Local binary pattern is one of the visual descriptors and can be used as a powerful feature extractor for texture classification. In this paper, a novel representation for face recognition is proposed, called it Bilateral Line Local Binary Patterns (BL-LBP). This scheme is an extension of Line Local Binary Patterns descriptors in the statistical learning subspace. The present bilateral descriptors are fused with an ensemble learning of calibrated SVM models. The performance of this scheme is evaluated using 5 standard face databases. It is found that it is robust against illumination variation, diverse facial expressions and head pose variations and its recognition accuracy reaches 98 percent, running on a mobile device with a processing speed of 63 ms per face. Results suggest that our proposed method can be very useful for the vision systems that have limited resources where the computational cost is critical.
Keywords:
Subject: Computer Science and Mathematics - Applied Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.