VLDB ’05,
page 1216–1227. VLDB Endowment, 2005.

[62] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: Sextuple indexing for semantic web data
management. Proceedings of the VLDB Endowment, 1(1):1008–1019, 2008.

[63] Jinha Kim, Hyungyu Shin, Wook-Shin Han, Sungpack Hong, and Hassan Chafi. Taming subgraph isomorphism
for rdf query processing. Proceedings of the VLDB Endowment, 8(11), 2015.

[64] Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable management of RDF data. VLDB
Journal, 19(1):91–113, feb 2010.

[65] Anas Katib, Vasil Slavov, and Praveen Rao. Riq: Fast processing of sparql queries on rdf quadruples. Journal of
Web Semantics, 37:90–111, 2016.

[66] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Strabon: A semantic geospatial dbms.
In Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Manfred Hauswirth,
Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abraham Bernstein, and Eva Blomqvist, editors, The
Semantic Web – ISWC 2012, pages 295–311, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[67] Medha Atre and James A Hendler. Bitmat: A main memory bit-matrix of rdf triples. In The 5th International
Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS2009), page 33, 2009.

[68] Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas, Patrick Dantressangle, Octavian
Udrea, and Bishwaranjan Bhattacharjee. Building an efficient rdf store over a relational database. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD ’13, page 121–132,
New York, NY, USA, 2013. Association for Computing Machinery.

[69] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee. Rdfox: A highly-scalable
rdf store. In Marcelo Arenas, Oscar Corcho, Elena Simperl, Markus Strohmaier, Mathieu d’Aquin, Kavitha
Srinivas, Paul Groth, Michel Dumontier, Jeff Heflin, Krishnaprasad Thirunarayan, and Steffen Staab, editors,
The Semantic Web - ISWC 2015, pages 3–20, Cham, 2015. Springer International Publishing.

[70] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel Ferreira, Edmond
Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store:
A column-oriented dbms. In Proceedings of the 31st International Conference on Very Large Data Bases, VLDB
’05, page 553–564. VLDB Endowment, 2005.

[71] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edition, 2009.

[72] Uwe Deppisch. S-tree: A dynamic balanced signature index for office retrieval. In Proceedings of the 9th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’86, page
77–87, New York, NY, USA, 1986. Association for Computing Machinery.

41

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

[73] Manolis Koubarakis and Kostis Kyzirakos. Modeling and querying metadata in the semantic sensor web:
The model strdf and the query language stsparql. In Proceedings of the 7th International Conference on The
Semantic Web: Research and Applications - Volume Part I, ESWC’10, page 425–439, Berlin, Heidelberg, 2010.
Springer-Verlag.

[74] Andreas Harth, Jürgen Umbrich, Aidan Hogan, and Stefan Decker. Yars2: A federated repository for querying
graph structured data from the web. In Proceedings of the 6th International The Semantic Web and 2nd Asian
Conference on Asian Semantic Web Conference, ISWC’07/ASWC’07, page 211–224, Berlin, Heidelberg, 2007.
Springer-Verlag.

[75] Kurt Rohloff and Richard E. Schantz. High-performance, massively scalable distributed systems using the
mapreduce software framework: The shard triple-store. In Programming Support Innovations for Emerging
Distributed Applications, PSI EtA ’10, New York, NY, USA, 2010. Association for Computing Machinery.

[76] Andreas Harth. Cumulusrdf: Linked data management on nested key-value stores. 2011.
[77] Padmashree Ravindra, HyeongSik Kim, and Kemafor Anyanwu. An intermediate algebra for optimizing rdf

graph pattern matching on mapreduce. In Grigoris Antoniou, Marko Grobelnik, Elena Simperl, Bijan Parsia,
Dimitris Plexousakis, Pieter De Leenheer, and Jeff Pan, editors, The Semanic Web: Research and Applications,
pages 46–61, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[78] Vaibhav Khadilkar, Murat Kantarcioglu, Bhavani Thuraisingham, and Paolo Castagna. Jena-hbase: A distributed,
scalable and efficient rdf triple store. In Proceedings of the 2012th International Conference on Posters and
Demonstrations Track - Volume 914, ISWC-PD’12, page 85–88, Aachen, DEU, 2012. CEUR-WS.org.

[79] Roshan Punnoose, Adina Crainiceanu, and David Rapp. Rya: A scalable rdf triple store for the clouds. In
Proceedings of the 1st International Workshop on Cloud Intelligence, Cloud-I ’12, New York, NY, USA, 2012.
Association for Computing Machinery.

