The vastness of chemical-space constrains traditional drug-discovery methods to the organic laws that are guiding the chemistry involved in filtering through candidates. Leveraging computing with machine-learning to intelligently generate compounds that meet a wide range of objectives can bring significant gains in time and effort needed to filter through a broad range of candidates. This paper details how the use of Generative-Adversarial-Networks, novel machine learning techniques to format the training dataset and the use of quantum computing offer new ways to expedite drug-discovery.
Keywords:
Subject:
Medicine and Pharmacology - Pharmacology and Toxicology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.