[80] Andrés Aranda-Andújar, Francesca Bugiotti, Jesús Camacho-Rodríguez, Dario Colazzo, François Goasdoué, Zoi
Kaoudi, and Ioana Manolescu. Amada: Web data repositories in the amazon cloud. In Proceedings of the 21st
ACM International Conference on Information and Knowledge Management, CIKM ’12, page 2749–2751, New
York, NY, USA, 2012. Association for Computing Machinery.

[81] Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, and Nectarios Koziris. H2rdf: Adaptive query
processing on rdf data in the cloud. In Proceedings of the 21st International Conference on World Wide Web,
WWW ’12 Companion, page 397–400, New York, NY, USA, 2012. Association for Computing Machinery.

[82] Kisung Lee and Ling Liu. Scaling queries over big RDF graphs with semantic hash partitioning. Proceedings of
the VLDB Endowment, 6(14):1894–1905, sep 2013.

[83] Alexander Schätzle, Martin Przyjaciel-Zablocki, and Georg Lausen. PigSPARQL: Mapping SPARQL to Pig
Latin. In Proceedings of the International Workshop on Semantic Web Information Management, SWIM 2011,
2011.

[84] Raghava Mutharaju, Sherif Sakr, Alessandra Sala, and Pascal Hitzler. D-sparq: Distributed, scalable and
efficient rdf query engine. In Proceedings of the 12th International Semantic Web Conference (Posters and
Demonstrations Track) - Volume 1035, ISWC-PD ’13, page 261–264, Aachen, DEU, 2013. CEUR-WS.org.

[85] F. Goasdoué, Z. Kaoudi, I. Manolescu, J. Quiané-Ruiz, and S. Zampetakis. Cliquesquare: Flat plans for massively
parallel rdf queries. In 2015 IEEE 31st International Conference on Data Engineering, pages 771–782, 2015.

[86] Philip Stutz, Mihaela Verman, Lorenz Fischer, and Abraham Bernstein. Triplerush: A fast and scalable triple
store. In Proceedings of the 9th International Conference on Scalable Semantic Web Knowledge Base Systems -
Volume 1046, SSWS’13, page 50–65, Aachen, DEU, 2013. CEUR-WS.org.

[87] Günes Aluç, M. Tamer Özsu, Khuzaima Daudjee, and Olaf Hartig. chameleon-db: a workload-aware robust rdf
data management system. 2013.

[88] Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald. TriAD: A distributed shared-nothing
RDF engine based on asynchronous message passing. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14, pages 289–300, New York, NY, USA, 2014. ACM.

[89] Xi Chen, Huajun Chen, Ningyu Zhang, and Songyang Zhang. Sparkrdf: Elastic discreted rdf graph process-
ing engine with distributed memory. In Proceedings of the 2014 International Conference on Posters and
Demonstrations Track - Volume 1272, ISWC-PD’14, page 261–264, Aachen, DEU, 2014. CEUR-WS.org.

[90] Buwen Wu, Yongluan Zhou, Pingpeng Yuan, Hai Jin, and Ling Liu. Semstore: A semantic-preserving distributed
rdf triple store. In Proceedings of the 23rd ACM International Conference on Conference on Information and
Knowledge Management, CIKM ’14, page 509–518, New York, NY, USA, 2014. Association for Computing
Machinery.

42

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

[91] M. Wylot and P. Cudré-Mauroux. Diplocloud: Efficient and scalable management of rdf data in the cloud. IEEE
Transactions on Knowledge and Data Engineering, 28(3):659–674, 2016.

[92] Razen Harbi, Ibrahim Abdelaziz, Panos Kalnis, Nikos Mamoulis, Yasser Ebrahim, and Majed Sahli. Accelerating
SPARQL queries by exploiting hash-based locality and adaptive partitioning. VLDB Journal, 25(3):355–380, jun
2016.

[93] Alexander Schätzle, Martin Przyjaciel-Zablocki, Thorsten Berberich, and Georg Lausen. In Fusheng Wang, Gang
Luo, Chunhua Weng, Arijit Khan, Prasenjit Mitra, and Cong Yu, editors, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9579,
pages 155–168, Cham, 2016. Springer International Publishing.

[94] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. Fast and concurrent rdf queries with rdma-based
distributed graph exploration. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, page 317–332, USA, 2016. USENIX Association.

[95] Jens Lehmann, Gezim Sejdiu, Lorenz Bühmann, Patrick Westphal, Claus Stadler, Ivan Ermilov, Simon Bin,
Nilesh Chakraborty, Muhammad Saleem, Axel-Cyrille Ngonga Ngomo, and Hajira Jabeen. Distributed semantic
analytics using the sansa stack. In Claudia d’Amato, Miriam Fernandez, Valentina Tamma, Freddy Lecue,
Philippe Cudré-Mauroux, Juan Sequeda, Christoph Lange, and Jeff Heflin, editors, The Semantic Web – ISWC
2017, pages 147–155, Cham, 2017. Springer International Publishing.

[96] Liang He, Bin Shao, Yatao Li, Huanhuan Xia, Yanghua Xiao, Enhong Chen, and Liang Jeff Chen. Stylus: A
strongly-typed store for serving massive rdf data. Proc. VLDB Endow., 11(2):203–216, October 2017.

[97] Daniel Janke, Steffen Staab, and Matthias Thimm. Koral: A glass box profiling system for individual components
of distributed rdf stores. In BLINK/NLIWoD3@ISWC, 2017.

[98] Matteo Cossu, Michael Färber, and Georg Lausen. Prost: Distributed execution of SpaRQL queries using mixed
partitioning strategies. In Advances in Database Technology - EDBT, volume 2018-March, pages 469–472, 2018.

[99] Amgad Madkour, Ahmed M. Aly, and Walid G. Aref. Worq: Workload-driven rdf query processing. In Denny
Vrandečić, Kalina Bontcheva, Mari Carmen Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou,
Lucie-Aimée Kaffee, and Elena Simperl, editors, The Semantic Web – ISWC 2018, pages 583–599, Cham, 2018.
Springer International Publishing.

[100] P. Peng, L. Zou, L. Chen, and D. Zhao. Adaptive distributed rdf graph fragmentation and allocation based on
query workload. IEEE Transactions on Knowledge and Data Engineering, 31(4):670–685, 2019.

[101] Randall T. Whitman, Bryan G. Marsh, Michael B. Park, and Erik G. Hoel. Distributed spatial and spatio-temporal
join on apache spark. ACM Trans. Spatial Algorithms Syst., 5(1), June 2019.

[102] Xintong Guo, Hong Gao, and Zhaonian Zou. Leon: A distributed rdf engine for multi-query processing. In
Guoliang Li, Jun Yang, Joao Gama, Juggapong Natwichai, and Yongxin Tong, editors, Database Systems for
Advanced Applications, pages 742–759, Cham, 2019. Springer International Publishing.

[103] H. Jabeen, E. Haziiev, G. Sejdiu, and J. Lehmann. Dise: A distributed in-memory sparql processing engine over
tensor data. In 2020 IEEE 14th International Conference on Semantic Computing (ICSC), pages 400–407, 2020.

[104] Kevin Wilkinson. Jena property table implementation, 2006.
[105] Donald R Morrison. Patricia—practical algorithm to retrieve information coded in alphanumeric. Journal of the

ACM (JACM), 15(4):514–534, 1968.
[106] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM Journal of Scientific Computing, 20(1):359–392, dec 1998.
[107] Philip Stutz, Abraham Bernstein, and William Cohen. Signal/collect: Graph algorithms for the (semantic) web.

In Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z. Pan, Ian Horrocks, and Birte
Glimm, editors, The Semantic Web – ISWC 2010, pages 764–780, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[108] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey Ching, Alan Choi, Justin Erickson,
Martin Grund, Daniel Hecht, Matthew Jacobs, Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang, Nong
Li, Ippokratis Pandis, Henry Robinson, David Rorke, Silvius Rus, John Russell, Dimitris Tsirogiannis, Skye
Wanderman-Milne, and Michael Yoder. Impala: A modern, open-source SQL engine for Hadoop. In CIDR 2015
- 7th Biennial Conference on Innovative Data Systems Research, 2015.

[109] Marcin Wylot, Jigé Pont, Mariusz Wisniewski, and Philippe Cudré-Mauroux. Diplodocus[rdf]: Short and
long-tail rdf analytics for massive webs of data. In Proceedings of the 10th International Conference on The
Semantic Web - Volume Part I, ISWC’11, page 778–793, Berlin, Heidelberg, 2011. Springer-Verlag.

43

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

[110] Damien Graux, Louis Jachiet, Pierre Genevès, and Nabil Layaïda. SPARQLGX: Efficient distributed evaluation
of SPARQL with apache spark. In Paul Groth, Elena Simperl, Alasdair Gray, Marta Sabou, Markus Krötzsch,
Freddy Lecue, Fabian Flöck, and Yolanda Gil, editors, Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 9982 LNCS, pages 80–87,
Cham, 2016. Springer International Publishing.

[111] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop distributed file system.
In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), MSST
’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[112] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.

[113] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica.
Graphx: Graph processing in a distributed dataflow framework. In Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, OSDI’14, pages 599–613, Berkeley, CA, USA, 2014.
USENIX Association.

[114] Peng Peng, Lei Zou, and Runyu Guan. Accelerating partial evaluation in distributed SPARQL query evaluation.
CoRR, abs/1902.03700, 2019.

[115] Akrivi Vlachou, Christos Doulkeridis, Apostolos Glenis, Georgios M. Santipantakis, and George A. Vouros.
Efficient spatio-temporal rdf query processing in large dynamic knowledge bases. In Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing, SAC ’19, page 439–447, New York, NY, USA, 2019.
Association for Computing Machinery.

[116] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM REVIEW, 51(3):455–500,
2009.

[117] Roberto De Virgilio. Distributed in-memory sparql processing via dof analysis. In EDBT, 2017.

[118] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. FEASIBLE: a feature-based SPARQL
benchmark generation framework. In ISWC, pages 52–69. Springer, 2015.

[119] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo. DBpedia SPARQL benchmark
- performance assessment with real queries on real data. In ISWC, pages 454–469. Springer, 2011.

[120] Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea. Apples and oranges: A
comparison of RDF benchmarks and real RDF datasets. In SIGMOD, pages 145–156. ACM, 2011.

[121] Shi Qiao and Z. Meral Özsoyoglu. RBench: Application-specific RDF benchmarking. In SIGMOD, pages
1825–1838. ACM, 2015.

[122] Michael Schmidt et al. SP2Bench: A SPARQL performance benchmark. In Semantic Web Information
Management - A Model-Based Perspective, pages 371–393. 2009.

[123] Felix Conrads, Jens Lehmann, Muhammad Saleem, Mohamed Morsey, and Axel-Cyrille Ngonga Ngomo.
IGUANA: A generic framework for benchmarking the read-write performance of triple stores. In ISWC, pages
48–65. Springer, 2017.

[124] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. The Train Benchmark: Cross-technology
performance evaluation of continuous model queries. Softw. Syst. Model., 17(4):1365–1393, 2018.

[125] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. Diversified stress testing of RDF data
management systems. In ISWC, pages 197–212. 2014.

[126] Christian Bizer and Andreas Schultz. The Berlin SPARQL benchmark. Int. J. Semantic Web Inf. Syst., 5(2):1–24,
2009.

[127] Gianluca Demartini, Iliya Enchev, Marcin Wylot, Joël Gapany, and Philippe Cudré-Mauroux. BowlognaBench -
benchmarking RDF analytics. In Data-Driven Process Discovery and Analysis SIMPDA, pages 82–102. Springer,
2011.

[128] Orri Erling, Alex Averbuch, Josep-Lluis Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau Prat-Pérez, Minh-
Duc Pham, and Peter A. Boncz. The LDBC Social Network Benchmark: Interactive workload. In SIGMOD,
pages 619–630. ACM, 2015.

[129] Gábor Szárnyas, Arnau Prat-Pérez, Alex Averbuch, József Marton, Marcus Paradies, Moritz Kaufmann, Orri
Erling, Peter A. Boncz, Vlad Haprian, and János Benjamin Antal. An early look at the LDBC Social Network
Benchmark’s Business Intelligence workload. In GRADES-NDA at SIGMOD, pages 9:1–9:11. ACM, 2018.

44

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

A PREPRINT - MAY 30, 2020

[130] Samantha Bail, Sandra Alkiviadous, Bijan Parsia, David Workman, Mark van Harmelen, Rafael S. Gonçalves,
and Cristina Garilao. FishMark: A linked data application benchmark. In Proceedings of the Joint Workshop on
Scalable and High-Performance Semantic Web Systems, pages 1–15, 2012.

[131] Hongyan Wu et al. BioBenchmark Toyama 2012: An evaluation of the performance of triple stores on biological
data. J. Biomedical Semantics, 5:32, 2014.

45

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2020 doi:10.20944/preprints202005.0360.v2

https://doi.org/10.20944/preprints202005.0360.v2

	Introduction
	Basic Concepts and Definitions
	RDF
	SPARQL

	Literature Review
	Storage
	Triple Table
	Property Table
	Vertical Partitioning
	 Graph Based Storage
	Miscellaneous Storage

	Indexing
	Language Support
	Query Execution
	RDF Graph Partitioning
	State-of-the-Art RDF Engines
	Centralized RDF Engines
	Distributed RDF Engines

	SPARQL Benchmarks for RDF Engines
	Benchmarks Design Features
	RDF Engines Benchmarks Analysis

	Research problems
	Conclusion

